
Collaborative Real-Time Business Communication Platform

Guadalupe Flores
Wellness Telecom Seville, Spain

Email: gflores@wtelecom.es

Jorge Perez
Wellness Telecom Seville, Spain

Email: jmperez@wtelecom.es

Ignacio Campos
Wellness Telecom Seville, Spain

Email: icampos@wtelecom.es

Spiros Koulouzis
University of Amsterdam Amsterdam, Neederland

Email: S.Koulouzis@uva.nl

Abstract—In this paper is presented a collaborative real-

time business communication platform. This platform used

the software workbench for Interactive, Time Critical and

Highly self-adaptive cloud applications (SWITCH), improving

development productivity, deployment efficiency and reducing

operational costs. The pilot has been integrated with the

SWITCH system, where the deployment and monitoring of

the platform is shown.

1. Introduction

The global spreading of Internet, along with the amount
of devices internet connected, formed the need for IT mobil-
ity that drive to the emergence of Cloud [1]. In this context,
the cloud infrastructures can provide virtualization, elasticity
and high-quality services. Nevertheless, for real time critical
applications the cloud environments can not support the
early demand of time critical applications [2]. Within this
frame, SWITCH project arises, a platform for time critical
application in the cloud providing programmability and
controllability of QoS and QoE for cloud environments [3].
In this sense, the requirements for time critical application
are analyzed by real uses cases. In this paper we present
a use case running on the cloud. The collaborative real-
time business communication platform, also called Unified
Communication as a Service (UCaaS) to provide cloud
interoperability among different clouds.

The main novelty of this communication system is the
adaptability of the service on the traffic demand while
maintaining the quality of service QoS [4]. The SWITCH
workbench assure this QoS by implementing efficiently cus-
tomer requirements, deploying flexibly software and main-
taining the run time system quality. In addition, the UC
platform makes use of Docker containers [5], increasing
the deployment time of the applications and opening the
possibility of scaling on demand.

This paper is structured as follows, first the use case is
described, with the different plausible scenarios. Secondly,
the architecture of the system is shown, where the different
hosts and dockers are explained. Thirdly, the integration with
the SWITCH platform is illustrated, where the scalability
on demand of the system is analyzed. Later on the the first

Figure 1. Use case Diagram.

results of the integration and management of the use case by
SWITCH are pointed out and finally, the conclusion of the
real-time business communication platform are summarized.

2. Description

In this section will be described the pilot presented:
A collaborative real-time business communication platform.
The pilot can be defined as a platform to provide enterprise
communications integrated in only one service. This service
embraces the communication between two users or among
a group of users. The services offers by the platform are
presence detection, instant message service (chat), message
delivery service (delayed message service), audio and video
calls. The platform is thought to be used in a business
close environment where the users are the employees of the
company and the administrator of the system gives access to
the service. The administrator has the control of the system.
Once the users get access from the administrator, the users
can access to the platform through a SIP client.

The different functionalities can be reached through a
SIP agent installed in the a device. When a user wants to
connect to the unified communication platform, it needs to
initiate the process through the SIP agent. An schema of the
platform is illustrated in Fig. 1.

Inside the functionalities, various scenarios can occur.
The different scenarios are summarized as follows.



• Peer to Peer audio call: An users who wants to
call other user of the system starts the call through
the SIP agent. If the system recognize the receiver,
a negotiation of message begins before the commu-
nication is established. Between those messages, the
audio codec is set. In this way, the system does not
have to process the audio.

• Peer to peer video call: The procedure is the same
than the peer to peer audio call with the difference of
having two flows: one for audio and other for video.
As it happened in the previous scenario, the codec
for audio and video are set during the negotiation
protocol.

• Multi-conference audio call: The administrator
needs to create a logical space where the user can
hold an audio conference, this logical spaces are
called rooms. When the users wants to access to
the conference, the administrator provides the con-
ference room and the conference is initiated through
a SIP agent in the same way of peer to peer call.

• Multi-conference video call: In this case, the pro-
cedure is the same as in multi-conference audio call
but with two flows one from audio and other for
video.

• Chat and message delivery service: This function-
ality varies from the previous described. This lets
users to share instant messages in real time (chat),
as well as send files to other users if they are not
connected at the moment. The SIP agent will be
responsible for this detection. Moreover, the SIP
agent will show the status of different contacts to
any user.

3. Architecture

In this section is presented the architecture of the use
case with the different hosts (VMs) and Docker containers.
The platform comprises several services which should be
configured to provide the complete set of functions. These
services, needed for the use case, are running in different
Docker containers, Fig. 2. The Dockers technology is an
abstraction at the app layer that package code and depen-
dencies together. Containers take up less space than VMs
and are isolated from its surrounding, avoiding conflicts
between different applications. Dockers offer the possibility
of scaling the containers if more resources are needed, this
property will be used by the use case and will commented
later on the section 4. The architecture of the use case with
the different Docker hosts and containers can be seen in
Fig. 3. The use case is composed of different services which
are listed below:

• Kamailio: This is a very flexible open source SIP
server, which can be used to build complex real time
communication platforms; even it can also support
Presence and Instant Messaging functions. This ser-
vice can also act as a load balancer of VoIP and
video calls along with other servers. In the use case

Figure 2. Docker container Diagram.

Figure 3. Architecture of the platform.

Asterisk and Doubango servers will be used as VoIP
and video server respectively while Kamailio will
be responsible for the complete signalization of the
protocol.

• MySQL: An open-source management system for
relational databases based on Structured Query Lan-
guage. In this case, a MySQL database will be used
to store registered users in the system, as well as
calls registry and another dataset.

• RTP Engine: This service allows media data flows
to circulate through itself supported by the RTP
protocol. The data flows can be both audio and video
flows.

• Asterisk: This service is an open-source initiative
converted in a universal tool for building audio com-
munication application acting as a communication
server and handling data along different communi-
cations protocol. This platform is an engine to power
IP PBX (Private Branch Exchange), IVR (Interactive
Voice Response), ACD (Automatic Call Distributor),
etc. Its specific function in the use case is to process
VoIP calls according to signalization in the system.

• Doubango: This service is an open-source SIP
TelePresence System. It is used as a video mixer
used for shaping various streams at conferences

• Web Portal: This service will expose a website that



will offer access to the communications system with-
out installing additional software in user devices.
This portal will provide an agent (SIP agent) which
will be offered to be installed in the browser and will
let anybody registered in the system use the service
without having any other program installed in his
device.

• Mongo DB: It is a open-source cross-platform
document-oriented database program. Mongo is the
data base for the web portal.

• Redis: It is an open source (BSD licensed), in-
memory data structure store, used as a database,
cache and message broker. It is the data base for
Doubango video mixer.

• Monitoring Agent (AG): It collects the information
based on statsd. In all the containers there is a small
agent that sends the metrics to the Monitoring agent.
This monitor agent gathers all the information and
sends those to the monitor server based on JCatas-
copia. These information is stored in Cassandra, a
big data database.

4. Scalability: SWITCH integration

The Unified communication pilot is a real-time critical
application which depends on the the load demands of
the system. In order to meet with customers requirements
and QoS, the system is design to cope with two types of
scalability: vertical and horizontal. The vertical scalability
is guarantee using Docker [6], it is a dynamic scalability,
where each container take the resources needed from the
host. However, this resource allocation is limited to the host
resources and in some cases, a new application container is
needed. In this sense, the UC pilot together with SWITCH
subsystem have been designed to automatically perform
vertical scaling and if needed, horizontal scaling.

SWITCH systems is designed to guarantee the traffic
demand of the pilot while maintaining the proper operation
of the system no matter the work load of the pilot. First,
the SIDE subsystem allows developers to define the system,
at container level with QoS requirements to describe the
system. This user interface establishes a common ontology
which can be used for different subsystems inside the service
or even different services. Second, the DRIP subsystem
checks the resources needed for the service before starting
execution and deploy the pilot in the different VMs. More-
over, if application must be scaled up, DRIP will provision
new resources in a suitable cloud to host new containers
while maintaining QoS. Finally, ASAP is responsible to
monitor metrics and resources remaining the proper op-
eration of the system as well as QoS of the service by
means of probes which will be deployed in the same host
as containers.

In the Table 1 are summarized the relation between
services and the type of scalability and the metrics affected.

TABLE 1. QOS IN UNIFIED COMMUNICATION PLATFORM

Resource Type Metric

Kamailio Vertical CPU metrics, Memory metrics

MySQL Vertical CPU metrics, Memory metrics

RTP Engine Horizontal Number of ports

Asterisk Horizontal Number of rooms and users

Doubango Horizontal Number of rooms and users

Mongo DB Vertical CPU metrics, Memory metrics

Figure 4. Integration of the platform with SWITCH.

5. Results: Use case deployment from DRIP

The objectives of the pilots related to the SWITCH en-
vironments are the proper operation of the system, assuring
the scalability of the system. In the Fig. 4 are presented
the integration of the use case with switch environment. In
this section is tested the deployment of the pilot through the
DRIP and the monitorization of the metrics for the scaling
under demand.

In the SIDE, the different configuration for the pilot
are defined, and the Tosca with the docker compose file is
generated. This docker compose file is the one represented
in fig Fig. 3. This Tosca file is acquire by the DRIP sub-
system and in it contains the information needed in terms
of VM and containers for the deployment of the system.
With this information, DRIP through SWARM deploys the
pilot with the different containers of the use case. Between
this containers is located the monitoring agent (MA) which
DRIP internally communicate with the Monitoring Server
that has been already deployed ins ASAP. In this case, all
the metrics mentioned in Table 1 are stored in the Cassandra
database of monitoring server.

In this paper, the peer to peer video call with the
monitoring of the ports is presented. DRIP is able to deploy
the system with the docker compose file of the pilot. DRIP
connect the pilot with the Monitor Server deployed in the
ASAP. The monitor agent (MA) of the use case send the
metrics for the RTP Proxy, the number of free port, to the
monitor server deployed in the system. When a new user
want to interact with the system, a new port is associated



Registration 

of a new 

user

Number of

free ports 

for

RTP Proxy

Figure 5. RTP Proxy ports monitoring

Figure 6. Peer to peer video call.

to the user and the number of free ports register by the
monitor server decrease. In Fig. 5 is shown the result from
the process, in yellow dashed line are represented when the
users are being registered into the system and in red dashed
line, are represented the number of free ports used by the
system. As it can be seen these are decreasing in time. In
addition, the proper operation of the system through DRIP
is illustrated in Fig. 6. The user through the SIP client, can
initate a video conference, mantaining a QoS during the
whole call.

The next step for the total monitoring will be to set a rule
for the metrics and the scale of the containers. Nevertheless,
these steps will be a simple task due to the more complex
part, the deployment and integration of the use case by
SWITCH has already been demonstrated.

6. Conclusion

In this paper is presented a collaborative real-time plat-
form for audio, video and chat for business environment.
These platform is designed to be used in the Cloud and
thanks to the Docker technology used, the container provides
standards and can be deployed in any Cloud technology.
The main novelty of the approach is the scalability of the
system on demand. The SWITCH workbench interacts with

the platform assuring the QoS with a scalability of the
necessary components. In the paper the work of integration,
deployment and monitoring of the use case by SWITCH
has been proved. This system has been tested with one of
the scenarios, peer to peer video conference, showing the
feasibility of the system, maintaining the QoS. This work
leads the way to the final task of the SWITCH project, the
total integration of the use case where the scalability of on
demand is assured.

Acknowledgments

This work has received funding from the European
Unions Horizon 2020 research and innovation programme
under grant agreement No 643963 (SWITCH project).

References

[1] Jörg Domaschka, Frank Griesinger, Daniel Baur, and Alessandro
Rossini. Beyond mere application structure thoughts on the future
of cloud orchestration tools. Procedia Computer Science, 68:151–162,
2015.

[2] Keith Jeferry, George Kousiouris, Dimosthenis Kyriazis, Jörn Altmann,
Augusto Ciuffoletti, Ilias Maglogiannis, Paolo Nesi, Bojan Suzic, and
Zhiming Zhao. Challenges emerging from future cloud application
scenarios. Procedia Computer Science, 68:227–237, 2015.

[3] Zhiming Zhao, Paul Martin, Junchao Wang, Ari Taal, Andrew Jones,
Ian Taylor, Vlado Stankovski, Ignacio Garcia Vega, George Suciu,
Alexandre Ulisses, et al. Developing and operating time critical
applications in clouds: the state of the art and the switch approach.
Procedia Computer Science, 68:17–28, 2015.

[4] Salman Taherizadeh, Ian Taylor, Andrew Jones, Zhiming Zhao, and
Vlado Stankovski. A network edge monitoring approach for real-
time data streaming applications. In International Conference on the
Economics of Grids, Clouds, Systems, and Services, pages 293–303.
Springer, 2016.

[5] Docker. http://https://www.docker.com/what-container.

[6] Ann Mary Joy. Performance comparison between linux containers
and virtual machines. In Computer Engineering and Applications
(ICACEA), 2015 International Conference on Advances in, pages 342–
346. IEEE, 2015.


