
Virtual Infrastructure Planning for a Workflow with
Multiple Overlapping Deadline Constraints in Cloud

Junchao Wang∗, Huan Zhou†, Yang Hu‡, Cees de Laat§ and Zhiming Zhao¶
University of Amsterdam

Email: ∗{j.wang2, †h.zhou, ‡y.hu, §delaat, ¶z.zhao}@uva.nl

Abstract—Cloud providers offer various types of virtual in-
frastructures (e.g. Virtual Machines, Dockers) to consumers in
a pay-as-you go manner. For an application represented by a
complex workflow, it is difficult for the consumer to decide what
type of infrastructure they need to meet the Quality-of-Service
(QoS) requirements and achieve objectives like monetary cost
optimisation. We call such problem as the virtual infrastructure
planning problem in cloud. Most existing studies focus on only
one single deadline-constrained workflow planning. The single
deadline constraint usually refers to a global deadline since
the start execution of a workflow to its finish. However, such
simple model cannot allow a time critical application to specify
internal deadlines inside the workflow. To allow such flexibility
for consumers, we propose a multi-deadline model and consider
the virtual infrastructure planning problem for workflow with
multi-deadline constraints. To solve the problem efficiently, we
propose a Multiple-Deadline overlapping-based Infrastructure
Planning (MDIP) algorithm. In MDIP, we define the criticality
of tasks by analysing the deadline coverages. Then we rank the
tasks in the workflow by their criticality and assign them with
VM type of better performance. To evaluate the effectiveness
of our algorithm, we compare it with a meta-heuristic solution
(Genetic Algorithm-based) and a hybrid solution combining
critical path and genetic algorithm. Simulated experiments show
our approach can achieve better results than existing solutions
and more efficient than GA-based solution. Keywords: Time
critical application, multiple deadlines, workflow scheduling

I. INTRODUCTION

Cloud computing is increasingly popular for hosting appli-
cations due to its elasticity and flexibility. These characteristics
are mainly reflected in the resource on-demand and pay-as-
you-go manner. Deployment time of an application is shrunk
and maintenance cost is decreased compared with hosting
applications in physical clusters. Due to such advantages
brought by the cloud, applications are increasingly migrated
to the cloud.

Time critical applications (TCAs) are one specific type of
applications that are sensitive to timing constraints, namely
deadlines. TCAs usually consist of multiple distributed compo-
nents which have data dependencies. Without violation of the
data dependencies, chained processing of these components to
outside data comprises the workflow of a TCA. For instance, a
disaster early warning system includes several basic process-
ing components: data pre-processing, simulation and decision
making [1]. The data collected from sensors is processed
and then fed to the simulation module. Then the simulated
data is passed to the decision making component. The whole
process of the TCA should finish not exceeding its deadline.

Functional correctness is not the only requirement of time
critical applications. During the execution of the workflow,
the timing requirements of time critical applications should
also be satisfied. Failing to meet the deadlines can lead to
serious consequences. For instance, if a disaster early warning
system cannot report a disaster in time, massive physical
infrastructures can be destroyed. When the response time of
an interactive video broadcasting system increases, the user
experience is strongly degraded. The system can therefore miss
a lot of consumers.

When migrating a time critical application to the cloud,
users should decide the right type of Virtual Machines (VM)
for each component and schedule the tasks in accordance with
their data dependencies. The planned infrastructures should
guarantee all the deadline requirements of the application and
achieve objectives like cost minimisation. We call such prob-
lem as the ”Virtual Infrastructure Planning Problem (VIPP)”.

There are existing research studying the virtual infrastruc-
ture planning problem for workflows with single deadline re-
quirement [2] [3] [4]. The deadline refers to a global deadline
from the start to the end of the workflow’s execution. How-
ever, such constraint is not adequate for TCAs with multiple
deadline requirements and constrains the user specifying some
internal deadlines. For example, the Internet-of-Things (IoT)
applications are quite complex and called system of systems.
Each component of the application is also an individual
system. The whole application has its deadline requirement but
some components also have their own deadline requirements.
In our previous work, we studied the problem of VIPP for
TCAs with multi-deadline requirements [1]. The multiple
deadline model only allows users to specify deadlines since
the start of a workflow. In this paper we relax such constraints
that only allows users to specify deadlines between any two
components inside the workflow.

Three examples of different deadline models listed in Fig. 1
are shown below. Fig. 1a shows an example of a workflow
with single deadline constraint. Fig. 1b shows a multi-deadline
constrained model. The model requires all the deadlines start-
ing from the entry task of a workflow. Fig. 1c shows a more
flexible multi-deadline model that allows user to specify a
deadline between any two tasks inside a workflow.

TABLE I: Caption for the table.

Problem Solution constraints

Workflow
planning with
singe deadline
(shown in 1a)

IC-PCP [2]
Genetic
Algorithm [3]
CPI [4]

Single deadline
solutions cannot
be directly
adapted to solve
the multiple
deadline problem

Workflow
planning with
constrained
multiple
deadlines (shown
in 1b)

MEPA [1] Scalability
problem;
Multiple deadline
flexibility issue

Workflow
planning
with multiple
overlapping
deadlines (shown
in 1c)

MDIP Not global opti-
mal

(a) VIPP for workflow with single deadline requirement

(b) VIPP for workflow with constrained multiple deadline
requirements

(c) VIPP for workflow with multiple deadline requirements

Fig. 1: Example for VIPP with deadline requirements

II. RELATED WORKS

Yu et al. [5] propose a sub-deadline method to minimise
the execution cost of a workflow and satisfy a global dead-
line. They distribute the global deadline to each task in the
workflow by analysing the structure of the workflow. The
IaaS Cloud Partial Critical Paths (IC-PCP) algorithm [2] is a
critical path-based algorithm that first assigns all the tasks in
the workflow with the fastest VM type. Then it calculates the
partial critical paths in the workflow and assigns VM types
without violating the tasks’ LFT (Latest Finish Time). The
Critical Path-based Iterative (CPI) [6] and complete Critical
Paths (CPIS) [4] algorithms are other algorithms for solving

the cloud infrastructure planning problem within the bounds
of a single deadline. Instead of computing the partial critical
path, they identify the complete critical path in a workflow
and update resource assignment without violation of the work-
flow’s deadline. Rodriguez et al. [3] apply particle swarm
optimisation (PSO) by encoding the task-resource mapping as
the particle’s position. In this paper, we apply a similar meta-
heuristic solution, Genetic Algorithm-based solution as the
baseline to compare the results given in this paper. Convolbo
and Chou [7] apply a heuristic approach through analysing
the parallism of a workflow. Wu et al. [8] propose a heuristic
algorithm by applying minimal slack time and minimal dis-
tance to guarantee the global deadline of the workflow and
then a VM instance hour minimisation algorithm is applied to
further reduce the cost. However, all these existing research
focus on only one global deadline. The multi-deadline VIPP
problem which is quite common in industrial use cases is not
addressed.

III. PROBLEM FORMULATION

TABLE II: Caption for the table.

Notation and Abbreviations Meaning

TCA Time Critical Application
V tasks in a workflow
E communication between tasks
Q set of multiple deadline require-

ments
BG cost of executing the workflow
ZG makespan of the workflow
pred(vi) predecessors of vi
succ(vi) successors of vi
MMKP Multiple-Choice Multi-

Dimensional Knapsack Problem
MDIP Multiple overlapping Deadlines In-

frastructure Planning
VIPP Virtual Infrastructure Planning

Problem

In this paper we use G = 〈V,E〉 to represent the workflow
of an TCA. V = {v1, v2, . . . , vn} is the set of nodes that
corresponds to tasks in workflow G. E represents the com-
munication between tasks. For each task v ∈ V , we define
the parents of v as pred(v) = {v′ | v′ ∈ V ∧ (v′, v) ∈ E}.
∀vi ∈ V , vi cannot start executing until all its predecessors
pred(vi) finish. Correspondingly, we define the children of
v as succ(v) = {v′ | v′ ∈ V ∧ (v, v′) ∈ E}. We assume
that the tasks in workflow G can be executed on different
types of VM services provided by the cloud provider and
cannot be split into two or more sub-tasks. The communication
links between the tasks in V are represented by E such that
∀e ∈ E, e is a tuple (v, v′) where v ∈ V denotes the source
of the communication and v′ ∈ V denotes the destination of
the communication. w(v, v′) represent the communication cost
between v and v′ in the workflow. The communication cost
denotes the data transfer time between one task to another.
We also assume, for convenience, that every workflow has
a single initial task ventry such that pred(ventry) = ∅ but
pred(v) 6= ∅ for all other tasks v ∈ V . Similarly, we assume

that every workflow has a single terminal task vexit such that
succ(vexit) = ∅ but succ(v) 6= ∅ for all other tasks v ∈ V .

A cloud provider often offers different types of VM service
at different prices for customers to choose from; e.g., M
(general purpose), I (I/O optimised), C (computing optimised)
and R (memory optimised) VMs as offered by Amazon EC2
[9]. In this paper we denote such VM services as basic service
types. Each task in the workflow can be deployed on an
instance of one VM service type. When we refer to a VM type,
we refer to a VM service type offered by the cloud provider.
We refer to a concrete VM to which a single task is assigned as
a VM instance. Assume the cloud provider provides m types of
VM service s1, . . . , sm, and that the price per time unit of each
service si is ci. Deployment of tasks on different VM services
will result in different performance, which can be represented
by a performance matrix T . Each element tij = T [si, vj] is
the execution cost of task vj on service si, being the length
of time between the arrival of a request and the generation of
the corresponding response.

We use Q to represent the set of deadline requirements of
the time critical application workflow, where q = 〈v, v′, d
where q ∈ Q and v, v′ ∈ V . q denotes that task vj should
finish before time d since the start v to the finish of v′.
Compared with our previous work [1], this QoS definition
allows more flexibility. Our previous work only allows users
specify QoS from the entry node to another internal node in the
workflow. In this paper we break such limits by allowing users
to specify deadline between any two nodes in the workflow.
In this model, a single global application deadline can be
seen as a special case: if a workflow has only a global
deadline d1, then the QoS requirement of the workflow is
Q = {〈ventry, vexit, d1} where ventry is the entry task and
vexit is the finish task in the workflow. The multi-deadline
model in our previous work can also be seen as a special
case where the deadline denotes the maximum execution time
between the entry task to internal tasks inside the workflow. In
this paper we use BG (See Algorithm 1) to represent the cost
of the workflow G. Formally, BG =

∑n
i=1

∑α
j=1(cij × xij).

minimizeBG (1)

subject to

∀q ∈ Q,Φ(q) ≺ p (2)

m∑
j=1

xji = 1 (3)

xji ∈ 0, 1 (4)

We use EST (vi) and EFT (vj) to denote the Earliest Start
Time (EST) of vi and Earliest Finish Time (EFT) of vj . We
use A(vi) to represent that the task vi is assigned with the
A(vi) = sj type of VM. The Earliest Start Time (EST) of
task vi represents that during the processing of the workflow,
vi can start processing an event at its EST. When all the tasks

in the workflow have been assigned, the Earliest Start Time
of task vi is defined as follows [2]:

EST (ventry) = 0 (5)

EST (vi) = max
vp∈pred(vi)

{EST (vp) + T [A(vp), vp] + w(vp, vi)}
(6)

Accordingly, the Earliest Finish Time (EFT) of vi is defined
as:

EFT (vi) = EST (vi) + T [A(vi), vi] (7)

A. Problem Analysis

Theorem 1. A VIPP for a sequential workflow with multiple
deadline constraints is equal to the Multiple-Choice Multi-
Dimensional Knapsack Problem (MMKP).

A sequential workflow refers to a workflow that each node
vi ∈ V
ventry, vexit has only one predecessor and one successor.
Formally, |pred(vi)| = 1 and |succ(vi)| = 1.

Proof. The Multiple-Choice Multi-Dimensional Knapsack
Problem (MMKP) is a variant of the famous 0-1 knap-
sack problem [10]. Unlike the simple 0-1 knapsack problem,
MMKP considers n classes where each class has Ji items.
Users can choose an item for each class. The VIPP is actually
an infrastructure-to-workflow mapping problem. Each task in
the workflow is mapped to one type of VM. Thus, we can
consider each task in the workflow equally as the n classes
in MMKP. The number of VM types can be considered as
choices for each class.

In MMKP, there are several resource requirements. While
selecting items in each class, the total profit value of the
selection should be maximised while subjecting to the resource
constraints. For a sequential workflow, the execution time
between any two tasks can be simply calculated by summing
up the processing time of tasks in-between. Thus, the resource
requirements in MMKP can be theoretically equal to the
multiple deadline requirements of the VIPP. Therefore, the
MMKP is theoretically equal to the VIPP.

Since MMKP is NP-hard, the VIPP is NP-hard. In 1,
we prove a VIPP for a sequential workflow is equal to the
MMKP. There is only one path from the entry task to the
exit task of the sequential workflow. However, in time critical
applications, workflows are not only simple pipelines between
tasks but have complex data dependencies. The tasks also
exhibit diverse performance characteristics on different types
of VMs. Therefore, the sequential workflow planning problem
can be seen as a special case in VIPP.

IV. MULTIPLE OVERLAPPING DEADLINES
INFRASTRUCTURE PLANNING (MDIP)

There are approximate solutions to the MMKP under poly-
nomial time. However, since the VIPP in this paper considers
not only the simple sequential workflow, but also the complex
workflows. Existing solutions to MMKP is not appropriate for
solving VIPP. Therefore, we propose a Multiple overlapping
Deadlines Infrastructure Planning (MDIP) algorithm to solve
the VIPP by analysing the workflow and its multiple deadline
requirements.

Pseudo code of the MDIP is shown in Algorithm 1. Gen-
erally the MDIP applies a bi-directional strategy. To find
an optimal solution for VIPP, it is a searching process.
According to 1, theVIPP is NP-hard and quite complex.
The searching process can be time consuming when the
scale of workflow increases. The initial of the searching
becomes very crucial to the quality and searching time of
the final solution. Thus, we apply two heuristics for the
initialisation of the searching process: worstStartSearch and
bestStartSearch. The worstStartSearch initialises all the
tasks in the workflow with the slowest processing VM type
while the bestStartSearch initialises all the tasks with the
fastest processing VM type. These are two extreme solu-
tions to the VIPP. In public clouds such as Amazon EC2,
Microsoft Azura, the VM type with better performance is
more expensive. Assigning all the tasks in the workflow with
the fastest VM type may guarantee the multiple deadline
requirements, but it can lead to higher monetary cost. As
illustrated in our problem formulation, we try to minimise the
cost while guaranteeing the multiple deadline requirements.
worstStartSearch is more appropriate for ”loose” deadline
because the initialisation is closer to the optimal solution; the
bestStartSearch is more appropriate for ”tense” deadline.
The MDIP combines the two initialisations and compare their
results to choose a better one.

Algorithm 1: MDIP ALGORITHM

Input: G
Output: Planned Infrastructures

1 cost1, infs1 = worstStartSearch(G)
2 cost2, infs2 = bestStartSearch(G)
3 if cost1 > cost2 then
4 return infs1

5 else
6 return infs2

The only difference between worstStartSearch and
bestStartSearch is the initialisation. Thus, we only illustrate
the worstStartSearch in the following part of this paper.

A. Definitions

Before we introduce the worstStartSearch algorithm, we
need to introduce three definitions.

Definition 1. We use VM quality referring to the processing
time of a task on a certain type of VM. For task v, if its
processing time on VM type s is faster than s′, we call s is
better than s′. Correspondingly, if v’s processing time on s is
slower than s′, we call s is worse than s′.

In the above definition, it should be noticed that the pro-
cessing time is related to the VM type and task. Usually in
the cloud, if a task v performs better on a VM type s than
another VM type s′, other tasks can also be faster on VM
type s than s′. But there can be situations that a better VM
type will not always perform better than another. For instance,
existing cloud providers offer VM types intended for memory
or network optimisation. Memory intensive tasks can perform
better on memory-optimised VMs but may not perform as well
on network-optimised VMs. In this paper we use Definition 1
to allow more flexibility.

Definition 2. For deadline q = (vi, vj , d), we define its range
to be range(q) = U{v|v ∈ simplePath(vi, vj)}.

simplePath(vi, vj) refers to the simple paths without loops
from vi to vj . A deadline’s range denotes the tasks it covers
and takes effect when planning VM types for these tasks.

Definition 3. The task criticality for task v is defined as
|{q|q ∈ Qandv ∈ range(q)}|.

Task criticality refers to the number of deadlines whose
range it is in. When a task is in the range of more deadlines,
its VM customisation can have a larger effect on whether more
deadlines can be met. Thus, the task with higher task criticality
should be considered first.

As shown in Fig. 1c, deadline range of d1 is
{t0, t1, . . . , t10}. Deadline range of d2 is {t4, t5}. Deadline
range of d3 is {t3, t4, t5, t6, t9}.

As we can see from the figure, t4 and t5 are in the range of
the three deadlines. So the task criticality for these deadlines
is the highest.

B. Worst-Start-Search

Pseudo code of the worstStartSearch is shown in Al-
gorithm 2. Initially we calculate the deadline range of each
deadline. Then we calculate the criticality of each task based
on the deadlines’ range. By assigning the worst type of VM
to each task, we calculate the makespan of the workflow. The
tasks are then sorted according to their criticality. For each
task, we assign the task to a better VM if the deadline cannot
be met. This process will proceed until all the deadlines can
be met or all the tasks are visited.

In the upgrading part of the VM type for a task v, we
apply a binary searching strategy to find the VM type that
can meet a deadline and enhance the performance of our
algorithm. The makespan calculation algorithm is designed to
calculate the Earliest Start Time (EST) and Earliest Finish
Time (EFT) of tasks in the workflow. We apply a Depth-first
heuristic to calculate the EST and EFT of tasks in the workflow
from the entry task. Specifically, pseudo code of the makespan

Algorithm 2: WORST-START-SEARCH ALGORITHM

Input: G
Output: Planned infrastructures

1 for q in Q do
2 Calculate range(q) according to Definition 2.

3 for v in V do
4 Assign each v with the best VM type according

to Definition 1. for q in Q do
5 if v ∈ range(q) then
6 v’s task criticality (Definition 3) increase by

1.

7 calMakespan(ventry)
8 Sort the tasks in V according to their criticality.
9 for v ∈ sorted(V) do

10 Rank the VM types for v according to Definition 1.
11 for q(vi, vj , d) in Q do
12 while EFT (vj)− EST (vi) ¿ d or VM type is

not the best for v do
13 Upgrade v to a better VM type through

binary searching.
14 Update the EFT, EST affected by v.

15 Return VM assignments to v.

calculation algorithm is shown below. The algorithm applies
a recursive function by visiting all the successors of a given
node v.

Algorithm 3: LFTCALCULATION

Input: G, v, T,W,Q
Output: Updated of all v’s successors

1 if succ(v) = ∅ then
2 return
3 else
4 for vp ∈ succ(v) do
5 EST = EFT (v) + W [v, vp]
6 if EST > EST (vp) then
7 EST (vp) = EST

EFT (vp) = EST + T [A(vp), vp]
LFTCalculation(G, vp, T,W,Q)

C. Time Complexity Analysis

Time complexity of CPI is O(N2DM) [6], where N refers
to the number of tasks in a workflow. D is the global deadline
of the workflow. M is the number of types of cloud VM offer-
ings. Time complexity of IC-PCP is O(log2NMN) [2]. Time
complexity of GA is O(kPop ∗NM), where k refers to the
iterations of GA and Pop refers to the size of the population in
GA. Time complexity of MEPA is O(kPop∗log2NM), where
k refers to the iterations of GA used in MEPA and Pop refers
to the size of the population in MEPA. In MEPA, since we

assign a partial critical path instead of the whole workflow,
the k and Pop are relatively much smaller than that of in GA.
However, when the workflow becomes a sequential workflow,
the time complexity for MEPA and GA become the same.
According to Algorithm 2 and Algorithm 1, time complexity
of MDIP is O(NM ∗ |Q|).

However, CPI, IC-PCP are mainly designed to tackle the
single deadline-constrained VIPP. MEPA is able to deal with
a special kind of VIPP with multiple-deadline requirements.
GA can help to tackle the multiple deadline constrained
VIPP. But since GA is notorious in its time complexity, the
algorithm converges rather slow when dealing with large scale
workflows.

V. EXPERIMENTS

To our knowledge, there is no existing solution targeting
at solving the multi-deadline VIPP problem in this paper.
Thus, we mainly evaluate the deadline missing rates for
single deadline VIPP solutions and cost for multiple deadline
solutions.

A. Workload generation

In this paper we use randomly generated workflows to eval-
uate the performance of our proposed solution. The random
generation methods include: fan-in, fan-out and the density-
based method. The random methods will always be added with
an entry and exit node. For each workflow, we use the ”Range
Based ETC Matrix Generation” method proposed in [11] to
generate the average task execution time. Each value in the
matrix is also considered as a task’s execution time. We set the
number of types of VMs randomly from [3,5,8]. As observed
from the instance price of Amazon EC2 [12], we found that
the price almost doubles from the previous instance type. So
we set the price for instance types as: 1, 2, 4, exponentially.
The total number of deadlines is set in positive portion to the
total number of nodes in the graph.

B. Experimental results on small scale workflows

The figures below show cost comparison given by the GA-
Opt algorithm and MDIP. The x-axis represents the workflow’s
maximum in-degree and out-degree. GA-Opt algorithm is an
algorithm that applies a heuristic in the initialisation phase by
generating the solutions with the same type of VM for all
tasks in the workflow. From the results we can see that MDIP
proposed in this paper can achieve solutions with slightly
higher cost than GA-Opt in some cases. This is mainly due
to the deadlines’ distribution in the workflow. Although some
tasks in a workflow has a higher task criticality defined in
Definition 3, they can be small tasks that have little effect on
the makespan of the workflow. So assigning these tasks with
better VM may not guarantee the multiple deadlines.

(a) Workflow with 16 nodes

(b) Workflow with 32 nodes

(c) Workflow with 64 nodes

Fig. 2: Cost comparison with 5 VM Types

Fig. 3 below show the number of deadline missed with
solution given by CPI, ICPCP and MEPA. The MDIP solution
proposed in this paper can guarantee all the deadlines, but
CPI, ICPCP and MEPA can fail in some internal deadlines.
In cases like workflow of 16 nodes with in-degree of 1 and
out-degree of 1, the ICPCP and MEPA are able to produce
results without violation of any deadlines. But CPI’s result
fails in one deadline. We can also observe that the deadline can
be guaranteed When the scale of the workflow is small, CPI
performs worse than ICPCP and MEPA. For workflows with
16 nodes, the CPI only performs better than ICPCP and MEPA
in three cases (in-degree of 4 and out-degree of 2, in-degree
of 3 and out-degree of 1, in-degree of 4 and out-degree of
1).However, when the scale of the workflow increases, ICPCP
performs worse than CPI and MEPA in most cases.

(a) Workflow with 16 nodes

(b) Workflow with 32 nodes

(c) Workflow with 64 nodes

Fig. 3: Deadlines missed comparison with 5 VM Types

VI. CONCLUSION AND FUTURE WORKS

In this paper we propose a heuristic solution for planning
a virtual infrastructure for workflow with multiple deadline
requirements. We define deadline range and task criticality in
our algorithm and use them as priority to assign VM types.
We apply a bi-directional heuristic to search for the optimal
mappings from workflow to VM types. We prove our algo-
rithm is more scalable than Genetic-Algorithm based solution
through theoretical analysis. Experimental results show that
our proposed MDIP algorithm can achieve almost the results
as good as GA-based solution.

For the VIPP problem, different solutions have different
characteristics. In our future work we will build a systematic
method to advise the most appropriate algorithm to the user
by analysing a workflow and its QoS requirements.

ACKNOWLEDGEMENTS

This research has received funding from the European
Union’s Horizon 2020 research and innovation program under
grant agreements 643963 (SWITCH project), 654182 (EN-
VRIPLUS project) and 676247 (VRE4EIC project).

REFERENCES

[1] J. Wang, A. Taal, P. Martin, Y. Hu, H. Zhou, J. Pang, C. de Laat, and
Z. Zhao, “Planning virtual infrastructures for time critical applications
with multiple deadline constraints,” Future Generation Computer Sys-
tems, 2017.

[2] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-constrained
workflow scheduling algorithms for infrastructure as a service clouds,”
Future Generation Computer Systems, vol. 29, no. 1, pp. 158–169, 2013.

[3] M. A. Rodriguez and R. Buyya, “Deadline based resource provisioning
and scheduling algorithm for scientific workflows on clouds,” Cloud
Computing, IEEE Transactions on, vol. 2, no. 2, pp. 222–235, 2014.

[4] Z. Cai, X. Li, and J. N. Gupta, “Heuristics for provisioning services to
workflows in xaas clouds,”

[5] J. Yu, R. Buyya, and C. K. Tham, “Cost-based scheduling of scientific
workflow applications on utility grids,” in e-Science and Grid Comput-
ing, 2005. First International Conference on, pp. 171–200, IEEE, 2005.

[6] Z. Cai, X. Li, and J. N. Gupta, “Critical path-based iterative heuristic
for workflow scheduling in utility and cloud computing,” in Service-
Oriented Computing, pp. 207–221, Springer, 2013.

[7] M. W. Convolbo and J. Chou, “Cost-aware dag scheduling algorithms
for minimizing execution cost on cloud resources,” The Journal of
Supercomputing, vol. 72, no. 3, pp. 985–1012, 2016.

[8] H. Wu, X. Hua, Z. Li, and S. Ren, “Resource and instance hour
minimization for deadline constrained dag applications using computer
clouds,”

[9] “Amazon ec2 product details.” Accessed: 2016-3-29.
[10] A. Sbihi, M. Hifi, and M. Michrafy, “Algorithms for the multiple-choice

multidimensional knapsack problem.,” Les Cahiers de la MSE: sÃ c© rie
bleue, vol. 31, 2003.

[11] S. Ali, H. J. Siegel, M. Maheswaran, and D. Hensgen, “Task execution
time modeling for heterogeneous computing systems,” in Heterogeneous
Computing Workshop, 2000.(HCW 2000) Proceedings. 9th, pp. 185–199,
IEEE, 2000.

[12] “Ec2 instance pricing.” Accessed: 2015-12-8.

