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Abstract—A real-time telemetry system can bring a major 

difference when situations of emergency arise. This enables people 

and authorities to save lives and property in case of disasters. In 

case of floods, a warning issued with enough time before the event 

will allow for reservoir operators to gradually reduce water levels, 

people to reinforce their homes, hospitals to be prepared to receive 

more patients, authorities to prepare and provide help. Such a 

system collects data from real time sensors, processes the 

information using tools such as predictive simulation, and 

provides warning services or interactive facilities for the public to 

obtain more information. Taking this into account, we propose the 

development of a use case for environment monitoring in case of a 

disaster based on environmental legislation, disaster classification 

and their effects, developing a regional and national data 

repository with monitored data, knowledge and good practices 

applied in disaster management. SWITCH (Software Workbench 

for Interactive, Time Critical and Highly self-adaptive Cloud 

applications) addresses the urgent industrial need for developing 

and executing time critical applications in Clouds. The typical 

implementation for a disaster early warning system is based on a 

server running virtual machines, while SWITCH will enable to 

run the components in container.  

Keywords—telemetry; SWITCH; monitoring server; notification 

system; Cloud; real-time. 

I.  INTRODUCTION  

A real-time telemetry system for emergency situations can 

be used by people and authorities in order to be aware of the 

events that they are about to encounter. Events like floods may 

be less dramatic if a warning would be issued in time, so that 

the operators could gradually reduce water levels. Also, people 

would reinforce their homes, hospitals might better prepare for 

receiving more patients and authorities could organize to 

provide help. 

The main idea of an ideal disaster warning system is to 

minimize prevention costs and increase prevention efficiency in 

case of flood and other possible disaster events. In the proposed 

use case, the telemetry system handles around 500-1000 sensors 

from different regions in Romania. The values of some 

attributes characterizing the entities that are relevant to the 

application, will be calculated based on the combination of 

measures captured from multiple sensors. The typical 

implementation for a real-time system for emergency situations 

is based on a server running virtual machines, while SWITCH 

will enable to run and deploy the components in a container. 

A real-time telemetry system for emergency situations 

represents a complex architecture which raises problems when 

it needs to be implemented in various environments and scaled 

up in those situations. The ecosystem developed by SWITCH 

can solve these problems by unifying the deployment and 

management of the architecture into a simple solution, while 

using containers for the components. One such component is 

the telemetry station (entities may be of several types - e,g. 

several types of stations), and depending on the sensors 

mounted on the station, there are defined the attributes and 

metadata of the station entity. 

This paper is structured as follows: Section 2 deals with the 

detailed description of related work regarding real-time 

telemetry system for emergency situations. Section 3 describes 

the business case underlying the use case and maps this into a 

set of requirements and the corresponding technical and 

functional specifications. Section 4 presents a comprehensive 

architecture for the application is defined, while Section 5 

describes its integration within the SWITCH environment. 

Section 6 discusses the results of implementing an early 

prototype, together with the description of the software test 

plans. Finally, Section 7 draws the conclusions. 

II. RELATED WORK 

The issue of arising emergency situations has been 

addressed for decades now. Depending on the application 

specific, the objective functions and optimization methods are 

different. Telemetry systems bring a major difference when 

such emergencies arise. 
In Almaty region of Kazakhstan, for instance, real-time 

sensors process the information using tools such as detection 
systems for earthquake, fire and gas disasters [1]. These systems 
consist of a sensor network, a disaster information mapping 
server, an SNS module and a web server. Earthquake Early 
Warning System (EEWS) of Japan Meteorological Agency 
(JMA) provides citizens with severe warnings regarding 
earthquakes that are stronger than “intensity 5 lower” by mobile 
phones, radio, and TV, while they also provide critical 
information about tsunamis.  



Another area of implementation of a warning system is the 
detection and prediction of severe weather using commercial 
cloud services [2]. They provide the required network capability 
to perform the real-time operation of detection from the radars 
to the cloud service instance, making the process automated 
based on the results of weather detection algorithms. The benefit 
of such a platform fits the needs of many weather applications 
because it requires fewer resources and less computation when 
there are no weather events at present or in the near-term future 
switching to high computation resources only during severe 
weather conditions [3,4]. 

Another application using telemetry sensors is related to 
optimizing the use of water resources in agriculture. This system 
consists of the distributed wireless sensor network of the soil and 
the moisture, temperature and color sensors. It can provide 
sustainable agriculture even in the water scarcity areas. The 
Productivity in agriculture could also be increased by using the 
automated irrigation system.  Moisture and temperature sensors 
are being placed in the root zone of the crops while the controller 
unit is used to manage the irrigation motor thereby controlling 
the water flow to the field. This controller is also programmed 
with threshold values of the temperature and moisture content 
[5]. 

One specific real-time telemetry system for emergency 
situations is an early warning system in disaster management 
based on Libelium technology [6]. Due to the devastation caused 
by La Liboriana river flood in 2015, the National Unit for 
Disaster Risk Management of Colombia was forced to monitor 
and compile information on the main rivers to prevent similar 
tragedies. The objective was to control the behavior of the river 
basins and to obtain real-time information signal when the limits 
are exceeded by generating alerts. Because the 3G coverage in 
the area was powerless, the project demanded a complex 
communications system and a 900MHz mesh network was 
implemented to resolve this issue. On one hand, data had to be 
stored and shown locally for the decision-makers to decide 
whether or not to activate the Early Warning System (EWS). On 
the other hand, data was also stored in cloud for those who 
weren’t directly related to the decision-making process. Data is 
stored locally in a Raspberry Pi 3B which process the 
information gathered. The data is then sent to the Meshlium IoT 
Gateway, where it is stored and forwarded to the Eagle.io cloud 
platform using a 3G cellular communication protocol. In case of 
such alert, the control unit activates the sirens for the people to 
evacuate the risk areas, thus offering security and preventing the 
community from natural disasters. 

III. FUNCTIONAL DESCRIPTION  

 
Disaster early warnings enable people and authorities to save 

lives and properties. In case of floods, a warning issued earlier 
enough before the event occurred would allow for reservoir 
operators to gradually reduce water levels, people to reinforce 
their homes, hospitals be prepared to receive more patients, 
authorities to prepare and provide help [7, 8, 9]. But, there is a 
trade-off between timeliness, warning reliability, the cost of a 
false alert, and damage avoided as a function of lead time, which 
must be modeled to determine the cost efficiency of the outcome 
[10, 11]. 

The essential structure of any EWS depends on the 
objectives of the system to provide important, timely 
information on specific phenomena to end-users and decision-
makers, thereby enabling effective response [12]. Depending on 
factors like the spatial and temporal scale of a specific 
environmental degradation, the geographic area, size of the 
phenomenon, and the objectives of the monitoring program, 
some systems may not be considered as fully integrated EWS 
[13, 14, 15].  

All well integrated EWSs tend to contain four major 
components: 

• Information and multidisciplinary data collection on 
the phenomenon; 

• Evaluation, processing, and analysis of collected data; 

• Dissemination of warning information to policy-
makers and final users; 

• Implementation of an effective and timely response to 
the early warnings issued. 

The Elastic disaster early warning system application 
represents a “cloudified” early warning solution for natural 
disasters. The application collects data from real time sensors, 
processes the information, and provides warning services for the 
public. The system should be capable to collect and processing 
the sensor data in real time, and thus allowing very rapid 
response to urgent events. Besides this the application should 
provide sufficient reliability and availability, and scalability to 
the increasing number of sensors. 

The proposed use case functional architecture diagram and 
real-time constraints are presented in Fig. 1: 

 

Fig. 1. Functional diagram for elastic early warning system 

The implementation of this type of system faces several 
challenges, because it must: 

• Collect and process the sensor data in nearly real time; 

• Detect and respond to urgent events very rapidly (i.e. 
this is a time-critical scenario); 

• Predict the potential increase of load on the warning 
system when public users (customers) increase; 

• Operate reliably and robustly throughout its life time; 

• Be scalable when the number of sensors increases. 
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The technological advances using SWITCH consist in a 
solution that integrates the sensors with a cloud platform that can 
offer real time information and decision in case of disaster. 
These sensors can be used for measuring several parameters like 
water level, water flow, temperature, pressure, but also some 
parameters that define the environment quality such as:  water, 
air and soil quality.  

Sensors in the field transmit information to IP Gateway via 
GSM / GPRS / Radio. The gateway transmits the data collected 
from the sensors to the database server. The notification server 
periodically checks the data from the database, and if they 
exceed certain values set on different communications channels, 
notifications are sent to the Alarm Trigger. We also could deploy 
sensor networks for real-time monitoring including seismic 
activity, radioactivity, tsunamis, marine / maritime activities, 
and floods. 

A. Disaster early warning use case diagram  

The use case diagram for disaster early warning can be seen 
in Fig. 2. 

 

Fig. 2. Use case diagram for disaster early warning 

The main actors are: 

- End-users: Citizens, Service Providers, etc. (who can 
seek help much easier through the proposed platform). 

- Emergency stakeholders, Government Emergency 
Agencies, Environment Agencies, Cloud Providers, etc. 
(which may provide help much faster by using the 
proposed platform). 

- Platform System Operator: supervise server status, 
traffic trespassing firewall cluster, etc. 

The system architecture must fulfill the following requirements: 

• Sensors that transmit the field data (temperature, 
humidity, sensors that measure water level, etc.) 

• Subsystem for transmitting data from the sensors to the 
database from the Remote Telemetry Unit (RTU) and 
IP Gateway. 

• The database where data is stored, and reports/statistics 
are created based on information received from the 
sensors. 

• Notification Server checks DB (database) data and 
statistics in real time and sends notifications to 
operators if there are values outside of predetermined 
unbroken. 

The success end conditions specify that the architecture 
should detect, process and transmits sensor data and notify the 
relevant stakeholders/end-users for different emergency 
situations: floods, water and air pollution, drought.  

Also, failure end conditions should take into account: 

• Workflow breaks; 

• Security attacks; 

• Lack of resources; 

• VM crash. 

 Furthermore, in an emergency situation, the infrastructure 
should offer minimal services and QoS guarantees as presented 
in Fig. 1 for at least text notification. 

B. Scenarios in the use case  

Possible issues that must be verified during the 
implementation process: 

• System level performance requirements; 

• Verifiability; 

• Integration complexity; 

• Use of virtualized resources; 

• Configuration of the infrastructure; 

• Data intensive communication; 

• Adaptability for quality-on-demand; 

• Adaptability to changing infrastructure; 

• SLA negotiation. 

IV. TECHNICAL DESCRIPTION 

In this section the main components of the sub-systems are 

described, such as telemetry system, monitoring adapter and 

notification system. 

A. Telemetry System 

The telemetry system consists of elements like computers, 
devices or processes that compose the entire system. The 
presented solution has three major components. RTU (Remote 
Telemetry Unit) is the device which takes data from the 
environment and stores it into a cloud database platform. The 
dashboard represents an interface in which data can be stored 
and visualized, as separated time-series metrics. Last but not 
least, there is the Alert component, which reads data from the 
data bases and sends an alarm if a threshold is exceeded. 



The RTU is an electronic remote device which monitors and 
reports events that happen at a remote site, allowing the network 
operator to visualize the data distances from where it is 
implanted. In our development, we used the A753 GPRS RTU, 
because it is flexible, and it can be deployed in a large variety of 
applications, from agriculture to hydrographics to professional 
meteorology, from water quality to flood warning, from AMR 
(Automatic Meter Reading) to leak detection, from the 
monitoring of solar power to wind energy. The central elements 
of the telemonitoring system, are the Data Concentrator 
(Gateway) and the Data Presentation Server. The gateway 
performs communication with the RTUs, and also allows the 
configuration and management of all RTUs and sensors. The 
second element is hosted on a computer with strong server 
features (such as safe unattended running 24/24 and 7/7). The 
Data Presentation Server is based on the software package that 
is focused on the presentation of data in various formats (e.g. 
tables and diagrams). 

The metrics are extracted from telemetry and then added to 
dashboards such as Graphite, Grafana or Prometheus in order to 
visualize them. 

1. Graphite  

Graphite [16] is an enterprise-ready monitoring tool that runs 
equally well on cheap hardware or Cloud infrastructure. Teams 
utilize Graphite to track the execution of their sites, applications, 
business benefits, or networked servers. It denoted the begin of 
another age of monitoring tools, making it simpler to store, 
recover, share, or view time-series metrics. 

 Graphite does two things: 

• Stores numeric time-series data; 

• Renders diagrams of this data on request. 

Graphite is not a collection agent, but it offers the simplest 
path for getting your measurements into a time-series database.  
Also, Graphite has one of the largest ecosystems of data 
integrations and third-party tools, so one can easily use a 
collection agent or language bindings, for instance. Furthermore, 
Whisper is an on-disk database which maintain the long-term 
reservation for metrics. Whereas carbon plays the role of the 
receiver for the metrics, WSGI webapp is responsible for REST 
API for deriving the data out from Whisper for analyzing and 
demonstration. The webapp collects all the data from a local 
Whisper backend and can be configured for querying the other 
webapps too.  

Client APIs used for the proposed use case are as follows: 

• Graphitejs represents jQuery plugin that displays, 
makes and updates graphs easily utilizing the Graphite 
URL api; 

• Cubism.js is a D3 plugin for visualizing time series 
data in real time, and can pull data from Graphite; 

• txCarbonClient represents a Twisted API that reports 
metrics to Carbon; 

• structured_metrics is a lightweight python library that 
uses plugins to read in Graphite’s list of metric names 

and convert it into a multi-dimensional tag space of 
clear, sanitized targets. 

Graphite is used to create diagrams with numeric values 
which change after some time. Essentially, a program is 
composed to gather these numeric data which are then send to 
Graphite's backend, Carbon. 

2. Grafana 

In order to query, visualize, alert on and understand the 
metrics we used Grafana [17], one of the leading open source 
platform for time series analytics. With Grafana it is possible to 
design, explore, and share dashboards with the team, because of 
its data driven characteristics.  

Grafana can be used with a wide range of depository 
backends for the time series data. Every Data Source has a 
particular Query Editor that is custom-build for the 
characteristics and abilities that the specific Data Source 
exposes. The query language and capacities of every Data 
Source are clearly altogether different. It is possible to join 
information from numerous Data Sources onto a solitary 
Dashboard, yet each Panel is attached to a particular Data Source 
that has a place within a specific Organization. The supported 
Data Sources are Graphite, Elasticsearch, CloudWatch, 
InfluxDB, OpenTSDB, Prometheus. 

The visualizing feature enable to build quick and adaptable 
customer side diagrams with a wide number of choices for 
modules to visualize measurements and logs. In Fig. 3 we 
present telemetry metrics from Graphite Carbon. 

 

Fig. 3. Visualization of telemetry data using Graphite 

Alerting is set up by characterizing alert principles for most 
critical measurements using the platform, while Grafana will 
ceaselessly assess them and then, send notices.  

At the point when an alert changes state it conveys 
notifications to email or sending them from Slack, PagerDuty, 
VictorOps, email, or through webhook.  

Also, we used Graphite to make dynamic and reusable 
dashboards with layout variables which show up as dropdowns 
at the highest point of the dashboard.  

Furthermore, as we used mixed data sources from 
environmental sensors and performance metrics of the system, 
Graphite enabled blending distinctive data sources within the 
same chart. It is possible to indicate a data source on each inquiry 
premise, which can be used even for custom data sources. 



Annotations can be used to Explain charts with rich events 
from various data sources and float over events displying the full 
event metadata and labels. Ad-hoc filters allow the setting up of 
new key/value filters quickly, even while doing something else, 
that are automatically applied to all inquiries that utilize that data 
source.  

3. Prometheus 

Prometheus [18] is an open source solution for monitoring 
and alerting. Prometheus is quite unique, because it allows the 
view of metrics information when placing the cursor on a 
respective line on the graph. 

Moreover, Prometheus enables an increased dimensional 
data pattern, as time series are determined by a metric name and 
a set of key-value pairs. Segmenting, viewing and understanding 
of gathered time series data in a database is done by using an 
adaptable query language, so that tables, ad-hoc diagrams and 
alerts can be generated. Furthermore, data can be visualized in 
Prometheus using a multitude of modes: an integrated 
expression browser, a console template language, and a 
combination with Grafana. 

For efficient storage, time series are saved in memory and on 
local disk in an effective custom configuration, while functional 
sharding and federation accomplishes scaling. Every server is 
relying only on local depository, being independent for 
reliability and easy orientation. Also, all binaries are statistically 
connected and simple to deploy. 

For alerting, information is maintained related to the 
dimensions of the data and are described using Prometheus’s 
flexible query language, while notifications and silencing are 
done by an alert manager. 

Multiple client libraries allow easy implantation and simple 
handling of services, as more than ten languages are already 
supported. Prometheus accepts bridging of third-party data by 
exporters and integration with system statistics, Docker, 
HAProxy, Statsd, and JMX metrics. 

B. Monitoring adapter 

The monitoring adapter is based on JCatascopia [19], which 
is written in Java and has no client SDKs for other languages. It 
contains a server, a database which is currently based on Apache 
Cassandra and a monitoring agent which loads several probes by 
default and some extra ones which can be defined by the user - 
in this case by each organization. The probes are basically small 
java classes which are loaded by the agent and are used to pull 
data from the containers. 

The current solution, JCatascopia with Java agent and 
probes, has two properties which makes hard, if not impossible 
to be integrated with the containers used in SWITCH. First it is 
implemented in Java and has no client SDKs for other 
languages. The second is the fact that the agent container needs 
to be configured with the address of the container it monitors. 

Because the probes pull data from containers, they require 
the address of the container they are supposed to monitor. Also, 
because the design of the probe is quite static it is very hard to 
reconfigure the probe or the agent under which it runs to allow 
multiple containers being monitored by the same probe/agent. 

This requires instantiating one agent for each container. This 
wouldn’t be a problem if agents could be run in-process or have 
a small footprint. Unfortunately, the container, as it was 
designed, requires a lot of memory and a lot of packages to be 
able to run a JVM. 

Because the agent and probe are written in Java, and the 
probe needs to be run by the agent it is impossible to integrate 
inside an application written in another language or in a 
container which runs a software not controlled by users - web 
server, database server, etc. 

To solve the above problems, the following design presented 
in Fig. 4, was proposed. 

 

Fig. 4. JCatascopia Agent Adapter design 

The main idea of this design is to use an agent that can 
receive metric data from containers using a better-known 
protocol with client SDKs available for many programming 
languages. Statsd is that agent. 

This architecture was done with the following criteria in 
mind: 

• Only one agent per environment - a single agent is 
needed in the environment and can receive data from a large 
number of containers. Statsd is written in node.js and supports 
large concurrency. 

• Easy to configure containers - because there is only one 
agent, the container only needs to receive the address of the 
agent as a parameter and no other configuration needs to happen. 
The same applies to the agent container which only needs to 
receive the address of the JCatascopia Server. 

• Low footprint, easy to integrate - because there are 
client SDKs available and plugins for software like Nginx, 
MySQL, etc., the footprint of including monitoring in any 
container is very low (usually the order of tens of kilobytes). The 
clients will run in-process so containers remain simple and there 
is no need for complicated process management. 

JCatascopia requires certain information to be passed for 
each metric. Because of that a metric key name needs to follow 
a very strict format: eu.switch.<application-

environment>.<container-id>.<container-

ip>.<metric-group-name>.<metric-

name>.<units> 



The fields are as follows: 

• eu.switch.<application-environment> - this needs to be 
configured in the Statsd container, as MONITORING_PREFIX. 
It helps the adapter to filter metrics which are not supposed to be 
sent to JCatascopia. 

• <container-id> - this represents the sending 
server/VM/container ID. It is suggested to use the hostname 
generated by docker as a hexadecimal random string. Other 
options are using a randomly generated string with enough 
entropy to prevent duplication (eg. UUID) 

• <container-ip> - this represents the container IP. Note: 
Because StatsD keys use dots to separate each part, the IP will 
be written with dashes replacing of dots. Eg. 127.0.0.1 -> 127-
0-0-1 

• <metric-group-name> - this represents the metric 
group or probe name in JCatascopia terms. Note: there are some 
“reserved” group/probe names and it is advised to use those for 
the assigned values - StatsInfoProbe, CPUProbe, 
DiskStatsProbe, NetworkProbe, MemoryProbe. 

<metric-name> - this represents the metric name in 
JCatascopia terms. Note: there are some “reserved” metric 
names for each probe and it is advised to use those for the 
assigned values. 

• <units> - (optional) this represents the metric units to 
display in JCatascopia. It can be skipped. In case it is skipped, 
the dot preceding it needs to be skipped as well. 

The StatsD [20] protocol used for collecting telemetry data 
requires all metric values to be integers. For real numbers, it is 
suggested to use a power of 10 multiplied by that metric value, 
up to the required precision. 

Moreover, JCatascopia accepts other types than integers, for 
STRINGs, there is a special protocol that allows sending that 
value. Instead of the last part of the key - <units> - the string 
which represents the value for the key will be sent. The string 
should be cleaned up of non-alphanumeric characters, except 
dash (“-”) and underscore (“_”), which are accepted, before 
being passed to StatsD. The value will be ignored, so it can be 
anything.  

Because of the way the metrics are processed by StatsD, 
clients should only need to send the string value once - if they 
don’t need to change it. Of course, sending the value multiple 
times is also supported, but not required. 

Implementing the StatsD protocol should refer to the 
documentation of the particular client SDK used for information 
on how to send actual data to StatsD. The only particularity of 
the implementation for the JCatascopia Adapter is that it 
processes only counters. Timers, counters, sets and other types 
of metrics are not supported.  

Also, StatsD resets gauges to 0 at each flush interval (i.e. 
each time they are sent to the backend - JCatascopia). A 
container sending metrics to JCatascopia through Statsd needs 
to implement a loop for sending metric data to StatsD. 

 

The monitoring agent is uploaded in Docker Hub at 
beia/monitoring_adapter. It has two parameters, in the form of 
environment variables, which can be set: 

• MONITORING_SERVER - it should be initialized to 
the address of the monitoring server (JCatascopia) 

• MONITORING_PREFIX - it should be initialized to 
the prefix of all the metric keys that are to be processed and sent 
forward by the agent. For example: “eu.switch.beia” 

• GRAPHITE_SERVER - (optional) it should be 
initialized to the address of a Graphite instance which will 
receive the metrics along with JCatascopia. 

• LOGGING_LEVEL - (optional) it should be initialized 
to one of these values error, warn(default), info, debug, trace. It 
gives debug information. 

The container will fail to start if the two environment 
variables are not set, as during development, these variables 
should be set by the developer. In production, in combination 
with the platform components of SWITCH, these variables 
should be set and deployed along with the containers specific to 
ASAP. 

To test the adapter and developing own metrics in 
conjunction with JCatascopia, we used the following steps. 

• Step #1: start the container with JCatascopia server using the 
command: 

docker run -d --rm -p 8080:8080 -p 

4242:4242 -p 4245:4245 

salmant/ul_monitoring_server_container_ima

ge 

The host on which the container was started will be called 
$JCATA_HOST. 

For verification it is possible to access 
http://$JCATA_HOST:8080/JCatascopia-Web/home.jsp and 
see an UI with some graphics. 

• Step #2: start the monitoring_agent with the command:  

docker run -e 

MONITORING_SERVER="$JCATA_HOST" -e 

MONITORING_PREFIX="eu.switch.<beia|mog|wt|

anything>" -p 8125:8125/udp 

beia/monitoring_adapter 

The MONITORING_SERVER environment variable has to 
be set in the container to start, as well as the 
MONITORING_PREFIX variable, which enables 
communication with the JCatascopia server. The 
MONITORING_PREFIX should match the value used when 
sending the metrics, in order for JCatascopia to operate properly.  

• Step #3: write code to start sending metrics to JCatascopia 
using the proper format for metric keys.  

If the correct format for metrics are not passed, the agent will 
just ignore the metrics and the monitoring server will not receive 
any warning or notification. As StatsD supports many types of 
data - counters, gauges, timers, etc. - in this adapter only the 
gauge is implemented. 



To validate the successful deployment of the monitoring 
adapter, we are able to see the agent and its associated metrics, 
in the above interface. 

C. Notification System 

The notification system is an important subsystem 

responsible to deliver reliable, scalable, real-time voice 

notifications through multiple communication means 

(including VoIP/SIP and landlines) and offers a simple REST 

API for other modules to trigger and monitor that kind of 

actions. 

The architecture is composed of 3 submodules: 

• Asterisk – a software PBX that assures the 

communication between the Notification System and 

SIP provides/landlines; 

• Notification Workers – the software that implements the 

reliable interface for triggering and control the 

processes; 

• Redis database – a in-memory database that is used to 

keep the consistency of call statuses between different 

notification works. 

 

     In our architecture, each Notification Worker consists of 2 

modules: 

• Flask API which exposes the Web API for 

communicating with other components; 

• Asterisk Worker which handles the asynchronous 

events related to a call and realizes the communication 

to the Asterisk PBX. 

 

The number of Notification Workers can be scaled 

up/down by simply adding a new container with this image. The 

architecture of Notification System is described as several 

communicating modules that can be visualized in Fig. 5. 

 
 

Fig. 5. Notification System Architecture 

As we developed our software, each module is a Docker 

container. For our scaling proposes, the number of Notification 

Workers can be scaled-up by sample deploying a new container 

with the given image and different Asterisk PBX containers can 

get connected to multiple SIP providers. 

Having multiple Notification Workers is not in the concern 

of the user-agent. This aspect is handled by the DNS-based 

load-balancer in Docker. 

The interaction between the user-agent and the Notification 

System is realized through the REST API exposed by the Flask 

API module inside the Notification Worker module. 

In Table 1, we present the API for originating a voice 

notification with a prerecorded message and checking the status 

for this type of call. 

TABLE 1  NOTIFICATION SYSTEM API 

Originate playback call 

URL http://<notification_system_host>:<port>/originate 

HTTP 

method 

POST 

Request 

Format 

JSON 

Request 

parameters 

extension – the SIP extension/phone number to be called; 

 

file – the name of file to be play-backed; 
 

sip_provider – SIP provider to be used. 

Example of 

valid request 

{"extension": "0723456789", 

 "file": "tt-goodbye", 
"sip_provider": "clickphone"} 

Example of 

response 

{ 

"file": "tt-goodbye", 
"id": "58f477dd-332e-4088-835a-fe6055d032d1", 

"status": "initiated", 

"status_code": 1, 
"timestamp": 1512660726.229323 

} 

Status check 

URL http://<notification_system_host>:<port>/originate 

HTTP 

method 

POST 

Request 
Format 

No-body 

Response 

format 

JSON object with the same format as the one for 

originate. 

 

For a successful execution, any request sent to this API will 

response with a 200 OK HTTP status. If any other exception 

raises, a different status code is provided. 

For the most of those exception, additional details are 

included in the response. We present the format of this kind of 

response in Table 2. 

TABLE 2 NOTIFICATION SYSTEM ERROR RESPONSE FORMAT 

Response format JSON 

Example of error response {"error":{"short_description": "Call 
not found", "http_code": 404}} 

V. INTEGRATION WITH SWITCH SUBSYSTEMS  

This section presents the integration of the use case for 

telemetry in case of emergency situations with SWITCH 

subsystems SIDE, DRIP and ASAP [21]. In Fig. 6 we present 

how the application is adapted to dynamic conditions by 

SWITCH. 

 

 

Fig. 6. Adaptability model of disaster early warning use case to SWITCH 



A. SIDE 

The SIDE (SWITCH Interactive Development 

Environment) subsystem provides the developer of early 

warning systems with an intuitive interface to create an 

application composed out of several services in what is usually 

considered a micro service architecture. When creating an 

application each component must first be described and the 

additional functionalities it requires or contains i.e. Volumes, 

monitoring, Hardware requirements... This assignment is done 

by adding nodes to the component that describe the parameters 

that can be changed or checked. There are several nodes defined 

at this time, but more can be added in the future.  

The components can be connected in application view. At 

this time the application developer can specify the desired QoS 

parameters he deems define his components or application. This 

enables the system to be more flexible, reassigning variables to 

suit the required application. Based on the nodes added to the 

components of the application SIDE can add the required 

SWITCH components, such as Monitoring Server, Monitoring 

Adaptor or Alarm Tigger.  

 As this information is collected by SIDE it is transformed 

into TOSCA description that can be used by other systems, such 

as DRIP.  

B. DRIP  

The DRIP (Dynamic Real-Time Infrastructure Planner) 

subsystem has several capabilities for planning, provisioning 

and deployment. The first stage, is the Infrastructure planer 

which takes the information that has been collated by SIDE, 

specifically the Hardware requirements and the QoS metrics 

and creates a plan that should satisfy the systems performance. 

The second stage is Infrastructure provisioning. It takes the 

plan as an input and provisions the machines based on that plan 

and the available credentials. It re turns the information needed 

to use the VMs, and starts them on a given cloud provider 

The last stage, deployment, can be broken down into two 

parts. First a SWARM cluster is created on the available 

infrastructure. Then the deployment takes a TOSCA file as an 

input and transforms it into a Docker deploy file that can be run 

on the cluster.  

C. ASAP 

The ASAP (Autonomous System Adaptation Platform) sub-

system is split into several parts. The monitoring, described in 

above, starts working after the application has been deployed. 

And the results can be seen in SIDE as a graph of available 

system or application metrics. Noting this the developer can 

change the configuration of the system or the infrastructure he 

is using and redeploy the application to suit his needs.  

Additionally, the developer can specify the parameters of 

the Alarm trigger for each application component. This 

information is stored in SIDE and send to the Alarm Trigger 

component. The Alarm Trigger parses this information, 

compares it to the current state of the system based on 

monitoring and can, if the state does not meet the requirements, 

trigger an alarm or a direct action from the system via the Self 

Adaptor component, thus safeguarding the system form failure.  

VI. RESULTS OF SWITCH  

All the code and configuration are currently contained in a 

git repository. The repository contains all the software and 

instructions (Docker files, Docker Compose configurations, 

config files) necessary to build the whole infrastructure for the 

project.  

Currently all the components in both SWITCH and BEIA’s 

use-case are contained as Docker images and we started the 

integrating our components with SWITCH platform as 

following: 

• For the integration with SIDE component we 

experimented the creation of a TOSCA file for our 

software components and validated the possibility of 

describing the requirements of our use-case using 

SIDE; 

• For the integration with DRIP we assured that each of 

our components is individually contained as a Docker 

image and tested that the environment offered by the 

deployment platform allows our components to run 

properly; 

• For the integration with ASAP we included the 

Monitoring Server in our deployment and successfully 

collected some relevant for scaling metrics from some 

of our components.  

A. Current status 

We have a stack that is usually called LEMP (Linux + Nginx 

+ MariaDB/MySQL + PHP-FPM), but in the context of our 

architecture could be called LESP (Linux + Nginx + Supervisor 

+ PHP-FPM) + LM (Linux + MariaDB/MySQL). It is 

composed of two containers. The first container maps to the 

Notification server in the architecture and is running Nginx and 

php5-fpm under Supervisord. Nginx and php5-fpm 

communicate through a Unix socket, for better performance, 

which forces them to run under the same container. Supervisord 

is a process manager that is required because Docker allows 

only one entry point per container. Supervisord has the added 

benefit of being able to restart the processes in case they die and 

being able to manage each process independently. The second 

container maps to the Database server in the architecture and is 

running MySQL with a persistent volume for the database. 

All the components of the telemetry system represent one 

module in the architecture. The LEMP stack has smaller 

memory footprint and better performance. Because of this, 

PHP-FPM + Nginx is the recommended way of running PHP. 

B. Existing components 

The telemetry system consists of a database and gateway 

component for interfacing with proprietary sensors and 

communication protocols (GPRS, UHF). The features 

implemented in the current telemetry software do not provide 

the level of flexibility and detail required, so a simple dashboard 

implemented in PHP was developed. To be able to produce 

alerts on sensor data and specific abnormal behaviors, a rule 

engine that takes the data from sensors and alerts other 

components down the communication path is included. 



Communication with sensors is done over an XML 

protocol, called addUPI, that allows applications to iterate 

sensors and nodes - platforms containing multiple sensors, and 

also gathering sensor data. The telemetry component is polling 

the IP gateway and sensors, using a cron script, and deposits the 

data into a MySQL database. The same database contains 

definitions for the dashboards, user logins and alert definitions. 

The telemetry component is served through a Nginx HTTP 

server which uses PHP-FPM as an application container. PHP-

FPM has multiple features which are designed to optimize for 

speed and memory usage. Most importantly, PHP-FPM 

contains an opcode cache which allows PHP scripts to be 

interpreted just once and executed multiple times. Also, PHP-

FPM is using a worker pool to optimize client access and 

prevent spawning many temporary PHP processes. Nginx also 

has features that allow serving many clients without great 

memory consumption and CPU usage. 

The PHP application architecture is shown in Fig. 7. 

 

Fig. 7. NGINX + PHP-FPM architecture 

The two containers are connected using Docker Compose, 

which allows setting a separate network for the communication 

between the two containers, adding volumes and creating 

configurations that include environment variables. 

VII. CONCLUSION 

In summary, the paper analyzed related work for telemetry 

system used in emergency situations and the functional 

description of the pilot case was created, associated with usage 

scenarios (players, actions, equipment) and overall 

requirements. Also, an architecture indicating the main 

components of the solution, the associated services and 

interfaces and the technologies that are used in the 

implementation phase together with evaluation metrics are 

presented. An early prototype / proof of concept for the use case 

with all the main components implemented (remote telemetry 

units, IP gateway, database server, notification server) and with 

some known issues (portability of Windows images, adaptation 

of applications running in virtual machines to containers) has 

been designed. As future work we envision to measure 

performance metrics for scaling of different components of the 

proposed use case for disaster early warning. 
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