
Real-Time Telemetry System for Emergency

Situations using SWITCH

George Suciu, Cristiana Istrate, Dorinel Filip, Vlad

Poenaru, Andrei Scheianu

R&D Department

BEIA Consult International

Bucharest, Romania

george@beia.ro

Matej Cigale

School of Computer Science and Informatics

Cardiff University

Cardiff, UK

 CigaleM@cardiff.ac.uk

Abstract—A real-time telemetry system can bring a major

difference when situations of emergency arise. This enables people

and authorities to save lives and property in case of disasters. In

case of floods, a warning issued with enough time before the event

will allow for reservoir operators to gradually reduce water levels,

people to reinforce their homes, hospitals to be prepared to receive

more patients, authorities to prepare and provide help. Such a

system collects data from real time sensors, processes the

information using tools such as predictive simulation, and

provides warning services or interactive facilities for the public to

obtain more information. Taking this into account, we propose the

development of a use case for environment monitoring in case of a

disaster based on environmental legislation, disaster classification

and their effects, developing a regional and national data

repository with monitored data, knowledge and good practices

applied in disaster management. SWITCH (Software Workbench

for Interactive, Time Critical and Highly self-adaptive Cloud

applications) addresses the urgent industrial need for developing

and executing time critical applications in Clouds. The typical

implementation for a disaster early warning system is based on a

server running virtual machines, while SWITCH will enable to

run the components in container.

Keywords—telemetry; SWITCH; monitoring server; notification

system; Cloud; real-time.

I. INTRODUCTION

A real-time telemetry system for emergency situations can

be used by people and authorities in order to be aware of the

events that they are about to encounter. Events like floods may

be less dramatic if a warning would be issued in time, so that

the operators could gradually reduce water levels. Also, people

would reinforce their homes, hospitals might better prepare for

receiving more patients and authorities could organize to

provide help.

The main idea of an ideal disaster warning system is to

minimize prevention costs and increase prevention efficiency in

case of flood and other possible disaster events. In the proposed

use case, the telemetry system handles around 500-1000 sensors

from different regions in Romania. The values of some

attributes characterizing the entities that are relevant to the

application, will be calculated based on the combination of

measures captured from multiple sensors. The typical

implementation for a real-time system for emergency situations

is based on a server running virtual machines, while SWITCH

will enable to run and deploy the components in a container.

A real-time telemetry system for emergency situations

represents a complex architecture which raises problems when

it needs to be implemented in various environments and scaled

up in those situations. The ecosystem developed by SWITCH

can solve these problems by unifying the deployment and

management of the architecture into a simple solution, while

using containers for the components. One such component is

the telemetry station (entities may be of several types - e,g.

several types of stations), and depending on the sensors

mounted on the station, there are defined the attributes and

metadata of the station entity.

This paper is structured as follows: Section 2 deals with the

detailed description of related work regarding real-time

telemetry system for emergency situations. Section 3 describes

the business case underlying the use case and maps this into a

set of requirements and the corresponding technical and

functional specifications. Section 4 presents a comprehensive

architecture for the application is defined, while Section 5

describes its integration within the SWITCH environment.

Section 6 discusses the results of implementing an early

prototype, together with the description of the software test

plans. Finally, Section 7 draws the conclusions.

II. RELATED WORK

The issue of arising emergency situations has been

addressed for decades now. Depending on the application

specific, the objective functions and optimization methods are

different. Telemetry systems bring a major difference when

such emergencies arise.
In Almaty region of Kazakhstan, for instance, real-time

sensors process the information using tools such as detection
systems for earthquake, fire and gas disasters [1]. These systems
consist of a sensor network, a disaster information mapping
server, an SNS module and a web server. Earthquake Early
Warning System (EEWS) of Japan Meteorological Agency
(JMA) provides citizens with severe warnings regarding
earthquakes that are stronger than “intensity 5 lower” by mobile
phones, radio, and TV, while they also provide critical
information about tsunamis.

Another area of implementation of a warning system is the
detection and prediction of severe weather using commercial
cloud services [2]. They provide the required network capability
to perform the real-time operation of detection from the radars
to the cloud service instance, making the process automated
based on the results of weather detection algorithms. The benefit
of such a platform fits the needs of many weather applications
because it requires fewer resources and less computation when
there are no weather events at present or in the near-term future
switching to high computation resources only during severe
weather conditions [3,4].

Another application using telemetry sensors is related to
optimizing the use of water resources in agriculture. This system
consists of the distributed wireless sensor network of the soil and
the moisture, temperature and color sensors. It can provide
sustainable agriculture even in the water scarcity areas. The
Productivity in agriculture could also be increased by using the
automated irrigation system. Moisture and temperature sensors
are being placed in the root zone of the crops while the controller
unit is used to manage the irrigation motor thereby controlling
the water flow to the field. This controller is also programmed
with threshold values of the temperature and moisture content
[5].

One specific real-time telemetry system for emergency
situations is an early warning system in disaster management
based on Libelium technology [6]. Due to the devastation caused
by La Liboriana river flood in 2015, the National Unit for
Disaster Risk Management of Colombia was forced to monitor
and compile information on the main rivers to prevent similar
tragedies. The objective was to control the behavior of the river
basins and to obtain real-time information signal when the limits
are exceeded by generating alerts. Because the 3G coverage in
the area was powerless, the project demanded a complex
communications system and a 900MHz mesh network was
implemented to resolve this issue. On one hand, data had to be
stored and shown locally for the decision-makers to decide
whether or not to activate the Early Warning System (EWS). On
the other hand, data was also stored in cloud for those who
weren’t directly related to the decision-making process. Data is
stored locally in a Raspberry Pi 3B which process the
information gathered. The data is then sent to the Meshlium IoT
Gateway, where it is stored and forwarded to the Eagle.io cloud
platform using a 3G cellular communication protocol. In case of
such alert, the control unit activates the sirens for the people to
evacuate the risk areas, thus offering security and preventing the
community from natural disasters.

III. FUNCTIONAL DESCRIPTION

Disaster early warnings enable people and authorities to save

lives and properties. In case of floods, a warning issued earlier
enough before the event occurred would allow for reservoir
operators to gradually reduce water levels, people to reinforce
their homes, hospitals be prepared to receive more patients,
authorities to prepare and provide help [7, 8, 9]. But, there is a
trade-off between timeliness, warning reliability, the cost of a
false alert, and damage avoided as a function of lead time, which
must be modeled to determine the cost efficiency of the outcome
[10, 11].

The essential structure of any EWS depends on the
objectives of the system to provide important, timely
information on specific phenomena to end-users and decision-
makers, thereby enabling effective response [12]. Depending on
factors like the spatial and temporal scale of a specific
environmental degradation, the geographic area, size of the
phenomenon, and the objectives of the monitoring program,
some systems may not be considered as fully integrated EWS
[13, 14, 15].

All well integrated EWSs tend to contain four major
components:

• Information and multidisciplinary data collection on
the phenomenon;

• Evaluation, processing, and analysis of collected data;

• Dissemination of warning information to policy-
makers and final users;

• Implementation of an effective and timely response to
the early warnings issued.

The Elastic disaster early warning system application
represents a “cloudified” early warning solution for natural
disasters. The application collects data from real time sensors,
processes the information, and provides warning services for the
public. The system should be capable to collect and processing
the sensor data in real time, and thus allowing very rapid
response to urgent events. Besides this the application should
provide sufficient reliability and availability, and scalability to
the increasing number of sensors.

The proposed use case functional architecture diagram and
real-time constraints are presented in Fig. 1:

Fig. 1. Functional diagram for elastic early warning system

The implementation of this type of system faces several
challenges, because it must:

• Collect and process the sensor data in nearly real time;

• Detect and respond to urgent events very rapidly (i.e.
this is a time-critical scenario);

• Predict the potential increase of load on the warning
system when public users (customers) increase;

• Operate reliably and robustly throughout its life time;

• Be scalable when the number of sensors increases.

Delay < 500ms

Loss rate < 1.5%

Error rate < 0.5%

Delay < 500ms

Data rate > 2000bps

Bandwidth > 2000bps

Loss rate < 1.5%

Error rate < 0.5%

Delay<500ms

Data rate > 4800bps

Bandwidth> 4800bps

Loss rate < 1.5%

Error rate < 0.5%

Delay<10ms

Jitter< 1ms

Data rate > 40Mbps

Bandwidth> 40Mbps

Loss rate < 0.5%

Error rate < 0.1%

Delay<10ms

Jitter< 1ms

Data rate > 400Mbps

Bandwidth> 400Mbps

Loss rate < 0.5%

Error rate < 0.1%

Delay<10ms

Jitter< 1ms

Data rate > 19200bps

Bandwidth > 19200bps

Loss rate < 0.5%

Error rate < 0.1%

http://www.libelium.com/products/meshlium/wsn/
http://www.libelium.com/products/meshlium/wsn/
https://eagle.io/

The technological advances using SWITCH consist in a
solution that integrates the sensors with a cloud platform that can
offer real time information and decision in case of disaster.
These sensors can be used for measuring several parameters like
water level, water flow, temperature, pressure, but also some
parameters that define the environment quality such as: water,
air and soil quality.

Sensors in the field transmit information to IP Gateway via
GSM / GPRS / Radio. The gateway transmits the data collected
from the sensors to the database server. The notification server
periodically checks the data from the database, and if they
exceed certain values set on different communications channels,
notifications are sent to the Alarm Trigger. We also could deploy
sensor networks for real-time monitoring including seismic
activity, radioactivity, tsunamis, marine / maritime activities,
and floods.

A. Disaster early warning use case diagram

The use case diagram for disaster early warning can be seen
in Fig. 2.

Fig. 2. Use case diagram for disaster early warning

The main actors are:

- End-users: Citizens, Service Providers, etc. (who can
seek help much easier through the proposed platform).

- Emergency stakeholders, Government Emergency
Agencies, Environment Agencies, Cloud Providers, etc.
(which may provide help much faster by using the
proposed platform).

- Platform System Operator: supervise server status,
traffic trespassing firewall cluster, etc.

The system architecture must fulfill the following requirements:

• Sensors that transmit the field data (temperature,
humidity, sensors that measure water level, etc.)

• Subsystem for transmitting data from the sensors to the
database from the Remote Telemetry Unit (RTU) and
IP Gateway.

• The database where data is stored, and reports/statistics
are created based on information received from the
sensors.

• Notification Server checks DB (database) data and
statistics in real time and sends notifications to
operators if there are values outside of predetermined
unbroken.

The success end conditions specify that the architecture
should detect, process and transmits sensor data and notify the
relevant stakeholders/end-users for different emergency
situations: floods, water and air pollution, drought.

Also, failure end conditions should take into account:

• Workflow breaks;

• Security attacks;

• Lack of resources;

• VM crash.

 Furthermore, in an emergency situation, the infrastructure
should offer minimal services and QoS guarantees as presented
in Fig. 1 for at least text notification.

B. Scenarios in the use case

Possible issues that must be verified during the
implementation process:

• System level performance requirements;

• Verifiability;

• Integration complexity;

• Use of virtualized resources;

• Configuration of the infrastructure;

• Data intensive communication;

• Adaptability for quality-on-demand;

• Adaptability to changing infrastructure;

• SLA negotiation.

IV. TECHNICAL DESCRIPTION

In this section the main components of the sub-systems are

described, such as telemetry system, monitoring adapter and

notification system.

A. Telemetry System

The telemetry system consists of elements like computers,
devices or processes that compose the entire system. The
presented solution has three major components. RTU (Remote
Telemetry Unit) is the device which takes data from the
environment and stores it into a cloud database platform. The
dashboard represents an interface in which data can be stored
and visualized, as separated time-series metrics. Last but not
least, there is the Alert component, which reads data from the
data bases and sends an alarm if a threshold is exceeded.

The RTU is an electronic remote device which monitors and
reports events that happen at a remote site, allowing the network
operator to visualize the data distances from where it is
implanted. In our development, we used the A753 GPRS RTU,
because it is flexible, and it can be deployed in a large variety of
applications, from agriculture to hydrographics to professional
meteorology, from water quality to flood warning, from AMR
(Automatic Meter Reading) to leak detection, from the
monitoring of solar power to wind energy. The central elements
of the telemonitoring system, are the Data Concentrator
(Gateway) and the Data Presentation Server. The gateway
performs communication with the RTUs, and also allows the
configuration and management of all RTUs and sensors. The
second element is hosted on a computer with strong server
features (such as safe unattended running 24/24 and 7/7). The
Data Presentation Server is based on the software package that
is focused on the presentation of data in various formats (e.g.
tables and diagrams).

The metrics are extracted from telemetry and then added to
dashboards such as Graphite, Grafana or Prometheus in order to
visualize them.

1. Graphite

Graphite [16] is an enterprise-ready monitoring tool that runs
equally well on cheap hardware or Cloud infrastructure. Teams
utilize Graphite to track the execution of their sites, applications,
business benefits, or networked servers. It denoted the begin of
another age of monitoring tools, making it simpler to store,
recover, share, or view time-series metrics.

 Graphite does two things:

• Stores numeric time-series data;

• Renders diagrams of this data on request.

Graphite is not a collection agent, but it offers the simplest
path for getting your measurements into a time-series database.
Also, Graphite has one of the largest ecosystems of data
integrations and third-party tools, so one can easily use a
collection agent or language bindings, for instance. Furthermore,
Whisper is an on-disk database which maintain the long-term
reservation for metrics. Whereas carbon plays the role of the
receiver for the metrics, WSGI webapp is responsible for REST
API for deriving the data out from Whisper for analyzing and
demonstration. The webapp collects all the data from a local
Whisper backend and can be configured for querying the other
webapps too.

Client APIs used for the proposed use case are as follows:

• Graphitejs represents jQuery plugin that displays,
makes and updates graphs easily utilizing the Graphite
URL api;

• Cubism.js is a D3 plugin for visualizing time series
data in real time, and can pull data from Graphite;

• txCarbonClient represents a Twisted API that reports
metrics to Carbon;

• structured_metrics is a lightweight python library that
uses plugins to read in Graphite’s list of metric names

and convert it into a multi-dimensional tag space of
clear, sanitized targets.

Graphite is used to create diagrams with numeric values
which change after some time. Essentially, a program is
composed to gather these numeric data which are then send to
Graphite's backend, Carbon.

2. Grafana

In order to query, visualize, alert on and understand the
metrics we used Grafana [17], one of the leading open source
platform for time series analytics. With Grafana it is possible to
design, explore, and share dashboards with the team, because of
its data driven characteristics.

Grafana can be used with a wide range of depository
backends for the time series data. Every Data Source has a
particular Query Editor that is custom-build for the
characteristics and abilities that the specific Data Source
exposes. The query language and capacities of every Data
Source are clearly altogether different. It is possible to join
information from numerous Data Sources onto a solitary
Dashboard, yet each Panel is attached to a particular Data Source
that has a place within a specific Organization. The supported
Data Sources are Graphite, Elasticsearch, CloudWatch,
InfluxDB, OpenTSDB, Prometheus.

The visualizing feature enable to build quick and adaptable
customer side diagrams with a wide number of choices for
modules to visualize measurements and logs. In Fig. 3 we
present telemetry metrics from Graphite Carbon.

Fig. 3. Visualization of telemetry data using Graphite

Alerting is set up by characterizing alert principles for most
critical measurements using the platform, while Grafana will
ceaselessly assess them and then, send notices.

At the point when an alert changes state it conveys
notifications to email or sending them from Slack, PagerDuty,
VictorOps, email, or through webhook.

Also, we used Graphite to make dynamic and reusable
dashboards with layout variables which show up as dropdowns
at the highest point of the dashboard.

Furthermore, as we used mixed data sources from
environmental sensors and performance metrics of the system,
Graphite enabled blending distinctive data sources within the
same chart. It is possible to indicate a data source on each inquiry
premise, which can be used even for custom data sources.

Annotations can be used to Explain charts with rich events
from various data sources and float over events displying the full
event metadata and labels. Ad-hoc filters allow the setting up of
new key/value filters quickly, even while doing something else,
that are automatically applied to all inquiries that utilize that data
source.

3. Prometheus

Prometheus [18] is an open source solution for monitoring
and alerting. Prometheus is quite unique, because it allows the
view of metrics information when placing the cursor on a
respective line on the graph.

Moreover, Prometheus enables an increased dimensional
data pattern, as time series are determined by a metric name and
a set of key-value pairs. Segmenting, viewing and understanding
of gathered time series data in a database is done by using an
adaptable query language, so that tables, ad-hoc diagrams and
alerts can be generated. Furthermore, data can be visualized in
Prometheus using a multitude of modes: an integrated
expression browser, a console template language, and a
combination with Grafana.

For efficient storage, time series are saved in memory and on
local disk in an effective custom configuration, while functional
sharding and federation accomplishes scaling. Every server is
relying only on local depository, being independent for
reliability and easy orientation. Also, all binaries are statistically
connected and simple to deploy.

For alerting, information is maintained related to the
dimensions of the data and are described using Prometheus’s
flexible query language, while notifications and silencing are
done by an alert manager.

Multiple client libraries allow easy implantation and simple
handling of services, as more than ten languages are already
supported. Prometheus accepts bridging of third-party data by
exporters and integration with system statistics, Docker,
HAProxy, Statsd, and JMX metrics.

B. Monitoring adapter

The monitoring adapter is based on JCatascopia [19], which
is written in Java and has no client SDKs for other languages. It
contains a server, a database which is currently based on Apache
Cassandra and a monitoring agent which loads several probes by
default and some extra ones which can be defined by the user -
in this case by each organization. The probes are basically small
java classes which are loaded by the agent and are used to pull
data from the containers.

The current solution, JCatascopia with Java agent and
probes, has two properties which makes hard, if not impossible
to be integrated with the containers used in SWITCH. First it is
implemented in Java and has no client SDKs for other
languages. The second is the fact that the agent container needs
to be configured with the address of the container it monitors.

Because the probes pull data from containers, they require
the address of the container they are supposed to monitor. Also,
because the design of the probe is quite static it is very hard to
reconfigure the probe or the agent under which it runs to allow
multiple containers being monitored by the same probe/agent.

This requires instantiating one agent for each container. This
wouldn’t be a problem if agents could be run in-process or have
a small footprint. Unfortunately, the container, as it was
designed, requires a lot of memory and a lot of packages to be
able to run a JVM.

Because the agent and probe are written in Java, and the
probe needs to be run by the agent it is impossible to integrate
inside an application written in another language or in a
container which runs a software not controlled by users - web
server, database server, etc.

To solve the above problems, the following design presented
in Fig. 4, was proposed.

Fig. 4. JCatascopia Agent Adapter design

The main idea of this design is to use an agent that can
receive metric data from containers using a better-known
protocol with client SDKs available for many programming
languages. Statsd is that agent.

This architecture was done with the following criteria in
mind:

• Only one agent per environment - a single agent is
needed in the environment and can receive data from a large
number of containers. Statsd is written in node.js and supports
large concurrency.

• Easy to configure containers - because there is only one
agent, the container only needs to receive the address of the
agent as a parameter and no other configuration needs to happen.
The same applies to the agent container which only needs to
receive the address of the JCatascopia Server.

• Low footprint, easy to integrate - because there are
client SDKs available and plugins for software like Nginx,
MySQL, etc., the footprint of including monitoring in any
container is very low (usually the order of tens of kilobytes). The
clients will run in-process so containers remain simple and there
is no need for complicated process management.

JCatascopia requires certain information to be passed for
each metric. Because of that a metric key name needs to follow
a very strict format: eu.switch.<application-

environment>.<container-id>.<container-

ip>.<metric-group-name>.<metric-

name>.<units>

The fields are as follows:

• eu.switch.<application-environment> - this needs to be
configured in the Statsd container, as MONITORING_PREFIX.
It helps the adapter to filter metrics which are not supposed to be
sent to JCatascopia.

• <container-id> - this represents the sending
server/VM/container ID. It is suggested to use the hostname
generated by docker as a hexadecimal random string. Other
options are using a randomly generated string with enough
entropy to prevent duplication (eg. UUID)

• <container-ip> - this represents the container IP. Note:
Because StatsD keys use dots to separate each part, the IP will
be written with dashes replacing of dots. Eg. 127.0.0.1 -> 127-
0-0-1

• <metric-group-name> - this represents the metric
group or probe name in JCatascopia terms. Note: there are some
“reserved” group/probe names and it is advised to use those for
the assigned values - StatsInfoProbe, CPUProbe,
DiskStatsProbe, NetworkProbe, MemoryProbe.

<metric-name> - this represents the metric name in
JCatascopia terms. Note: there are some “reserved” metric
names for each probe and it is advised to use those for the
assigned values.

• <units> - (optional) this represents the metric units to
display in JCatascopia. It can be skipped. In case it is skipped,
the dot preceding it needs to be skipped as well.

The StatsD [20] protocol used for collecting telemetry data
requires all metric values to be integers. For real numbers, it is
suggested to use a power of 10 multiplied by that metric value,
up to the required precision.

Moreover, JCatascopia accepts other types than integers, for
STRINGs, there is a special protocol that allows sending that
value. Instead of the last part of the key - <units> - the string
which represents the value for the key will be sent. The string
should be cleaned up of non-alphanumeric characters, except
dash (“-”) and underscore (“_”), which are accepted, before
being passed to StatsD. The value will be ignored, so it can be
anything.

Because of the way the metrics are processed by StatsD,
clients should only need to send the string value once - if they
don’t need to change it. Of course, sending the value multiple
times is also supported, but not required.

Implementing the StatsD protocol should refer to the
documentation of the particular client SDK used for information
on how to send actual data to StatsD. The only particularity of
the implementation for the JCatascopia Adapter is that it
processes only counters. Timers, counters, sets and other types
of metrics are not supported.

Also, StatsD resets gauges to 0 at each flush interval (i.e.
each time they are sent to the backend - JCatascopia). A
container sending metrics to JCatascopia through Statsd needs
to implement a loop for sending metric data to StatsD.

The monitoring agent is uploaded in Docker Hub at
beia/monitoring_adapter. It has two parameters, in the form of
environment variables, which can be set:

• MONITORING_SERVER - it should be initialized to
the address of the monitoring server (JCatascopia)

• MONITORING_PREFIX - it should be initialized to
the prefix of all the metric keys that are to be processed and sent
forward by the agent. For example: “eu.switch.beia”

• GRAPHITE_SERVER - (optional) it should be
initialized to the address of a Graphite instance which will
receive the metrics along with JCatascopia.

• LOGGING_LEVEL - (optional) it should be initialized
to one of these values error, warn(default), info, debug, trace. It
gives debug information.

The container will fail to start if the two environment
variables are not set, as during development, these variables
should be set by the developer. In production, in combination
with the platform components of SWITCH, these variables
should be set and deployed along with the containers specific to
ASAP.

To test the adapter and developing own metrics in
conjunction with JCatascopia, we used the following steps.

• Step #1: start the container with JCatascopia server using the
command:

docker run -d --rm -p 8080:8080 -p

4242:4242 -p 4245:4245

salmant/ul_monitoring_server_container_ima

ge

The host on which the container was started will be called
$JCATA_HOST.

For verification it is possible to access
http://$JCATA_HOST:8080/JCatascopia-Web/home.jsp and
see an UI with some graphics.

• Step #2: start the monitoring_agent with the command:

docker run -e

MONITORING_SERVER="$JCATA_HOST" -e

MONITORING_PREFIX="eu.switch.<beia|mog|wt|

anything>" -p 8125:8125/udp

beia/monitoring_adapter

The MONITORING_SERVER environment variable has to
be set in the container to start, as well as the
MONITORING_PREFIX variable, which enables
communication with the JCatascopia server. The
MONITORING_PREFIX should match the value used when
sending the metrics, in order for JCatascopia to operate properly.

• Step #3: write code to start sending metrics to JCatascopia
using the proper format for metric keys.

If the correct format for metrics are not passed, the agent will
just ignore the metrics and the monitoring server will not receive
any warning or notification. As StatsD supports many types of
data - counters, gauges, timers, etc. - in this adapter only the
gauge is implemented.

To validate the successful deployment of the monitoring
adapter, we are able to see the agent and its associated metrics,
in the above interface.

C. Notification System

The notification system is an important subsystem

responsible to deliver reliable, scalable, real-time voice

notifications through multiple communication means

(including VoIP/SIP and landlines) and offers a simple REST

API for other modules to trigger and monitor that kind of

actions.

The architecture is composed of 3 submodules:

• Asterisk – a software PBX that assures the

communication between the Notification System and

SIP provides/landlines;

• Notification Workers – the software that implements the

reliable interface for triggering and control the

processes;

• Redis database – a in-memory database that is used to

keep the consistency of call statuses between different

notification works.

 In our architecture, each Notification Worker consists of 2

modules:

• Flask API which exposes the Web API for

communicating with other components;

• Asterisk Worker which handles the asynchronous

events related to a call and realizes the communication

to the Asterisk PBX.

The number of Notification Workers can be scaled

up/down by simply adding a new container with this image. The

architecture of Notification System is described as several

communicating modules that can be visualized in Fig. 5.

Fig. 5. Notification System Architecture

As we developed our software, each module is a Docker

container. For our scaling proposes, the number of Notification

Workers can be scaled-up by sample deploying a new container

with the given image and different Asterisk PBX containers can

get connected to multiple SIP providers.

Having multiple Notification Workers is not in the concern

of the user-agent. This aspect is handled by the DNS-based

load-balancer in Docker.

The interaction between the user-agent and the Notification

System is realized through the REST API exposed by the Flask

API module inside the Notification Worker module.

In Table 1, we present the API for originating a voice

notification with a prerecorded message and checking the status

for this type of call.

TABLE 1 NOTIFICATION SYSTEM API

Originate playback call

URL http://<notification_system_host>:<port>/originate

HTTP

method

POST

Request

Format

JSON

Request

parameters

extension – the SIP extension/phone number to be called;

file – the name of file to be play-backed;

sip_provider – SIP provider to be used.

Example of

valid request

{"extension": "0723456789",

 "file": "tt-goodbye",
"sip_provider": "clickphone"}

Example of

response

{

"file": "tt-goodbye",
"id": "58f477dd-332e-4088-835a-fe6055d032d1",

"status": "initiated",

"status_code": 1,
"timestamp": 1512660726.229323

}

Status check

URL http://<notification_system_host>:<port>/originate

HTTP

method

POST

Request
Format

No-body

Response

format

JSON object with the same format as the one for

originate.

For a successful execution, any request sent to this API will

response with a 200 OK HTTP status. If any other exception

raises, a different status code is provided.

For the most of those exception, additional details are

included in the response. We present the format of this kind of

response in Table 2.

TABLE 2 NOTIFICATION SYSTEM ERROR RESPONSE FORMAT

Response format JSON

Example of error response {"error":{"short_description": "Call
not found", "http_code": 404}}

V. INTEGRATION WITH SWITCH SUBSYSTEMS

This section presents the integration of the use case for

telemetry in case of emergency situations with SWITCH

subsystems SIDE, DRIP and ASAP [21]. In Fig. 6 we present

how the application is adapted to dynamic conditions by

SWITCH.

Fig. 6. Adaptability model of disaster early warning use case to SWITCH

A. SIDE

The SIDE (SWITCH Interactive Development

Environment) subsystem provides the developer of early

warning systems with an intuitive interface to create an

application composed out of several services in what is usually

considered a micro service architecture. When creating an

application each component must first be described and the

additional functionalities it requires or contains i.e. Volumes,

monitoring, Hardware requirements... This assignment is done

by adding nodes to the component that describe the parameters

that can be changed or checked. There are several nodes defined

at this time, but more can be added in the future.

The components can be connected in application view. At

this time the application developer can specify the desired QoS

parameters he deems define his components or application. This

enables the system to be more flexible, reassigning variables to

suit the required application. Based on the nodes added to the

components of the application SIDE can add the required

SWITCH components, such as Monitoring Server, Monitoring

Adaptor or Alarm Tigger.

 As this information is collected by SIDE it is transformed

into TOSCA description that can be used by other systems, such

as DRIP.

B. DRIP

The DRIP (Dynamic Real-Time Infrastructure Planner)

subsystem has several capabilities for planning, provisioning

and deployment. The first stage, is the Infrastructure planer

which takes the information that has been collated by SIDE,

specifically the Hardware requirements and the QoS metrics

and creates a plan that should satisfy the systems performance.

The second stage is Infrastructure provisioning. It takes the

plan as an input and provisions the machines based on that plan

and the available credentials. It re turns the information needed

to use the VMs, and starts them on a given cloud provider

The last stage, deployment, can be broken down into two

parts. First a SWARM cluster is created on the available

infrastructure. Then the deployment takes a TOSCA file as an

input and transforms it into a Docker deploy file that can be run

on the cluster.

C. ASAP

The ASAP (Autonomous System Adaptation Platform) sub-

system is split into several parts. The monitoring, described in

above, starts working after the application has been deployed.

And the results can be seen in SIDE as a graph of available

system or application metrics. Noting this the developer can

change the configuration of the system or the infrastructure he

is using and redeploy the application to suit his needs.

Additionally, the developer can specify the parameters of

the Alarm trigger for each application component. This

information is stored in SIDE and send to the Alarm Trigger

component. The Alarm Trigger parses this information,

compares it to the current state of the system based on

monitoring and can, if the state does not meet the requirements,

trigger an alarm or a direct action from the system via the Self

Adaptor component, thus safeguarding the system form failure.

VI. RESULTS OF SWITCH

All the code and configuration are currently contained in a

git repository. The repository contains all the software and

instructions (Docker files, Docker Compose configurations,

config files) necessary to build the whole infrastructure for the

project.

Currently all the components in both SWITCH and BEIA’s

use-case are contained as Docker images and we started the

integrating our components with SWITCH platform as

following:

• For the integration with SIDE component we

experimented the creation of a TOSCA file for our

software components and validated the possibility of

describing the requirements of our use-case using

SIDE;

• For the integration with DRIP we assured that each of

our components is individually contained as a Docker

image and tested that the environment offered by the

deployment platform allows our components to run

properly;

• For the integration with ASAP we included the

Monitoring Server in our deployment and successfully

collected some relevant for scaling metrics from some

of our components.

A. Current status

We have a stack that is usually called LEMP (Linux + Nginx

+ MariaDB/MySQL + PHP-FPM), but in the context of our

architecture could be called LESP (Linux + Nginx + Supervisor

+ PHP-FPM) + LM (Linux + MariaDB/MySQL). It is

composed of two containers. The first container maps to the

Notification server in the architecture and is running Nginx and

php5-fpm under Supervisord. Nginx and php5-fpm

communicate through a Unix socket, for better performance,

which forces them to run under the same container. Supervisord

is a process manager that is required because Docker allows

only one entry point per container. Supervisord has the added

benefit of being able to restart the processes in case they die and

being able to manage each process independently. The second

container maps to the Database server in the architecture and is

running MySQL with a persistent volume for the database.

All the components of the telemetry system represent one

module in the architecture. The LEMP stack has smaller

memory footprint and better performance. Because of this,

PHP-FPM + Nginx is the recommended way of running PHP.

B. Existing components

The telemetry system consists of a database and gateway

component for interfacing with proprietary sensors and

communication protocols (GPRS, UHF). The features

implemented in the current telemetry software do not provide

the level of flexibility and detail required, so a simple dashboard

implemented in PHP was developed. To be able to produce

alerts on sensor data and specific abnormal behaviors, a rule

engine that takes the data from sensors and alerts other

components down the communication path is included.

Communication with sensors is done over an XML

protocol, called addUPI, that allows applications to iterate

sensors and nodes - platforms containing multiple sensors, and

also gathering sensor data. The telemetry component is polling

the IP gateway and sensors, using a cron script, and deposits the

data into a MySQL database. The same database contains

definitions for the dashboards, user logins and alert definitions.

The telemetry component is served through a Nginx HTTP

server which uses PHP-FPM as an application container. PHP-

FPM has multiple features which are designed to optimize for

speed and memory usage. Most importantly, PHP-FPM

contains an opcode cache which allows PHP scripts to be

interpreted just once and executed multiple times. Also, PHP-

FPM is using a worker pool to optimize client access and

prevent spawning many temporary PHP processes. Nginx also

has features that allow serving many clients without great

memory consumption and CPU usage.

The PHP application architecture is shown in Fig. 7.

Fig. 7. NGINX + PHP-FPM architecture

The two containers are connected using Docker Compose,

which allows setting a separate network for the communication

between the two containers, adding volumes and creating

configurations that include environment variables.

VII. CONCLUSION

In summary, the paper analyzed related work for telemetry

system used in emergency situations and the functional

description of the pilot case was created, associated with usage

scenarios (players, actions, equipment) and overall

requirements. Also, an architecture indicating the main

components of the solution, the associated services and

interfaces and the technologies that are used in the

implementation phase together with evaluation metrics are

presented. An early prototype / proof of concept for the use case

with all the main components implemented (remote telemetry

units, IP gateway, database server, notification server) and with

some known issues (portability of Windows images, adaptation

of applications running in virtual machines to containers) has

been designed. As future work we envision to measure

performance metrics for scaling of different components of the

proposed use case for disaster early warning.

ACKNOWLEDGMENT

This project has been funded by the European Union’s

Horizon 2020 research and innovation program under grant

agreement No 643963 (SWITCH project).

REFERENCES

[1] G. Buribayeva, T. Miyachi, A. Yeshmukhametov, and Y. Mikami, “An

Autonomous Emergency Warning System based on Cloud Servers and SNS,”
Procedia Computer Science, no. 60, pp. 722 – 729, 2015.

[2] D. K. Krishnappa, E. Lyons, D. Irwin, and M. Zink, “Compute cloud based

weather detection and warning system,” Geoscience and Remote Sensing
Symposium (IGARSS), IEEE International, University of Massachusetts

Amherst, pp. 2430-2433, 2012.

[3] Jie Li, M. Humphrey, D. Agarwal, K. Jackson, C. van Ingen, and Youngryel
Ryu, “eScience in the Cloud: A MODIS Satellite Data Reprojection and

Reduction Pipeline in the Windows Azure Platform,” In Parallel & Distributed

Processing (IPDPS), 2010 IEEE International Symposium on, pp. 1-10, 2010.
[4] J. J. Rehr, J. P. Gardner, M. Prange, L. Svec, and F. Vila, “Scientific

Computing in the Cloud,” In Computing in science & Engineering, vol. 12, no.

3, pp. 34-43, 2010.
[5] K. S. S. Rani, and N. Indhumathi, “An Efficient Modern Irrigation and Plant

Growth Monitoring System using Sensor Network,” Asian Journal of Research

in Social Sciences and Humanities, no. 8, vol. 6, pp. 350-359, 2016.
[6] LIBELIUM: Early warning system to prevent floods and allow disaster

management in Colombian rivers http://www.libelium.com/early-warning-

system-to-prevent-floods-and-allow-disaster-management-in-colombian-
rivers/.

[7] J. Zschau, and A.N. Küppers, “Early warning systems for natural disaster

reduction,” Springer Science & Business Media, November 2013.
[8] T. Glade, and F. Nadim, “Early warning systems for natural hazards and

risks,” Natural Hazards, vol. 70, no. 3, pp. 1669- 1671, 2014.

[9] J. W. de Groot, and D. M. Flannigan, “Climate change and early warning
systems for wildland fire,” Reducing Disaster: Early Warning Systems for

Climate Change, Springer, pp. 127-151, 2014.

[10] F. E. Horita, J. P. de Albuquerque, V. Marchezini, and E. M. Mendiondo.
“A qualitative analysis of the early warning process in disaster management,”

In Proceedings of the 13th International Conference on Information Systems

for Crisis Response and Management (ISCRAM), pp. 1-9, 2016.
[11] J. Cools, D. Innocenti, and S. O’Brien. “Lessons from flood early warning

systems,” Environmental Science & Policy, vol. 58, pp. 117-122, 2016.

[12] M. Takemoto, K. Koizumi, Y. Fujiwara, H. Morishita, and K. Oda,

“Improvement of a slope disaster warning system for practical use,” Japanese

Geotechnical Society Special Publication 2, no. 3, pp. 196-200, 2016.

[13] A. Alhmoudi, and Z. U. H. Aziz. “Integrated framework for early warning
system in UAE,” International Journal of Disaster Resilience in the Built

Environment vol. 7, no. 4, pp. 361-373, 2016.

[14] M. Arcorace, F. Silvestro, R. Rudari, G. Boni, L. Dell'Oro, and E. Bjorgo,
“Forecast-based Integrated Flood Detection System for Emergency Response

and Disaster Risk Reduction (Flood-FINDER),” EGU General Assembly

Conference Abstracts, vol. 18, pp. 8770-8774, 2016.
[15] J. Udo, and N. Jungermann, “Early Warning System Ghana: how to

successfully implement a disaster early warning system in a data scarce region,”
EGU General Assembly Conference Abstracts, vol. 18, pp. 12819-12823, 2016.

[16] GRAPHITE Documentation https://graphite.readthedocs.io/en/latest/

[17] GRAFANA: The open platform for beautiful analytics and monitoring
https://grafana.com/
[18] PROMETHEUS: From metrics to insight https://prometheus.io/

[19] S. Taherizadeh, and V. Stankovski. "Incremental Learning from Multi-
level Monitoring Data and Its Application to Component Based Software

Engineering." In Computer Software and Applications Conference

(COMPSAC), 2017 IEEE 41st Annual, vol. 2, pp. 378-383, 2017

[20] M. Miglierina, and D. A. Tamburri. "Towards Omnia: A Monitoring

Factory for Quality-Aware DevOps." In Proceedings of the 8th ACM/SPEC on

International Conference on Performance Engineering Companion, pp. 145-
150. ACM, 2017.

[21] Z. Zhao, P. Martin, J. Wang, A. Taal, A. Jones, I. Taylor, V. Stankovski,

I. G. Vega, G. Suciu, A. Ulisses, and C. de Laat, “Developing and operating
time critical applications in clouds: the state of the art and the SWITCH

approach”. Procedia Computer Science, vol. 68, 2015, pp.17-28.

http://www.libelium.com/early-warning-system-to-prevent-floods-and-allow-disaster-management-in-colombian-rivers/
http://www.libelium.com/early-warning-system-to-prevent-floods-and-allow-disaster-management-in-colombian-rivers/
http://www.libelium.com/early-warning-system-to-prevent-floods-and-allow-disaster-management-in-colombian-rivers/
https://graphite.readthedocs.io/en/latest/
https://grafana.com/
https://prometheus.io/

