
TOSCA-based SWITCH Workbench for application
composition and infrastructure planning of

time-critical applications

Polona Štefanič∗, Matej Cigale∗, Francisco Quevedo Fernandez∗, David Rogers∗, Louise Knight∗,
Andrew C. Jones∗ and Ian Taylor∗

∗School of Computer Science and Informatics,
Cardiff University,

Queen’s Buildings, 5 The Parade, Roath, Cardiff CF24 3AA, UK
Email: [StefanicP | CigaleM | QuevedoFernandezF | RogersDM1 | KnightL2 | JonesAC | TaylorIJ1]@cardiff.ac.uk

Abstract—Real-time applications, such as disaster early warn-
ing systems, live event broadcasting, video conferencing and
online gaming, present particular challenges for successful de-
velopment and deployment: they only achieve their expected
business value when they meet critical requirements, such as high
performance and availability for outstanding Quality of Service
and Quality of Experience. The development of time-critical
applications needs to be supported by a customized software
engineering environment that offers support for the entire appli-
cation life-cycle. However, there is a lack of (component-based)
software workbenches/tools suitable for time-critical applications,
supporting customized software engineering through the entire
life-cycle. In this paper we present the SIDE Workbench devel-
oped during the course of the SWITCH project. It uses TOSCA
extensively for exchange of information within the SWITCH
platform, and offers component-based application composition,
software component modelling, infrastructure planning and pro-
visioning through the entire life-cycle of time-critical applications.
To show the application composition process we describe the
development of a containerized interactive multi-tier application
on the SIDE Workbench that is mapped into TOSCA, from which
the corresponding Docker Compose file is then created.

Keywords—Software engineering, time-critical applications,
TOSCA, Distributed Cloud computing

I. INTRODUCTION

Time-critical applications such as disaster early warning
systems (e.g. from BEIA1), on-demand business collaboration
platforms (e.g. from Wellness Telecom2), live event broadcast-
ing (e.g. from MOG Technologies3), online gaming, and so
on, can only achieve their expected business value or social
impact when they satisfy critical requirements, such as high
performance, availability and scalability. They must achieve
consistently high Quality of Service (QoS) through their entire
runtime — not least, in order to achieve the required Quality of
Experience (QoE). This group of time-critical applications is
very difficult to develop and maintain. Usually a customized
software engineering environment is needed which supports
the developer in specifying the QoS and other requirements
and provides facilities for deployment, monitoring, steering,
etc. throughout the entire life-cycle.

1http://www.beiaro.eu/services/
2http://www.wtelecom.es/?lang=en
3http://www.mog-technologies.com/

In recent years research effort has been expended in the
development of tools, application interfaces and specifications
for component-based development of cloud applications, or-
chestration, virtualization and automatic deployment. However,
here is still a lack of tools, application programming interfaces
and specifications that can fully support the development of
time-critical applications through their entire life-cycle in an
intelligent and autonomous manner [1].

In this paper we present the SIDE (SWITCH Interactive
Development Environment) Workbench, which has been de-
veloped during the SWITCH (Software Workbench for Inter-
active, Time Critical and Highly self-adaptive Cloud applica-
tions) project4. It supports the development of Microservice
and Multi-tier applications throughout their entire life-cycle.
It uses OASIS Topology and Orchestration Specification for
Cloud Applications (TOSCA) [2] a specification that provides
the following functionalities [3]:

(i) automated application deployment and management,
(ii) portability of application descriptions,

(iii) interoperability and re-usability of components,
(iv) orchestration, controllability and programmability,
(v) description of components, their relationships and depen-

dencies among them.

One of the main novelties of the SIDE Workbench is that
it offers component-based creation of cloud applications by
dragging and dropping the components from a component
repository to the SIDE Workbench canvas and, for each com-
ponent, specifying associated quality constraints and hardware
requirements and other dependencies and components. The
other main novelty presented here is that it allows mapping
all this into TOSCA, for exchange of information with other
SWITCH components.

This paper is structured as follows. Section II presents
related work such as various orchestration-based specifications
and languages, known OASIS TOSCA implementations and
similar projects that enable cloud orchestration and provi-
sioning. Section III briefly introduces all three subsystems of
SWITCH with their corresponding architecture components.
In section IV the component-based infrastructure with its

4http://www.switchproject.eu/

supporting nodes is presented. Section V presents an example
of how an application can be created via the SIDE Workbench
and mapped into TOSCA. Finally, with section VI we conclude
the paper by giving some further remarks and discussing future
potential enhancements of the SIDE Workbench.

II. RELATED WORK

In this section we present an overview of (i) orchestra-
tion, automation and interoperability based specifications and
languages, (ii) known TOSCA implementations in various
cloud-based projects, platforms and libraries that implement
or visualize TOSCA tools, and (iii) cloud-based projects and
tools that support orchestration, but do not implement TOSCA.

A. Orchestration-based specifications, languages and libraries

Cloud Application Management for Platforms (CAMP) [4]
is a language, framework and platform independent OASIS
specification standard for the interoperability and management
of applications across multiple cloud infrastructures, offered
as a PaaS. CAMP consists of the following related resources:
Platform Assemblies, Platform Components and Application
Components. In contrast to these general specifications, AWS
CloudFormation [5] is a platform dependent orchestration
approach that relies on JSON templates. It describes AWS
related resources (e.g. EC2, S3 bucket, Load balancer). The
creation of AWS resources is described in JSON templates
where the platform automatically orchestrates the relationships
and dependencies among them. OpenStack [6] is an open
source cloud platform that supports on-demand infrastructure
and resource provisioning. It comes with an interactive web
interface that offers management of the resources and moni-
toring. HEAT [7] is a project of the OpenStack Orchestration
program that enables infrastructure provisioning and a cross-
compatible AWS CloudFormation implementation for Open-
Stack with templates that are based on the YAML language
format. Business Process Execution Language (BPEL) [8] is an
OASIS executable language for the orchestration, management
planning and specification of actions within business processes
in web services that is based on XML. BPEL describes
interactions with web services as executable and abstract
business processes. However, BPEL is business-oriented and
is not suitable for time-critical application. CHEF [9] is an
open source configuration management tool that can be inte-
grated with various cloud platforms, such as Internap, Amazon
EC2, Google Cloud Platform, OpenStack and so on. It offers
automatic provisioning and configuration of machines and re-
sources. Various resources can be configured by writing Ruby-
based scripts called recipes that describe resources, automation
tasks, their relationships and dependencies, such as installation
of packages, running instances and so on. These recipes
are organized in cookbooks of Ruby scripts. TOSCA2Chef
[10] is a service orchestration framework that comes with
a set of components and services in order to support two
basic operations: parsing TOSCA for the deployment of the
defined topology and the execution of the application logic.
Furthermore, we have analyzed languages that can be used
for designing and modelling real-time applications, such as
MARTE [11] and SysML [12]. MARTE and SysML are
modelling languages used for defining real-time applications
allowing the specification of QoS attributes by using object

constraints language extensions to UML models. They both
facilitate the formal verification of a system by transforming
some of the models into Timed Petri Nets or Layered Queuing
Networks over which various verification techniques can be
run in order to verify the quality attributes.

B. Known TOSCA implementations

There are several industrial cloud-based tools and research
projects that implement TOSCA, but they are not suitable for
time-critical applications in their current form. Alien4Cloud
[13] is an open source enterprise platform that enables selec-
tion of the best infrastructure on-demand in any phase of the
application life-cycle by abstracting the application require-
ments according to the infrastructure and its resources catalog
[13]. The key features of Alien4Cloud are design and portabil-
ity of applications using TOSCA, DevOps, supporting collab-
oration among development and deployment teams, applica-
tion life-cycle management, deployment and post-deployment,
orchestration, deployable middleware recipes and blueprints
catalog. Although Alien4Cloud is a cloud-based platform for
the development and deployment of cloud applications, it is
more focused on business enterprise solutions than on time-
critical applications. Apache ARIA [14] TOSCA orchestration
engine is an open source, embeddable, lightweight library
and command line tool for the TOSCA-based modelling and
orchestration of cloud-based applications. CELAR [15] is an
Elasticity Provisioning Platform that provides methods and
tools for the integration and orchestration of the various sub-
modules of CELAR, such as the decision module, monitoring
system, application description tool and so on. Cloudify [16]
is an open source TOSCA-based model-driven framework and
management platform for cloud orchestration enabling the
modelling of applications and services and automation of their
entire life-cycle. Similar to [13] its aim is getting the business
and developers to work together, and the management and
automation of the entire application life-cycle. DICER [17]
is a tool that enables the model-driven deployment of Big
Data applications. It automatically generates Infrastructure as
Code (IAC) for Big Data applications from UML models into
TOSCA blueprints. The OpenTOSCA Container [18] presents
a runtime environment of the deployment and management
of cloud applications. It enables the deployment and auto-
mated provisioning of applications that can be modeled by
TOSCA and CSAR. It analyses a TOSCA model and invokes a
Build Plan for instantiating new application instances. Ubicity
uses TOSCA to model service topologies, including service
composition, policies and custom work flows [19]. It offers a
repository of normative and non-normative Types (e.g. node,
group, artifact, interface types) [20] and a TOSCA validator
[21]. Furthermore, there are some web-based tools that offer
visual notation and graphical modelling of TOSCA topologies,
plans and policies. The most common are Winery [22] and
Vino4TOSCA [23]. However, these tools do not offer orches-
tration.

C. Tools that do not implement TOSCA

In the scope of industrial tools there are two software
engineering tools that are used for the creation of native cloud
applications and services, such as Juju [24] and Fabric8 [25].

Fig. 1: Main components of the SWITCH architecture.

Fabric8 presents an open source platform that uses Docker con-
tainers and Kubernetes as visualization and orchestration tech-
nologies and enables the creation, deployment and continuous
improvement of Microservices [25]. On the other hand Juju is a
universal component-based graphical modelling tool for native
application deployments. It offers sets of predefined software
assets (“charms”) and relationships and configurations among
them that come with a knowledge of how to properly deploy
and configure them in the cloud [24].

D. Summary

Most of the tools we have described offer orchestration,
provisioning and automation of cloud-based applications, and
some of them implement TOSCA as well. However, none
of the above described projects, tools, libraries or platforms
offers a workbench that would support component-based de-
velopment of application logic, programmability and control-
lability throughout the entire life-cycle of cloud applications
or services, modelling software components and enabling
adaptation. These are all necessary features to support the
development of time-critical applications.

III. THE SWITCH CONCEPT

The overall objective of SWITCH is to develop an inter-
active Workbench and a set of middleware services that can
support the entire life-cycle of time-critical cloud applications
by enabling software engineers to specify critical requirements,
and plan, provision and adapt the virtual cloud infrastructure
for a specific application in order to ensure QoS. Figure 1
illustrates the main SWITCH functionalities.

A. SWITCH Interactive Development Environment subsystem

The SWITCH Interactive Development Environment
(SIDE) subsystem provides interfaces for all stakeholders (e.g.
software developers, application users) by providing a set of

graphical interfaces and APIs that tie all SWITCH services
to a Web-based workbench [26]. The aim of SIDE is to
enable easier creation and definition of Microservice-based
time-critical applications. In more detail, the main elements
of SIDE are as follows:

1) Workbench: built using EmberJS MVC Framework as a
front-end technology, Django Framework as a back-end tech-
nology and MySQL as its internal database. Using responsive
HTML, EmberJS and JointJS the front-end implementation
of the Workbench offers (i) composition of the application
logic by dragging and dropping the components into the main
canvas, defining QoS attributes and hardware requirements
for specific components and linking the components in the
application by connecting them together on the canvas, and
(ii) defining the abstract infrastructure of the environment.
All these features are mapped into TOSCA; one can also
directly manipulate and edit the generated TOSCA. The back-
end provides the APIs so that the application graph is stored
and changed into TOSCA as well as working with the other
systems using their APIs.

2) Collaborative management: offers application commu-
nity support via user management facilities (e.g. user authenti-
cation and authorization and the personalization of user profiles
– applications created on the SIDE Workbench belong to, and
can be used only by, specific users or a group of users).

3) Formal reasoner/verifier: responsible for mapping ap-
plication graphs created on the canvas into TOSCA, verifica-
tion of TOSCA using semi-formal models and reasoners and
exposing all functionalities through the REST APIs and sent
to Dynamic Real-time Infrastructure planner.

B. Dynamic Real-time Infrastructure Planner subsystem

The Dynamic Real-time Infrastructure Planner (DRIP) sub-
system is responsible for planning and provisioning of the
infrastructure, and deployment and execution of applications.

TOSCA documents are sent to the DRIP manager, which
offers various APIs for preparing and planning the application
deployment [27]. The main modules of DRIP are as follows:

1) Infrastructure planner: The planner takes as its input the
TOSCA generated by SIDE. It uses the information provided
to estimate the required machine types and creates the plan
that contains the information on what kind of VMs are needed
and what is to be deployed on them. It does this with the
information that is provided by the user.

2) Infrastructure provisioner: The provisioning system is
described by H. Zhou et al. [28]. This provisioning can work
with many different cloud providers such as EGI, AWS and
others. The mechanism provides fast and transparent provi-
sioning and enables the creation of different machine types
based on the uploaded user credentials.

3) Automatic deployment: The final part of the system
deals with the deployment of the application. The deployment
is done in several stages, as first the machines need to be
prepared, then they have to be connected into a cluster and
finally the application is deployed with the required metadata.
Part of deployment is also collecting the final information of
the application, such as the IPs of the deployed containers,
their IDs and other information.

C. Autonomous System Adaptation Platform subsystem

The Autonomous System Adaptation Platform is respon-
sible for monitoring application status and the infrastructure
within which the application is running, and dynamically
adapting applications during runtime in order to ensure Quality
of Service. ASAP monitors the application and based on the
monitored metrics, and input from the user, triggers adaptation
of the application.

1) Monitoring system: The monitoring system is a modi-
fied version of the JCatascopia monitoring system [29]. The
monitoring system contains several conceptual components.
Monitoring agents are part of an application. The Agents
send the data using the StatsD protocol to the Monitoring
Adapter. The adapter can service multiple agents. It takes the
information received from the agents, registers a new Agent
with the Monitoring Server and starts sending data to it. The
Monitoring Server includes a Time-Series Database to store
the data from the monitoring agents. It also includes a logic
layer that provides several APIs, and a presentation layer. This
architecture was used to ensure that the system is flexible
enough so that the application can be lightweight while still
providing the desired information.

2) Alarm trigger and Self-adapter: The Alarm trigger
analyses the data collected by the monitoring system and
triggers adaptation based on the definitions provided by the
developer. The Alarm trigger sends this information to SIDE,
which informs the user and the Self-adapter. The Self-adapter
uses the adaptation provided by DRIP — ie. scale VM, scale
Service etc. — and thus maintains the required system system
performance when conditions change.

IV. COMPONENT-BASED INFRASTRUCTURE

Software developers can create containerized components
from scratch in the composition view on the SIDE Workbench

(see Figure 2) by packing services and other functionalities into
container images, such as Docker containers. Alternatively the
software developer can gather containerized components from
public repositories, such as Docker Hub5 or App Hub6 and
import and store them in the SIDE components repository.
This information is stored in the Artifacts node of TOSCA.

A. Supporting nodes

Once a component is defined it needs to be described
in SIDE so that the other SWITCH systems can use the
descriptions. The nodes are attached to the created component
and describe the requirements and the Non Functional parts
of the application. We can see examples of each of these
functionalities in Figure 2.

Fig. 2: Creation of the component.

Starting from QoS constraint and going in clockwise order,
the functionalities that can be specified are:

• Hardware requirements: A node of this type enables
the user to specify additional constraints on the plan-
ner for the VMs it needs. An example of these can be
seen in Figure 3.

Fig. 3: Defining the hardware requirements.

• Quality of Service constraint: Determines the metric
and its value that is needed to maintain the desired

5https://hub.docker.com/
6https://apphub.io/

Quality of Experience of the system. This information
is used by the planner to determine what kind of
resources to provision, and by the modelling algorithm
to create the Quality Metadata Markers (QMM) [30]
that denote what affects the performance of the com-
ponent (Figure 4).

Fig. 4: Defining the Quality of Service metrics.

• Monitoring agent: This node denotes that the com-
ponent includes a monitoring agent. This enables the
SIDE Workbench to display monitoring information
when the component is running. This information is
also crucial during the validation stage, as SIDE uses
this information to determine whether the Monitoring
Adapter and Monitoring Server are necessary for the
system to work. The SIDE Workbench will add these
latter two components automatically as necessary if
the user did not add them before.

• Alarm trigger: The user can specify the events that
trigger the Alarms. The YAML file that is added also
includes the information on what action to take (Figure
5).

Fig. 5: Defining the Alarm trigger.

• Port mapping: If the user wants to expose certain
ports to the outside world (s)he can specify these ports
in this node. Internal ports, what they map to, what
protocol the port supports and the mode of the port
can all be defined, see Figure 6.

• Environmental variables: This node contains the
information that the component needs to start its work.
Information can include the IPs of other components,

URLs of supporting services, width of the video and
so on (Figure 7).

Fig. 6: Defining the port mapping.

Fig. 7: Defining the environmental variables.

• Volumes: This node includes the information about
volumes, a Docker specific system that enables a
container to mount parts of the disk, so that the
information is not lost if the container is restarted
(Figure 8).

Fig. 8: Defining Volumes.

B. Modelling the component

In order to make the usage of the component simpler
for the developer a model can be created, that describes the
relationship and dependencies between certain parameters of
the infrastructure, such as CPU frequency, number of CPUs,
RTT to a required service and so on and the QoS. This is
important information as it gives the developer a glimpse
into what it is required to make his or her component meet
the desired NFR. This is elaborated on in the SWITCH IDE
position paper [30].

The QMMs created by this system are qualitative i.e.
they do not present the exact function of how the system
will perform but only the general influence of a metric to
the final application’s QoS. It is enough information to give
the user guidance in what part of the infrastructure (s)he
should change in order to achieve the desired performance and
improve the QoS and QoE of the application. The rationale for
choosing these types of models is that they require less data
to be created. This means that less testing of the application
component is required. They are also more resistant to noise
in the data that is especially strong in the network part of
the system where the connections over the public Internet can
change dramatically in a small amount of time.

Fig. 9: An example of a Three-tier application created in SIDE.

V. SIDE WORKBENCH

A. Connecting the pieces

Once the components are described they can be used to
create an application. To illustrate this, we created a simple
three-tier application, composed of the front-end, back-end
and a database. To create this application the user simply
drags the three components to the canvas, where they are
created with the nodes attached. The user must then fill out
some of the information of the system that could not be
determined beforehand, for instance the required size of the
disk for the Database, as this is application specific. The
user can in addition connect some of the specific application
components, such as networks, that enable the applications to
reuse the same port mapping if applicable (Figure 10). The
example contains definitions needed to use multicast, but it
is usually enough to just provide the name of the network.
The depends-on relationship is not strictly necessary for this
example, as the components are robust enough to work even if
the others are not reachable, but it is good practice to include
this relationship, as this is not always the case.

Fig. 10: An example of more complex network definition.

The information in the nodes can be changed for each
deployment so that the performance of the application can be
tweaked. If, for example, the user finds that the front-end is not
sufficiently responsive, the number of CPUs can be increased,
thus increasing the performance.

If the user clicks on the validate button the system indicates
whether there are any values that were unintentionally left
blank, thus forcing the user to fill them in for each component.
This is denoted by the ”SET ITS VALUE” string. The system
also checks if there is monitoring present in the system. If there
is any monitoring node on the canvas, the SIDE Workbench
will add the Monitoring Server and Monitoring Adapter to the
system. If the user does not want to use monitoring, these
nodes can be deleted from the canvas. Lastly the validator
checks that each component on the canvas has an unique name.
This is important, as the component names are mapped to
service names in the Docker Compose file and are expected
to be unique for each service in an application.

B. Example of creating a containerized Three-tier application

In order to show the creation of an application on the
SIDE Workbench we have created a containerized three-tier
application (see in Figure 9), each tier being realised as a
distinct component. The three containers are:

• Basic application example of EmberJS MVC Frame-
work as a Presentation tier

• Django Framework as a back-end Logic Tier

• MySQL Database as a Database tier

Fig. 11: An example of an application defined in TOSCA.

From the information provided by the user, the entire
application graph is mapped into TOSCA and finally, a Docker
Compose YAML file (see Figure 11 and Figure 12) is created.

C. Creation of TOSCA in the SIDE Workbench

Once the components are on the canvas, a corresponding
TOSCA representation is generated by the system. The user
can at any time check the TOSCA values to see what the actual
composition of the application is. The components are defined
as node templates. The properties denoted by the nodes are
mirrored in the TOSCA definition.

In general each component has a fairly simple represen-
tation in TOSCA. An example can be seen in Figure 11.

The ”SET ITS VALUE” text means that the user must fill
out this information. The definitions of the types are removed
for brevity. Other parts of the system, such as networks and
volumes can be defined in a similar manner.

TOSCA is the exchange format within all SWITCH sub-
systems. It is the information that is sent from SIDE to DRIP
and from DRIP to ASAP so that other services can perform
their tasks. In order to simplify some of the parsing necessary
SIDE provides additional endpoints that enable the component
to read this information in a simplified manner.

D. Deploying using DRIP

Once the user is satisfied with the composition of the
application (s)he can start the second phase, facilitated by
DRIP. There are several functionalities that DRIP can provide:

1) Infrastructure Planning: The first of these steps is the
infrastructure planning. This step looks at the components in
the TOSCA and, based on the requirements and their internal
testing, determines what kind of VMs are needed for the
system.

2) Infrastructure Provisioning: The second part of this is
provisioning, which takes the output of the planner and uses
it to provision the appropriate VMs in the cloud. The planner
needs the cloud credentials that are given by the user via SIDE
to do its work. These credentials are stored inside DRIP.

Fig. 12: An example of a component in Docker Compose.

3) Deploying the cluster: Once all the VMs have been
provisioned the first part of deployment takes place. Essen-
tially this sets up a SWARM7 cluster on the created VMs.
SWARM is a group of VMs that can run Docker containers
and it allows transparent deployment of containers that might
include replicas of services. SWARM provides certain recovery
options, so that the system can recover if necessary. SWARM
allows some interesting simplifications, such as the ability to
access the ports opened by an application via the master node,
thus simplifying the usage of the system.

4) Docker Compose: In order to deploy to SWARM the
system needs a Docker Compose file. This is parsed from the
TOSCA file created by SIDE. The Docker Compose is similar
to the TOSCA but somewhat simpler, as it only deals with

7https://docs.docker.com/engine/swarm/

containers. Most of the data is a one-to-one transformation of
the TOSCA YAML as seen in Figure 12.

After this the application deployment is assumed to be
finished and the application is running and accessible on a
specific IP address.

VI. CONCLUSION

In this paper we have presented a complete overview of the
SIDE Workbench in its current iteration. It allows the user to
create an application, define the infrastructure the application
will use, and start the application. The core of the workbench
is the canvas that enables component creation and composition
and deployment of the application. SIDE is designed in a
manner that allows it to be very flexible. If the need for more
resources arises, new nodes can be created in a relatively short
amount of time, but there is still some room for standardization
of how the system works allowing for an even greater level of
flexibility. The SIDE Workbench is a flexible system which,
at this point, relies on other systems to provide most of the
functionality. Separation of concerns has been achieved, in that
the exchange format, OASIS TOSCA, is an industry standard,
and so SIDE could potentially be modified to work with other
services and provide different capabilities for the system. The
SIDE approach is therefore a robust way of specifying cloud
applications that is still viable even if changes arise in the way
applications are developed and something replaces the current
technology of Docker containers.

There are many lessons that can be learned from the SIDE
Workbench. However, one of the most important ones is that
creating complex systems based on graphical interfaces quickly
becomes unwieldy, necessitating the ability to partition the
application into additional subsystems.

As mentioned, the SIDE Workbench provides a base that
can be used to develop further systems in a similar vein. The
connection of components is a powerful concept that can be
further developed not only in the field of Microservices or
Multi-Tier applications, but also in other aspects of application
creation, such as creating Internet of Things (IoT) applications,
functional programming and so on.

Another advantage of SIDE is that it is an inherently top-
down system, allowing the creation of components on a larger
scale and only then digging down into the details of the system;
this is intended to be seen as an intuitive approach. From
an industry perspective SIDE could be enhanced so that the
system is more fully decoupled from the other systems. In
this way the development can take a more robust approach to
changing the system so that it can work with arbitrary systems
using TOSCA. This sounds trivial, but would require a creation
of a metalanguage to describe how and with which systems
SIDE should communicate.

For the more immediate goals the validation functionality
of the system is currently only at a basic level. Further work
is needed to validate the applications and the connections
between the components, so that communication between
components can be even more flexible. Secondly integrated
DevOps approaches need to be explored further and compared
to the automatic planning and adaptation currently supported
by the SWITCH system.

ACKNOWLEDGMENT

The research reported in this paper was funded by the
European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 643963 (SWITCH project).

REFERENCES

[1] Z. Zhao, A. Taal, A. Jones, I. Taylor, V. Stankovski, I. G. Vega, F. J.
Hidalgo, G. Suciu, A. Ulisses, P. Ferreira, and C. d. Laat, “A software
workbench for interactive, time critical and highly self-adaptive cloud
applications (switch),” in 2015 15th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing, May 2015, pp. 1181–1184.

[2] “Oasis topology and orchestration specification for cloud applications
version 1.0,” November 2013. [Online]. Available: http://docs.
oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf

[3] A. Brogi, J. Soldani, and P. Wang, TOSCA in a Nutshell: Promises
and Perspectives. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 171–186. [Online]. Available: https://doi.org/10.1007/
978-3-662-44879-3 13

[4] M. Carlson, M. Chapman, A. Heneveld, S. Hinkelman, D. Johnston-
Watt, A. Karmarkar, T. Kunze, A. Malhotra, J. Mischkinsky,
A. Otto, V. Pandey, G. Pilz, Z. Song, and P. Yendluri,
“Cloud Application Management for Platforms,” December 2012.
[Online]. Available: https://www.oasis-open.org/committees/download.
php/47278/CAMP-v1.0.pdf

[5] Amazon Web Services, “AWS Cloud Formation documentation,”
December 2017. [Online]. Available: https://aws.amazon.com/
cloudformation/

[6] OpenStack, “OpenStack Documentation,” December 2017. [Online].
Available: https://www.openstack.org/

[7] ——, “Heat - OpenStack Orchestartion,” December 2017. [Online].
Available: https://wiki.openstack.org/wiki/Heat

[8] WSBPEL TC., “Web services business process execution language
version 2.0,” December 2017. [Online]. Available: http://docs.
oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

[9] OpsCode Inc., “Chef Documentation - Overview,” December 2017.
[Online]. Available: https://docs.chef.io/chef overview.html

[10] G. Katsaros, M. Menzel, A. Lenk, J. R. Revelant, R. Skipp, and J. Eber-
hardt, “Cloud application portability with tosca, chef and openstack,”
in 2014 IEEE International Conference on Cloud Engineering, March
2014, pp. 295–302.

[11] Object Management Group, “UML Profile for MARTE: Modeling
and Analysis of Real-Time Embedded Systems,” June 2011. [Online].
Available: http://www.omg.org/spec/MARTE/1.1/

[12] SysML.org, “SysML Open Source Specification Project - What is
SysML?” December 2017. [Online]. Available: http://sysml.org/

[13] ATOS, “Alien4Cloud 1.1 overview,” December
2017. [Online]. Available: https://drive.google.com/file/d/
0B-bJgbmOz4ipNlNfYkdsOUlocm8/view

[14] Apache Foundation, “AriaTOSCA,” December 2017. [Online].
Available: http://incubator.apache.org/projects/ariatosca.html

[15] CELAR, “CELAR cloud project,” December 2017. [Online]. Available:
http://www.celarcloudproject.eu/

[16] Cloudify, “What is Cloudify - Documentation,” December 2017.
[Online]. Available: http://cloudify.co/

[17] Github Dicer project, “DICER project,” December 2017. [Online].
Available: https://github.com/dice-project/DICER

[18] Open TOSCA, “OpenTOSCA goes Docker Compose,” December
2017. [Online]. Available: http://www.opentosca.org/

[19] Ubicity, “TOSCA Validator,” December 2017. [Online]. Available:
https://ubicity.com/index.html

[20] ——, “TOSCA Types,” December 2017. [Online]. Available: https:
//ubicity.com/types.html

[21] ——, “TOSCA Validator,” December 2017. [Online]. Available:
https://ubicity.com/validator.html

[22] Eclipse, “Eclipse Winery,” December 2017. [Online]. Available:
https://projects.eclipse.org/projects/soa.winery

[23] y. Uwe Breitenbücher and Tobias Binz and Oliver Kopp and Frank Ley-
mann and David Schumm, booktitle=OTM Conferences, “Vino4tosca:
A visual notation for application topologies based on tosca.”

[24] K. Baxley, J. D. la Rosa, and M. Wenning, “Deploying
workloads with juju and maas in ubuntu 14.04 lts,” May 2014.
[Online]. Available: https://linux.dell.com/files/whitepapers/Deploying
Workloads With Juju And MAAS-14.04LTS-Edition.pdf

[25] Fabric8, “Fabric8 documentation,” December 2016. [Online]. Available:
http://fabric8.io/guide/overview.html

[26] Z. Zhao, P. Martin, J. Wang, A. Taal, A. Jones, I. Taylor, V. Stankovski,
I. G. Vega, G. Suciu, A. Ulisses, and C. de Laat, “Developing and
operating time critical applications in clouds: The state of the art and the
switch approach,” Procedia Computer Science, vol. 68, no. Supplement
C, pp. 17 – 28, 2015, 1st International Conference on Cloud Forward:
From Distributed to Complete Computing. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050915030653

[27] J. Wang, A. Taal, P. Martin, Y. Hu, H. Zhou, J. Pang, C. de Laat,
and Z. Zhao, “Planning virtual infrastructures for time critical
applications with multiple deadline constraints,” Future Generation
Computer Systems, vol. 75, no. Supplement C, pp. 365 – 375, 2017.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0167739X17301905

[28] H. Zhou, Y. Hu, J. Wang, P. Martin, C. D. Laat, and Z. Zhao, “Fast and
dynamic resource provisioning for quality critical cloud applications,”
in 2016 IEEE 19th International Symposium on Real-Time Distributed
Computing (ISORC), May 2016, pp. 92–99.

[29] D. Trihinas, G. Pallis, and M. D. Dikaiakos, “Jcatascopia: Monitoring
elastically adaptive applications in the cloud,” in 2014 14th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, May
2014, pp. 226–235.

[30] P. Štefanič, M. Cigale, A. Jones, and V. Stankovski, “Quality of
service models for microservices and their integration into the switch
ide,” in 2017 IEEE 2nd International Workshops on Foundations and
Applications of Self* Systems (FAS*W), Sept 2017, pp. 215–218.

http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
https://doi.org/10.1007/978-3-662-44879-3_13
https://doi.org/10.1007/978-3-662-44879-3_13
https://www.oasis-open.org/committees/download.php/47278/CAMP-v1.0.pdf
https://www.oasis-open.org/committees/download.php/47278/CAMP-v1.0.pdf
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://www.openstack.org/
https://wiki.openstack.org/wiki/Heat
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
https://docs.chef.io/chef_overview.html
http://www.omg.org/spec/MARTE/1.1/
http://sysml.org/
https://drive.google.com/file/d/0B-bJgbmOz4ipNlNfYkdsOUlocm8/view
https://drive.google.com/file/d/0B-bJgbmOz4ipNlNfYkdsOUlocm8/view
http://incubator.apache.org/projects/ariatosca.html
http://www.celarcloudproject.eu/
http://cloudify.co/
https://github.com/dice-project/DICER
http://www.opentosca.org/
https://ubicity.com/index.html
https://ubicity.com/types.html
https://ubicity.com/types.html
https://ubicity.com/validator.html
https://projects.eclipse.org/projects/soa.winery
https://linux.dell.com/files/whitepapers/Deploying_Workloads_With_Juju_And_MAAS-14.04LTS-Edition.pdf
https://linux.dell.com/files/whitepapers/Deploying_Workloads_With_Juju_And_MAAS-14.04LTS-Edition.pdf
http://fabric8.io/guide/overview.html
http://www.sciencedirect.com/science/article/pii/S1877050915030653
http://www.sciencedirect.com/science/article/pii/S0167739X17301905
http://www.sciencedirect.com/science/article/pii/S0167739X17301905

	Introduction
	Related work
	Orchestration-based specifications, languages and libraries
	Known TOSCA implementations
	Tools that do not implement TOSCA
	Summary

	The SWITCH concept
	SWITCH Interactive Development Environment subsystem
	Workbench
	Collaborative management
	Formal reasoner/verifier

	Dynamic Real-time Infrastructure Planner subsystem
	Infrastructure planner
	Infrastructure provisioner
	Automatic deployment

	Autonomous System Adaptation Platform subsystem
	Monitoring system
	Alarm trigger and Self-adapter

	Component-based infrastructure
	Supporting nodes
	Modelling the component

	SIDE Workbench
	Connecting the pieces
	Example of creating a containerized Three-tier application
	Creation of TOSCA in the SIDE Workbench
	Deploying using DRIP
	Infrastructure Planning
	Infrastructure Provisioning
	Deploying the cluster
	Docker Compose

	Conclusion
	References

