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Abstract
This thesis sets out a practical guide to applying shear measurements as a cosmological tool.

We first present one of two science-ready galaxy shape catalogues from Year 1 of the Dark Energy
Survey (DES Y1), which covers 1500 square degrees in four bands griz, with a median redshift
of 0.59. We describe the shape measurement process implemented by the DES Y1 IM3SHAPE cat-
alogue, which contains 21.9 million high-quality r-band bulge/disc fits. In Chapter 3 a new suite
of image simulations, referred to as HOOPOE, are presented. The HOOPOE dataset is tailored
to DES Y1 and includes realistic blending, spatial masks and variation in the point spread func-
tion. We derive shear corrections, which we show are robust to changes in calibration method,
galaxy binning and variance within the simulated dataset. Sources of systematic uncertainty in the
simulation-based shear calibration are discussed, leading to a final estimate of the 1σ uncertainties
in the residual multiplicative bias after calibration of 0.025.

Chapter 4 describes an extension of the analysis on the HOOPOE simulations into a detailed
investigation of the impact of galaxy neighbours on shape measurement and shear cosmology. Four
mechanisms by which neighbours can have a non-negligible influence on shear measurement are
identified. These effects, if ignored, would contribute a net multiplicative bias of m ∼ 0.03− 0.09
in DES Y1, though the precise impact will depend on both the measurement code and the selection
cuts applied. We use the cosmological inference pipeline of DES Y1 to explore the cosmological
implications of neighbour bias and show that omitting blending from the calibration simulation for
DES Y1 would bias the inferred clustering amplitude S8 ≡ σ8(Ωm/0.3)0.5 by 1.5σ towards low
values. Finally, we use the HOOPOE simulations to test the effect of neighbour-induced spatial
correlations in the multiplicative bias. We find the cosmological impact to be subdominant to
statistical error at the current level of precision.

Another major uncertainity in shear cosmology is the accuracy of our ensemble redshift dis-
tributions. Chapter 5 presents a numerical investigation into the combined constraining power of
cosmic shear, galaxy clustering and their cross-correlation in DES Y1, and the potential for internal
calibration of redshift errors. Introducing a moderate uniform bias into the redshift distributions
used to model the weak lensing (WL) galaxies is shown to produce a > 2σ bias in S8. We demon-
strate that this cosmological bias can be eliminated by marginalising over redshift error nuisance
parameters. Strikingly, the cosmological constraint of the combined dataset is largely undimin-
ished by the loss of prior information on the WL distributions. We demonstrate that this implicit
self-calibration is the result of complementary degeneracy directions in the combined data.

In Chapter 6 we present the preliminary results of an investigation into galaxy intrinsic align-
ments. Using the DES Y1 data, we show a clear dependence in alignment amplitude on galaxy
type, in agreement with previous results. We subject these findings to a series of initial robustness
tests. We conclude with a short overview of the work presented, and discuss prospects for the
future.

5



Declaration
I declare that no portion of the work referred to in the thesis has been submitted in support of an
application for another degree or qualification of this or any other university or other institute of
learning;

This thesis is the result of my own work, unless otherwise stated. Chapter 3 was carried out in
collaboration with Joseph Zuntz, and Erin Sheldon, and coordinated by Michael Troxel and Daniel
Gruen as part of the Year 1 Dark Energy Survey Weak Lensing analysis group. Chapter 4 was
also carried out within DES Y1, with input from our internal reviewers, Tomasz Kacprzak, Gary
Bernstein and Eric Huff. The simulations and shape catalogues used in both of these chapters were
built using computer resources at the National Center for Science and Energy Research (NERSC),
which is maintained by the United States Department of Energy. The analysis for Chapter 5 was
performed in collaboration with Michael Troxel and Sarah Bridle.

Parts of this thesis have been published in refereed journals:

• Samuroff S., Troxel M. A., Bridle S. L., Zuntz J., MacCrann N., Krause E., Eifler T., Kirk
D., 2017, MNRAS, 465, L20

• Jarvis M. et al, 2016 MNRAS 460 p.2245-228, arXiv:1507.05603

The analyses presented in Chapters 3 and 4 have passed the Dark Energy Survey internal review
process, and have been submitted for publication as:

• Samuroff S., Bridle S. L., Zuntz J., Gruen D. et al, 2017, MNRAS, arXiv:1708.01534

• Zuntz J., Sheldon E., Samuroff S., Troxel M.A, Gruen D. et al, 2017, MNRAS, arXiv:1708.01533

6



Intellectual Property and Copyright
I furthermore make the following declarations, with regards to ownership of copyright and intel-
lectual property rights:

1. The author of this thesis (including any appendices and/or schedules to this thesis) owns
certain copyright or related rights in it (the “Copyright”) and s/he has given The University
of Manchester certain rights to use such Copyright, including for administrative purposes.

2. Copies of this thesis, either in full or in extracts and whether in hard or electronic copy,
may be made only in accordance with the Copyright, Designs and Patents Act 1988 (as
amended) and regulations issued under it or, where appropriate, in accordance with licensing
agreements which the University has from time to time. This page must form part of any
such copies made.

3. The ownership of certain Copyright, patents, designs, trademarks and other intellectual prop-
erty (the “Intellectual Property”) and any reproductions of copyright works in the thesis, for
example graphs and tables (“Reproductions”), which may be described in this thesis, may
not be owned by the author and may be owned by third parties. Such Intellectual Property
and Reproductions cannot and must not be made available for use without the prior written
permission of the owner(s) of the relevant Intellectual Property and/or Reproductions.

4. Further information on the conditions under which disclosure, publication and commercial-
isation of this thesis, the Copyright and any Intellectual Property and/or Reproductions de-
scribed in it may take place is available in the University IP Policy (see
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=2442 0), in any relevant Thesis
restriction declarations deposited in the University Library, The University Library’s regu-
lations (see http://www.library.manchester.ac.uk/about/regulations/) and in The University’s
policy on Presentation of Theses

7



Acknowledgements
First and foremost my thanks go to Sarah Bridle, for everything. Sarah, you introduced me to a

world of which I knew almost nothing a handful of years ago. Thoughtful and unfailingly patient
in the face of ignorant questions, you taught me how to think about science. You could always see
the bigger picture. I will miss our long talks.

I’d also like to thank Joe Zuntz and Michael Troxel, friends and mentors both. You made
Manchester an exciting place to work in the early days of my PhD. Joe, you have a better instinct
for shape measurement than I will ever have. Thanks for your understanding through the years.
And to Troxel, for your support and insight.

Many others are deserving of thanks for guidance and interesting thoughts over the three short
years of my PhD. To Donnacha Kirk, my predecessor, thanks for your immense patience. I wish
you the best of luck in the real world. I am grateful to my various colleagues within the Dark
Energy Survey, particularly to Tim Eifler, Niall MacCrann, Elisabeth Krause, Benjamin Joachimi,
Jonathan Blazek and the rest of the Multi Probe Cosmology group. Standing on the shoulders of
giants doesn’t quite cover it.

Amongst other weak lensers Gary Bernstein, Tomek Kacprzak and Eric Huff are deserving of
thanks for agreeing to review our shear measurement paper, and for their various insights on the
subject in general.

It would be remiss if I failed to mention our group co-ordinators Daniel Gruen and Troxel
(again), for making the Weak Lensing Working Group such a pleasant place to work. I would also
like to thank my examiners, Richard Battye and David Bacon, for an interesting discussion and for
finding my various typos.

My colleagues at Manchester also more than warrant a few words here. Thanks to Jack, my
fellow cosmologist-in-training and office mate, and to Nicolas for being there to offer a friendly eye
over everything. Thank you also to Richard Rollins - for helping to make Y1 IM3SHAPE happen.

And through everything, I am indebted to Eileen, Stephen and Alice Samuroff. For sane con-
versation about anything from politics to books to physics to bees. For listening to me witter. And
for so much more besides. It means more that I can say.

8



“It is a capital mistake to theorise before one has data.
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Chapter 1

The Basic Principles of Cosmology

It has often been said that we have entered an era of precision cosmology. It is a statement which
has preceded so many discussions on topics as disparate as the cosmic microwave background,
strong lensing modelling and spectroscopy. All too often it is shorthand for an ideal – sunlit up-
lands always just over the horizon, which we might reach were we only to find a solution to this
systematic or that. If usage of the term has acquired a vaguely Damoclean edge, there is good rea-
son for this. Cosmology is now dominated by large collaborations involving sometimes hundreds
of people across the world, and sophisticated software, in a way it has never been before. We must
trust that each part of the web is functioning (and improving) as it should do. No longer the reserve
of the eccentric polymath aristocrat or the clergyman, cosmology has become a community, as
reliant on trust as any other.

But the phrase implies something more than this: “precision” implies a measurement. Whereas
other fields of science could, from the mid to early Twentieth Century, begin to claim startling ac-
curacy in the predictive power of their theories, those who think about the cosmos professionally
have typically been limited to doing just that. Throughout most of the Twentieth Century, mea-
surements on the scale needed to test our theories about the Universe were unimaginable. Beyond
our tiny solar system, the Universe was a handful of blurry dots on the sky.

Nonetheless, the rate of progress cosmology has made over just a handful of decades has been
remarkable. At the end of the Nineteenth Century, before Einstein and Hubble had made their
impact, we had no reason to suspect the Universe was expanding and no real concept of its scale.
A hundred years later, our understanding had been reshaped and it was simply a matter of time
before we had built the observational machinery left to fill in the blanks. Now, just seventeen years
after that, the cosmological community has reduced the Universe into a few relatively well known

10



Chapter 1. The Basic Principles of Cosmology 11

numerical parameters. We have a predictive standard model for the entirity of the cosmos, and we
can measure its parameters to a few percent.

This model is built on the theoretical foundations laid by Friedmann, Einstein and many others.
Beyond the framework, there are free parameters that cannot be deduced a priori, and observations
have played a significant role in shaping the model. The confirmation of gravitational lensing by
Dyson et al. (1920), the discovery of a cosmic microwave background (Penzias, 1965) and the more
recent discovery that the late-time expansion is accelerating (Perlmutter et al., 1998) are just a few
notable examples of this. In addition, our model relies on a set of basic assumptions, primarily that
gravity is well described by Einstein’s General Relativity (GR) on all (macroscopic) scales, and
that the Universe in isotropic and homogenous on the largest scales (the Cosmological Principle).

In this introductory chapter we aim to furnish the reader with some basic concepts that underpin
the research presented in the rest of this thesis. We first provide an outline of the formalism for
the standard model, or the ΛCDM Universe. The following paragraphs set out how an isotropic
universe is expected to evolve under this theory, and chart a brief history of our own Universe, as
it is understood today. This established, we will then consider the observational tools that have
been developed to measure it. Since weak lensing is the focus of the bulk of this thesis, we will
focus particularly on this area and its most recent developments. We aim to provide a qualitiative
overview in this chapter. For detail about the practicalities and formalism of lensing we refer the
reader to Chapter 2.

1.1 The Standard Model of Cosmology

The following paragraphs introduces the analytical framework and components of ΛCDM. We
draw on a number of more comprehensive reviews, to which we refer the reader for more detail
(Peacock, 1999; Bartelmann & Schneider, 2001; Dodelson, 2003; Ryden, 2003; Weinberg et al.,
2013; Kilbinger, 2015).

1.1.1 Framework and Parameterisation

The Friedmann Lemaı̂tre Robertson Walker Universe

The Standard Model is built around GR, which is in essence a formalism for describing a system
acting under its own gravity. It makes no specific assumptions about where the mass originates, or
how much of it there is. Let’s start by defining a spatial coordinate system that is stationary relative
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to the large-scale motion of the Universe; we will refer to this as the comoving coordinate system.
Ideal measurements within this frame are said to be taken by fundamental observers. Assuming the
Universe is homogeneous and isotropic throughout its evolution, one can map position coordinates
in a fixed local observation frame d onto the those in the comoving system χ via a time-dependent
scale factor a(t):

d(χ, t) = a(t)χ. (1.1)

The instantaneous radial distance between any two points, as defined in the local frame, d is
referred to as the physical distance. The normalisation of the scale factor is arbitrary, and typically
it is defined such that the value today is a0 = 1. In GR space-time separations between events
are described by a metric. Specifically in the homogenous isotropic case one has the Friedmann
Lemaı̂tre Robertson Walker (FLRW) metric:

ds2 = c2dt2 − a2(t)
[
dχ2 + S2

K(χ)
(
dθ2 + dφ2 sin2 (θ)

)]
. (1.2)

Here, (dχ,dθ,dφ) define a spatial increment in comoving spherical polar coordinates. The exact
fuctional form of SK(χ), which is a distance measure oriented transverse to the line of sight,
is dependent on the background curvature of the Universe. One can parameterise the geometry
of the 4D surface with a curvature parameter K, which can have three values, corresponding to
flat (Euclidean) space (K = 0), positive curvature (K > 0) and negative curvature (K < 0)1.
Specifically it has the form:

SK(χ) =





1√
K

sinh
(√

Kχ
)

K > 0

χ K = 0
1√
|K|

sin
(√
|K|χ

)
K < 0.

(1.3)

If one enforces the FLRW metric, Einstein’s field equations simplify to two independent expres-
sions (Friedman, 1922), which describe the time evolution of the scale factor in terms of the co-
moving energy density ρ(t)c2 and pressure p(t) of an ideal fluid:

1The distiction between the two type of of non-zero curvature can be a little bit difficult to visualise. To build a
simple picture, imagine a point with a pair of orthogonal lines crossing through it, defining a surface. In the simplest
case they’re straight - the surface is flat and can be extended infinitely by making the lines longer. Now picture
both lines being bent in the same direction at the edges (upwards or downwards), forming a curve with a peak at the
crossing point; The area of the surface can no longer be expanded infinitely, since at some point the lines will meet;
that is called positive curvature. Next imagine one line is curled upwards at both ends and the other downwards. The
resulting surface can no longer be closed but instead has a saddle-shaped form. This is called negative curvature.
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(
ȧ(t)

a(t)

)2

=
8πG

3c2
ρ(t)c2 − Kc2

a2(t)
, (1.4)

and

(
ä(t)

a(t)

)
= −4πG

3c2

[
ρ(t)c2 + 3p(t)

]
. (1.5)

The dot is used here in the normal sense, indicating a time derivative, and G and c are Newton’s
constant and the speed of light in a vacuum, which are fundamental constants. This fluid is simply
a mathematical description of the large scale mass components of the Universe, and the formalism
set out here are an entirely general consequence of gravity. GR does not distinguish between
different types of fluid, provided that the pressure and density are equivalent. For this we must
build a phenomenological model to fit our Universe, as discussed in Section 1.1.2.

Though it is not required by the above equations, we will assume the Universe is expanding
(and so a was less that unity in the past, and will be larger in the future). This is indeed what
current evidence implies, a point we will return to later in this chapter.

Cosmological Redshift and Distance Measures

A photon travelling large distances across the Universe will be subject to cosmological redshift
effects. The basic principle here is simple and relatively intuitive. First, because it sits within
an expanding universe any source of photons will be receding from any observer at the point of
emission, and so the emitted light will be redshifted. Second, space is continuously expanding
while the photon is in transit; for any arbitrary increment along its path, its original position will
be receding from its destination. For a photon following a null-geodesic, equation 1.2 reduces to
a simple expression for the comoving distance travelled between emission and observation times,
tem and tobs:

χ = c

∫ tobs

tem

1

a(t)
dt. (1.6)

In the extreme tem → 0, this gives an upper limit on the scale of causal connection. The corre-
sponding physical distance is the horizon distance, dhor. For tem > 0, assuming the scale factor is
constant between emission of one wavecrest and the next and setting tobs = t0, one can derive the
expression,
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a(z) =
1

(1 + z)
. (1.7)

This relates the cosmological redshift z and the scale factor at the time of emission, a. On a
practical level this allows a source’s redshift to be used as an observable proxy for cosmic distance
(or time). Assuming negligible peculiar velocity, it directly translates into recession speed due to
expansion, v = cz.

Using equation (1.1), the physical distance of an object is related to its recession speed:

v =

(
ȧ(z)

a(z)

)
d(z) = H(z)× d(z). (1.8)

The Hubble parameter, H(z) ≡ ȧ(z)/a(z), describes the expansion rate at z. In the local Universe
the Hubble parameter is approximately constant, H ' H0, leading to a rough proportionality
between z and d. For convenience it is very common to use the dimensionless form h = H0/100

kms−1Mpc−1.
Finally, we introduce the concept of a standard measure in cosmology, which can be used

to constrain slightly different distance quantities. The underlying concept is this: if one knows
a priori some intrinsic property of an object, and understands how observations of that property
should change per unit of depth between us and it, then it should be possible to infer its distance.
Primarily these objects can be classified either as standard candles or as standard rulers, which
repectively yield luminosity distances and angular diameter distances.

To understand this imagine that we observe two point sources with an angular separation on
the sky θ, which are known to have a physical separation R. We can make a distance estimate
using simple trigonometry as DA(χ) = R/θ. We can also see by examination of equation 1.3 that
the length of an arc between the two points at equal distance is given by R = a(z)SK(χ)θ. Basic
algebra then gives us:

DA(χ) = (1 + z)−1SK(χ). (1.9)

The argument with regard to standard candles follows similar lines. Let’s say we measure a
small patch of sky and find it has a flux f , and we know that the source of photons has an inherent
luminosity L. Defining an arbitrary shell around the source, clearly the measured flux will diminish
as the size of the shell expands, which gives us a new distance estimate DL(χ) = (L/4πf)

1
2 . Flux

measurements in an expanding universe are affected both by cosmological redshift, and the fact
that at each instant when a photon reaches an imaginary shell at r, the background expansion of
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the Universe makes the shell’s surface area incrementally larger. Both effects contribute a factor
of (1 + z) dilution in flux, f = L(4πS2

K(χ))−1(1 + z)−2. One can surmise that the luminosity
distance should be:

DL(χ) = (1 + z)SK(χ) (1.10)

with SK(χ) defined in the previous section. These quantities, cosmological redshift, angular di-
ameter distance and luminosity distance are the three basic distance metrics in the field of obser-
vational cosmology. With these simple observables in hand, we now turn to the question of what
the Universe actually contains.

1.1.2 Components

The basic ΛCDM Universe contains three density components: radiation, matter and dark energy.
The matter constituent ρm can be further decomposed into what we loosely call baryons (the im-
mediately observable stuff of people, planets and stars; clearly this includes electrons, but for our
purposes they contribute no mass, and can be safely ignored) and cold dark matter (the other mass
we infer must exist, but which neither emits nor absorbs photons). On cosmological scales (& 100

Mpc) each of these is well approximated as a continuous ideal fluid, which is governed by a linear
equation of state relating the pressure p and energy density ρc2. The generalised equation of state
has the form,

pX = wXρXc
2, (1.11)

with the subscriptX denoting the component and a dimensionless parameter of statewX. Applying
equation 1.4 and 1.5, the redshift evolution can be derived as,

ρX(z) = ρX,0 × (1 + z)3(1+wX), (1.12)

where ρX,0 = ρX(z = 0) is the present-day mean density of component X . From this expression
one obtains the scaling relations in Table 1.1. As the dark energy equation of state parameter is the
only one of these that is not known from first principles, it is common to drop the subscript and
refer to it simply as w. We will do the same from here onwards. Finally, equation 1.5 can be cast
in a convenient form:

H(z) = H0

[
Ωm(1 + z)−3 + Ωr(1 + z)−4 + ΩK(1 + z)−2 + fde(z)Ωde

] 1
2 , (1.13)
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Component ΩX wX Evolution
Radiation ∼10−4 1/3 (1 + z)4

Baryonic Matter 0.049 0 (1 + z)3

Cold Dark Matter 0.264 0 (1 + z)3

Dark Energy 0.683 ∼ −1 ?

Table 1.1: Properties of the ΛCDM energy density components in the present-day Universe. The
density parameter is defined in units of the current critical density. The equation of state parameters
w are as defined above. Values credited to Planck Collaboration (2015a). The redshift dependence
in each component are shown in the right-hand column

whereH(t) is defined by equation 1.8, and fde is a dimensionless function describing the evolution
of dark energy. For ΛCDM one has fde(z) = fde,0 = 1. In a general dark energy model that allows
for w to be time dependent, fde(z) = exp

[
3
∫ z

0
(1 + w(z′))/(1 + z′)dz′

]
(Bartelmann, 2010). The

density parameter ΩX is the present-day density of component X in units of the critical density,

ρc(t) = 3H2(t)/8πG. (1.14)

The latter is defined as the threshold density, below which a universe with no dark energy expands
forever. Many observable probes are sensitive to physical rather than comoving densities, which
mean it is often convenient to cast the density parameter in a form that depends on the expansion
rate, ΩXh

2.
The expansion is initially driven by radiation, with the Universe gradually evolving through

matter and finally dark energy dominated eras. Setting t = t0, equation 1.13 yields 1 − ΩK =

Ωm +Ωr +Ωde ≡ Ω0. Ω0 is an historically important, if now less favoured cosmological parameter.
Ω0 > 1 implies a spatially finite closed universe, which will recollapse. Ω0 < 1 indicates an infinite
open universe, which will expand forever. Ω0 = 1 implies an infinite, perpetually expanding
universe with flat geometry.

Radiation

The term radiation includes all highly relativistic particles, into which category photons by defini-
tion must fall. The photonic energy-density is dominated by the Cosmic Microwave Background
(CMB), which behaves to good approximation as a black body at TCMB = 2.726 K and is smooth
in temperature to 1 part in 104.

Radiation exerts non-negligible pressure, p = ρrc
2/3, giving an equation of state, wr = 1/3.
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The energy density evolves as (1 + z)4 due to a combined effect of the expansion of space, which
dilutes the energy density of a bundle of photons, and cosmological redshift.

Baryons

In a cosmological context, the term baryons refers collectively to all forms of mass that emits
or absorbs photons. Protons and neutrons naturally dominate the gravity of this component due
to the instability of other hadrons and the comparatively low mass of the electron. Even in the
present day the bulk of baryonic mass resides in light nuclides formed in nucleosynthesis. Though
small quanitities of heavier elements do emerge on small scales, in terms of mass these are entirely
insignificant.

It is also true that on smaller scales electromagnetic interactions facilitate radiative cooling and
sometimes violent feedback effects. Though gravitationally subdominant it is thus possible for
baryons to have observable effects on the cosmological mass distribution. At late times baryons
are typically non relativistic and pressureless, giving wb = 0.

The current best estimate for the mean baryon density from Black Body Nucleosynthesis
(BBN; see Section 1.1.4) is Ωbh

2 = 0.021 ± 0.002 (Kirkman et al., 2003), which is consistent
with early-time predictions from the CMB (see Section 1.1.4 for a brief discussion of how this is
measured).

One longstanding question is thus posed by observations of the X-ray luminous intra-cluster
gas and the Inter-Galactic Medium (IGM), which seem to be able to account for at most ∼ 60% of
this. The discrepancy is known as the missing baryons problem.

A partial answer has been provided in recent years by spectroscopic studies (e.g. Gupta et al.
2012) which imply suggest a large amount of mass may reside in large-scale diffuse halos and
filaments, expelled from galaxies by feedback effects. Such matter is too hot for observation at
sub X-ray energies but of sufficiently low density to avoid detection of thermal emission at current
detector sensitivities.

Dark Matter

As alluded to above, dark matter is a phenomenological term to describe that mass component
which must be present but which cannot be accounted for by baryons. Extensive observational
evidence has now made the case for a dominant non-luminous mass component very difficult to
dispute. The first hint came in the form of a study of the Coma cluster (Zwicky, 1937), which
suggested tension between mass estimates derived from X-ray temperature and velocity dispersion
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Figure 1.1: Composite multi-
wavelength image of the Bullet
Cluster, often cited as a signa-
ture of dark matter. The colours
indicate the plasma tempera-
ture, as inferred using X-ray
observations from the Chandra
satellite. The overlain contours
show the mass profile of the
stucture, as reconstructed us-
ing the weak lensing of back-
ground galaxies in HST data.
Image credits: Clowe et al.
(2007).

measurements. Archives of galaxy rotation curve data compiled over the past century (Rubin et al.,
1978) similarly imply an extended but invisible halo of mass within which the luminous matter of a
galaxy resides. More recent imaging of the merging Bullet cluster, shown in Figure 1.1, in optical
(i.e. lensing) and X-ray (temperature) provide yet another instance of a cluster scale object with
apparently non-identical mass and light distributions (Clowe et al., 2007).

Inferring that an unseen mass constituent exists and understanding what it is, however, are two
quite different things. Various models have been empirically ruled out, but there is currently no
single favoured understanding of dark matter at the microscopic level. For example, the idea that
dim baryonic matter (white dwarfs and primordial black holes) can account for the excess mass has
been tested and found wanting on all spatial scales; local microlensing studies find no significant
dark baryon constituent in galaxy halos (Wambsganss, 2005). On cluster scales, the amplitude of
the SZ signal is inconsistent with a dominant baryonic mass contribution (Grego et al., 2001; Myers
et al., 2004; Carr et al., 2016). On cosmological scales, the CMB spectrum implies Ωb � 1 (and
simultaneously Ωm∼ 0.315). Hot dark matter models, in which neutrinos make up the dominant
mass are likewise disfavoured by large scale structure, which is smoothed out by free streaming
particles.

Though we are yet to find a suitable particle candidate, that does not mean that we cannot pre-
dict how dark matter should behave on large scales. The Cold Dark Matter in ΛCDM is described
as pressureless fluid, defined by wCDM = 0.

It is finally worth noting that here have been attempts to explain the observational signatures
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of dark matter using alternative theories of gravity (see Milgrom 1983 or Verlinde 2016 for a more
recent attempt). These theories have had some success in reproducing flat galaxy rotation curves,
but are notably unable to match other strands of evidence. For at least the present time they are
considered rather a fringe activity, and the majority of cosmologists now accept the GR + CDM
paradigm.

Dark Energy

One startling discovery, which came at the turn of the Twentieth Century, and for which Riess et al.
(1998) and Perlmutter et al. (1998) shared a 2011 Nobel prize, was that the late time Universe is not
only expanding, but accelerating. In terms of our simple fluid model, this requires an additional
(now dominant) component with negative pressure, p = −ρdec

2. By equation 1.11, one finds an
equation of state parameter w = −1. Though there is no physical reason it must be, Occam’s
Razor leads us to include the simplest possible parameterisation, giving us a time-independent
unseen energy component in ΛCDM called dark energy.

If the Universe is understood to hold a finite quantity of dark matter, baryons and radiation
the density of these components is gradually diluted as it expands. If the fourth component Ωde is
held constant, then dark energy eventually becomes the dominant term in the equation 1.13 and
gives rise to accelerated expansion at late times. Various models have sought to introduce evolving
dark matter; we will not discuss such theories in detail, but merely note that there is currently no
strong evidence to support the added complexity. Many modified gravity theories have also sought
to explain accelerated expansion without dark energy through perturbations to GR on particular
scales, though again it is not our intention here to review these in detail.

The most widely favoured parameterisation for dark energy, introduced by Chevallier & Po-
larski (2001) uses a series expansion of w(a) with two free parameters:

w(a) = w0 + wa(1− a). (1.15)

The first evidence for Ωde 6= 0 came from the lightcurves of distance Type Ia supernova (SNIa; see
Section 1.2.5). Further evidence is provided by a combination of other measurements. CMB and
BAO data suggest an approximately flat universe (ΩK = 0), while lensing and the CMB indepen-
dently imply Ωm∼ 0.3 and a radiation component ∼ 10−4. To reconcile these two observations
requires the additional component, Ωde' 0.7. Though there has been much speculation about
future measurements, contemporary observations have proved consistent with wa = 0 to within
∼ 1σ. A number of planned and ongoing cosmological surveys, including the Dark Energy Sur-
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vey and the Kilo Degree Survey, were designed with the express purpose of shedding light on this
question.

1.1.3 The Cosmic Web & Our Place in the Universe

In the above paragraphs we have set out the ingredients from which the Universe is formed and the
rules they should follow. Now, with the paint and canvas these provide, we have two options open
to us, should we wish to visualise a particular epoch of the Universe. We could simulate a set of
initial conditions, and wind our model forwards numerically until we reach the point of interest.
Alternatively, we could train our telescopes on a patch of sky, and use redshift measurements
to isolate a slice along the line of sight at approximately the desired epoch. Neither approach
is without its limitations; they do, however, paint a remarkably consistent picture, of which we
provide a brief outline below.

All current observations point to the conclusion that the large scale Universe is very different
from the world around us, both in content and in structure. Indeed, the local Universe is highly
stuctured – if it were not, neither you nor this thesis would exist. On scales of∼ 100 Mpc, however,
the mass is dominated by dark matter, with only a small fraction accounted for by baryons (matter
that absorbs or emits photons and is thus directly visible), mostly in the form of diffuse clouds of
cold hydrogen gas. On these scales the Universe is homogenous and isotropic, but not uniform.
That is, though the mass density fluctuates spatially, the statistical properties of those fluctuations
appears the same along any arbitrary line of sight and from any random point within its volume.
This basic idea, that there is no favoured position in the Universe, is known as the cosmological

principle.
Neither does this statement imply constancy in time. Look back into the distant Universe, and

the amplitude of the fluctuations is smaller than it is today. The large scale mass field is seen
to be evolving, with dark matter and baryons accreting gradually onto the peaks in density. The
result is a uniformly distributed set of concentrated dark matter cores, known as halos. These
structures are still growing, merging and making the Universe ever more clustered. Inevitably, as
matter clumps and falls inwards the regions between and around the overdensities form underdense
patches, which we call voids. Separating these largest of structures one finds diffuse filaments of
dark matter. The net result is a web-like structure of startling intricacy. We show an example of
the cosmic web at four epochs, as recreated using the Millennium simulation in Figure 1.2.

As one moves down in scale, within the largest of halos one finds sub-halos, upon which
the surrounding matter collapses to form local peaks. Eventually we reach a scale where the
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Figure 1.2: Four snapshots of a patch in theN -body Millennium Simulations presented by Springel
et al. (2005). Each represents a 15h−1 Mpc slice of the simulated universe centred on redshifts of
(upper left, upper right, lower left, lower right) 18.3, 5.7, 1.4 and 0.0. The white bar marks a
comoving transverse length of 125h−1 Mpc. The colour indicates the mass density of dark matter,
increasing from blue-black to yellow.

infalling matter becomes hot enough for star formation to begin. It is here that galaxies form; first
about the central mass kernel of the halo, forming a massive object often known as the brightest
cluster galaxy (BCG), and then about sub-halos. In this picture, then, today’s Universe is strongly
hierarchical. Each galaxy forms within its dark matter halo, which in turn is embedded in a larger
halo, host to a cluster of similar objects bound by its gravitational potential.

1.1.4 Chronology

The starting point (t = 0, z = ∞) of the Standard Model is the Big Bang. The Universe evolves
from a singular point, and proceeds according to gravity. Though it evolves through a series of
different phases, in which different energy density constituents dominate its dynamics, the basic
axioms of causality and conservation of mass are at all times respected. The current best estimate
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for the age of the Universe is ∼ 13.8 Gyr (Planck Collaboration 2015a).

Inflation (t < 10−32 s)

A period of early rapid expansion, an idea now known as inflation, was theorised in the latter
part of the Twentieth Century in response to a number of observations that would be difficult
to explain otherwise without fine-tuning the initial conditions. That is, it allows observed late-
time properties to evolve from a Gaussian-random mass distribution in the early Universe without
reverse engineering (see e.g. Ryden 2003; Dodelson 2003). Specifically, it provides a natural
explanation for the apparent flatness of the late-time Universe, and uniformity of the CMB.

Nucleosynthesis (3 min < t < 20 min)

In the hot dense conditions immediately after inflation, a process known as Big Bang Nucleosyn-
thesis ensues. It is this process that generates first stable light nuclides.

At this very early point in the history of the Universe free protons p constitute the only form of
baryonic mass. The average pressure is sufficient for inverse β-decay, which generates an equilib-
rium population of neutrons:

p+ ν̄e 
 n+ e+, (1.16)

p+ e+ 
 n+ νe. (1.17)

As equations (1.16) and (1.17) involve interaction between leptons and hadrons they occur only
as weak interactions. When the Universe expands to become sufficiently cool, neutrinos decouple
from baryons and the neutron/proton ratio becomes fixed. Synthesis of deuterium from p−n fusion
then competes with the decay of free n. Initially after neutrino freeze-out the mean photon energy
is sufficient to ensure immediate photo-disintegration of heavier isotopes. As the probability of
fusion directly to elements beyond hydrogen is negligible, this produces a blocking effect called
the deuterium bottleneck. The nn/np ratio at the end of this delay and thus the relative yields of
BBN elements from subsequent fusion are dependent on the total baryon density. Baryons in well-
separated islands of relict primordial gas provide our best direct probe of the cosmological baryon
density Ωbh

2. Current best estimates come from high redshift quasars viewed through intervening
gas. Current observations indicate 75% H and 24% 4He by mass, with the additional 1% made
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up by 3He, 7Be and 7Li, and small quantities of heavier nuclei derived from stellar fusion at later
times.

The Linear Growth of Structure

The matter distribution in the very early Universe is not completely smooth; rather it contains inho-
mogeneities, corresponding to quantum fluctuations, which are magnified by a period of inflation.
Most commonly these fluctuations are assumed to be Gaussian random. In general it is useful to
describe a local comoving density relative to a spatial average:

δ(χ, a) =
ρm(χ, a)− ρ̄m(a)

ρ̄m(a)
. (1.18)

Here ρm(χ) is the density of matter evaluated at a specific comoving position and the bar represents
averaging over all space. In reality the overdensity is a continuous field, with a value at any
arbitrary position. Discussing the evolution of “an overdensity”, then, requires some explanation.
It is often convenient to deconstruct δ into a set of discrete Fourier modes, each with a characteristic
scale, λi. In the following, the singular is used in this sense, referring to a particular mode rather
than a point-position evaluation of the total field.

At early times matter clumps of high density will grow steadily under their own gravity. While
they are small (δ � 1), they evolve linearly with time, a process known as linear growth. Un-
der these conditions one can use the Newtonian fluid equations to derive an evolution equation
(Peacock, 1999; Ryden, 2003; Dodelson, 2003),

δ̈ + 2Hδ̇ − 4πGρ̄mδ = 0. (1.19)

The solutions to this second-order differential equation govern the time evolution of structure in
the linear regime. Given the dependence on H(t) and ρ̄m, the exact solutions at a given time are
dependent on the relative densities of the different mass constituents. In physical terms, the last
part corresponds to the effect of self-gravity, while the middle term codifies the opposing effect of
background expansion (called Hubble drag). At early times the gravitational term is dominant and
overdensity perturbations will grow spontaneously.

One interesting feature of equation 1.19 is that it involves no spatial derivatives or position-
dependent coefficients, meaning that overdensities are stationary in the comoving frame. That is,
the landscape of large scale structure is fixed early on; though peaks and troughs get deeper they
do not spontaneously shift around under gravity. One can thus relate an observed overdensity at a
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later time δ(χ) to the primordial overdensity from which it evolved δp via a position independent
growth factor D(a):

δ(χ, a) = D(a)δp(χ). (1.20)

Early in its history (t < 0.75 Myr), the Universe is sufficiently compact that its dynamics are
dominated by radiation (photons and neutrinos) (ρ̄r ∝ a−4). In this regime baryons are coupled to
photons via Thomson scattering. Since the cold dark matter interacts with the other components
only through gravity, it is simply dragged along with the radiation as it evolves. Under these
conditions, density perturbations on scales larger than the horizon grow2 as D(a) ∝ a2. For
overdensities on scales smaller than the horizon, however, the picture is somewhat different. Since
information has time to cross the overdensity’s full scale, radiation exerts its own outward pressure,
which opposes gravitational collapse. This gives rise to acoustic oscillations in the baryon-photon
fluid, and the growth of sub-horizon overdensities is suppressed. Note that the horizon also grows
over time, and so the suppression scale is continuously expanding during this period. We show a
toy model of an evolving overdensity with time and scale factor in Figure 1.3.

Eventually the radiation density will be diluted by expansion to a sufficient extent that (dark)
matter becomes dominant. At the point of matter-radiation equality (ρ̄r = ρ̄m) radiation pressure
is no longer a dominant factor and the constraint on sub-horizon growth is lifted. This state of
the Universe is well approximated by what is known as Einstein de Sitter cosmology (Ωde =

0,ΩK = 0,Ωm = 1). Pressureless dark matter drives growth on all scales, evolving as D(a) ∝
a. Unfortunately it is not always possible to come up with an analytic forms for D(a) in all
cosmologies. At late times particularly the simple matter dominated paradigm no longer holds and
the exact evolution must be solved numerically. Until a handful of years ago fast fitting formulae
based on simulations were routinely used (see e.g. Carroll et al. 1992). In more recent years
advances in computing speeds and increasing requirements on accuracy, driven by larger data
volumes from new surveys, have seen these become increasingly less common.

As the Universe continues to expand, the mass density ρ̄m(a) is gradually diluted by the extra
volume to the point where photoionisation is not instantaneous. Recombination occurs over ∼ 105

yr, and the Universe eventually becomes to become transparent to photons at the time of decou-

pling. It is possible to define a shell about an observer called the last scattering surface, such that
photons emitted at that surface during recombination are arriving at the observer’s position at the

2This is possible because all points within an overdensity do not need to be in causal contact with all others in
order for it to grow. In a physical frame, a volume element’s expansion rate is dependent on its local energy-density.
Overdense volume elements thus expand at a lower rate than those at ρ̄m.
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Figure 1.3: Left: Evolution of an overdensity mode of given scale λ as the Universe expands. In
the radiation dominated era peaks in density are quadratic in the scale factor until λ is contained
by the expanding horizon scale. After this point radiation pressure suppresses further increase in
overdensity. After matter-radiation equality (Ωma

−3 = Ωra
−4; shown by the vertical dashed line)

growth can again proceed, and does so linearly with a. Right: Evolution of the scale factor with
time. The coloured bands show epochs in which (left to right) radiation, matter and dark energy
are the dominant terms in equation 1.13. The hatched section on the far right indicates times
beyond the present day. The line was generated numerically using equation 1.13, assuming a flat
ΛCDM universe (Ωm = 0.315,Ωde = 0.7,Ωr = 10−5).

time of obervation t0. The photons liberated at this point persist in Universe today as the CMB.
The process of decoupling removes radiation pressure as a factor in the behaviour of matter, which
has the effect of freezing a set of acoustic oscillations into the large scale mass distribution. The
resulting imprinted waves, which also persist today, are called baryon acoustic oscillations (BAO).
This same pattern of compressions and rarefactions map onto the CMB temperature.

After decoupling, the baryonic matter is allowed to collapse into the potential wells of the dark
matter. It accrues and heats, begins to trigger star formation, and eventually leads to radiative
cooling, allowing galaxies and then galaxy clusters to emerge within the most massive clumps
of dark matter. This early star formation generates an ultraviolet background, which heats and
reionises the gas. In turn, a fraction of CMB photons are re-scattered by newly unbound electrons.
Under ΛCDM, large scale structure develops gradually through an upwards hierarchical process of
clustering and merging of halos3.

3The reverse process, in which the largest structures form and then fragment, is referred to as top-down structure
formation. This model was popular for a while in the 1980s, and there was some political weight behind the argument.
Gradually, however, it became clear that the hot dark matter models that would be needed to generate such a paradigm
were disfavoured by observations.
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Nonlinear Structure Formation

On the smallest scales local gravitational effects from inhomogeneities become significant. As
structure grows and the Universe becomes less uniform, the spatial scale of these effects expands
with time. Within this regime, the assumption that density perturbations are small (δ � 1) is no
longer reasonable and the linear approximation breaks down. Unfortunately, the complex nonlin-
ear interactions on these scales cannot be trivially predicted. N-body simulations are commonly
required in lieu of analytic predictions to keep track of growth in these regimes. The scale and
resolution of a given simulation must be finite, and generating a sizeable volume of mock Universe
is unavoidably expensive in computing power. Currently the largest N-body simulations are DEUS
and Millennium (see Springel et al. 2005; Alimi et al. 2012; Angulo & Pontzen 2016).

A few basic approximations, however, allow qualitatively correct analytic results, and are thus
still useful to consider. A common example, known as the Zel’dovich approximation (Zel’dovich,
1970) simply assumes linear growth extends down to palpably nonlinear scales. The key prediction
of this approach is that a perturbation in density will collapse in turn along each of its three axes. A
spatial overdensity will tend gradually into a flat 2D disc, then reduce into an extended snake-like
structure before finally collapsing into a compact core. In reality, of course, collapse does not elim-
inate each dimension fully, and one actually finds diffuse filaments and halos. The approximate
picture, however, is consistent with numerical simulations and large scale observations.

The Dark Energy Dominated Universe (t > 9.5 Gyr)

At late times the Friedmann equation becomes dominated by Ωde. The drag term in equation (1.19)
then approaches a constant while the gravitational contribution declines as a−3. The Universe
eventually enters a period of exponential expansion a(t) = exp[2H0Ω

1/2
de (t − t0)]. Under these

conditions the linear approximation yields

δ(χ, a) = A(χ) exp
[
−2H0Ω

1/2
de (t− t0)

]
+B(χ), (1.21)

where A and B are time-independent integration constants. During this epoch, growth is frozen
out and expansion smooths each point in δ(χ) towards an asymptotic value.
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1.1.5 The Matter Power Spectrum

The isotropic matter power spectrum is defined as

(2π)3δD(k − k′)Pδ(k) ≡
〈
δ̃(k)δ̃∗(k′)

〉
, (1.22)

where δ̃(k) is an overdensity Fourier mode with wavenumber k ∝ λ−1
i . The brackets signify

averaging over many realisations of the Universe. Assuming δ(χ) is Gaussian, the field is fully
characterised by P (k). The power spectrum is a fundamental statistica in cosmology and has a
simple physical interpretation. The random field of mass density fluctuations at a fixed time in the
history of the Universe can be thought of as a set of Fourier modes, or superposed set of standing
waves of different wavelengths. Each k mode in the matter power spectrum corresponds to a sine
wave with a particular angular frequency, and the power P (k) corresponds to the square of the
amplitude of that wave.

It is commonly assumed that the power spectrum of density perturbations immediately after
inflation, Pδ,p(k), follows a power law with an index ns' 1. This linear primordial shape is called
the Harrison Zel’dovich Peebles spectrum. More generally, one can write,

Pδ(k, a) = AsT (k, a)kns , (1.23)

whereAs is the amplitude of Pδ,p and T (k, a) is the transfer function, describing later modifications
to the power spectrum. Before matter-radiation equality, only Fourier modes with λi > dhor grow.
This defines a threshold ksup above which growth is suppressed. As dhor expands, ksup shifts
downwards, and larger overdensities are gradually allowed to begin growing. This evolution is
shown in Figure 1.4. By the time of equality, differential growth has produced the characteristic
shape seen in Figure 1.4. The position of the peak is frozen at this time, ksup(aeq) = k0, and
subsequent growth distributes power evenly across all k modes. The matter power spectrum today
has the approximate form (Bartelmann & Schneider, 2001),

P (k) ∝
{
k k < k0

k−3 k > k0

. (1.24)

In addition to those described above, T (k, a) encodes several other effects. First, BAO imprint a
sinusoidal pattern at k ∼ k0. The signal is weakened by subsequent growth, distorted by baryon
infall and exponentially damped at high k by residual photon-baryon interactions after recombi-
nation. Second, massive neutrinos alter large-scale structure. This is entirely consistent with the
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subdominance of neutrinos as the massive constituent of dark matter, since they can have measur-
able impact on cold dark matter clumps by free-streaming away at the point the Universe becomes
too diffuse for spontaneous inverse beta decay. Finally, nonlinear growth systematically increases
power at high k.
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Figure 1.4: Schematic diagram of the evolution of the linear matter power spectrum. The upper
arrow denotes the shift in the position of the turning point. The axes are logarithmic.

Power spectra for several cosmologies are shown in Figure 1.5. The shape of Pδ(k) depends
on the primordial spectrum and the peak position indicates dhor at equality, making it sensitive to
Ωmh. The amplitude of the linear spectrum at a redshift of zero is set by a normalisation parameter
σ8, which by convention is defined as the root mean square (rms) of overdensity fluctuations,
averaged in spheres of comoving radius 8h−1 Mpc. This is a key physical parameter describing
the large scale clustering of the late-time Universe, and can be measured directly by any dataset
which is sensitive to Pδ(k). In some models an additional parameter dns/dk, the so-called running
of the power spectrum, allows scale-dependence in the power law index. Theory does not make
ab initio predictions of the values of As,σ8, ns, dns/dk beyond ruling out unphysical regions of
parameter space. Thus, they must be treated as free parameters in our model of the Universe, to be
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Figure 1.5: Numerical predictions of the linear matter power spectum under various cosmologies
at fixed redshift z = 0. In each panel we perturb one of the relevant cosmological parameters about
fiducial values. We show the sensitivity to variations in (clockwise from top left) σ8, the primordial
index ns, the dark energy equation of state w0 and the dimensionless Hubble parameter h. Note
that σ8 is a derived quantity, in the sense that it is defined by the matter power spectrum today, and
its value is wholly determined by the other parameters. In this case we fix As and ns, and rescale
the late-time spectrum to the appropriate σ8. For the other parameters the initial amplitude As is
fixed, and σ8 is allowed to change.
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constrained by observation. The way in which changes in the linear fluctuation amplitude σ8 affect
Pδ(k) is strongly degenerate with variations in the background average mass density Ωm, and it is
thus common to define best-constrained combinations for particular observational probes (e.g. S8

in cosmic shear).
Much literature has been devoted to the subject of accurate calculation of T (k, a). The precise

solution for a given cosmology requires the Boltzmann time evolution equations to be integrated
numerically. Widely used public codes such as CAMB4 and CLASS5 have been developed for
this. As computer-power has become more readily available, this approach is increasingly com-
mon. A number of fast fitting-formulae have, however, been developed for tasks with limited time,
computing resources or less stringent requirements on accuracy. The basis of this approach is to
construct analytic expressions, which are calibrated with N-body simulations. Increasingly sophis-
ticated versions which factor in massive neutrinos (Bond & Efstathiou, 1987; Bardeen et al., 1986;
Pogosyan & Starobinsky, 1995; Eisenstein & Hu, 1999) and BAO effects (see Eisenstein & Hu
(1998)) have been released. These typically claim accuracy only to the level of ∼ 10%.

Calculation of the matter power spectrum typically begins with the linear Pδ for a required
cosmology, as a function of wavenumber and redshift. Whereas the transfer function T (k, a) is a
template for transforming the primordial power spectrum into the late-time linear power spectrum,
in reality the growth of structure does not proceed linearly on all scales. Boltzmann codes can
account rigorously for BAO and neutrinos; they do not naturally account for nonlinear growth.
The most common approach to this problem is an algorithm known as HALOFIT, which was first
presented in the early 2000s by Smith et al. (2003). Based on the halo model of structure formation,
it assumes that all matter at t0 is contained within dark matter halos. Late-time modifications to
Pδ(k) are decomposed into 1- and 2-halo terms, representing intra- and inter-halo interactions and
calibrated using simulations. Several improvements to halofit accounting for neutrino effects and
refinements in simulation resolution have been published (e.g. Takahashi et al. 2012), and are still
in common use today.

1.2 Observational Probes of the Universe

The following section will review the best tools available to the modern cosmologist, with a par-
ticular emphasis on gravitational lensing. We first set out a generic methodology for extracting

4camb.info
5class-code.net
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estimates of the underlying model parameters from observations of cosmological data. The fol-
lowing will lay out the basic principles of Bayesian inference, which has become almost ubiquitous
in modern cosmology. Note that this is not a discussion of philosophy; we are not concerned here
with whether Bayesian probability is the right way to think about the Universe, but rather with the
utility it provides.

With this generic description in hand, we will then consider a number of specific cosmological
observables. For each, theoretical sensitivities will be discussed alongside a short review of past
use and recent developments.

1.2.1 Bayesian Parameter Inference

As implied above, the standard methodology for cosmological inference is planted firmly in the
framework of Bayesian probability. To most cosmologists today, this is a useful way of thinking
and nothing more; there is, however, a self-consistent logic behind this framework, which is the
main reason it has been so widely adopted. We will not attempt to review this subject in detail here,
but rather outline the basic concepts used later in this thesis. For more comprehensive overviews
and discussion see Trotta (2017), Sivia & Skilling (2006), MacKay (2002).

The basic principle behind Bayesian statistics is a particular understanding of what probability
means in the physical sense. Under one common school of thought, the probability of a particular
result occurring is simply the fraction of times it will show up in the limit of infinitely many
repeated measurements. This makes complete sense in, for example, the context of a particle
physics experiment, where the measured quantity itself is stochastic. One can simply simulate the
experiment many times and measure, say, the number of decays that result in a particle A. It makes
less sense when one is considering hypothetical questions like “what is the probability of snow in
Stockholm on Friday?”. This way of thinking makes still less sense in the context of cosmological
parameters estimates. These are not inherently random variables, but fundamental quantities. We
have one Universe, and repetition of a perfectly accurate measurement will yield the same results
irrespective of how many times it is repeated.

The more intuitively correct way to think about probability in this context is as a statement
of an observer’s degree of confidence in a particular proposal. If we rephrase the earlier question
as a definite statement: “there is a one in four chance of snow in Stockholm on Friday”, the first
definition would compel us to consider many hypothetical universes, many Stockholms and many
configurations of the atoms in the atmosphere. Each universe is a measurement, and the probability
is the fraction of universes in which Stockholm sees snow on Friday. Under the Bayesian way of
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thinking there need only be one Stockholm, and the probability is just the observer’s way to codify
her confidence. A probability of 0.25 is simply a statement that there is enough information to
moderately disfavour the hypothesis of snow, given our current state of knowledge. This simple
idea is deceptively powerful, and motivates much of the framework of modern scientific enquiry.

In completely general terms imagine we have a proposition A and some background informa-
tion I. The latter encodes everything we know about the Universe, the laws of physics etc. The
statement of equivalence p(A, I) = p(I, A) is then trivially correct. By basic logic we can write
the statement

p(I)p(A|I) = p(A)p(I|A). (1.25)

This is the most generic form of Bayes’ theorem, and underpins much of what follows.
Assume next we have a generic observation (perhaps a two-point correlation function of shear,

measured as a function of angular scale), which we will call D, and is just a column vector of scalar
numbers. In general an observation is selected according to the cosmological parameters θ =

(θ1, θ2...θm) it is sensitive to (under some assumed cosmological model), and also the instrument
and type of data available. Given a particular set of parameter values, the model M should be fully
predictive of the expected data. Without loss of generality, the aim is then to obtain a conditional
probability distribution of θ, given the data and the model. Using Bayes’ theorem,

P (θ|D,M) =
L(D|θ,M)p(θ|M)

p(D|M)
. (1.26)

The prior, p(θ|M), encodes restrictions on the regions of parameter space θ is allowed to oc-
cupy, either based on previous observation or on physical arguments. The denominator, p(D|M),
is referred to as the evidence. Since it is independent of position in parameter space, it does not
affect the shape of the posterior distribution P (θ|D,M) and can thus be safely ignored in stan-
dard cosmological analyses. It is, however, useful for model comparison (i.e. deciding whether a
particular dataset fits better with one cosmological model or another). The first term, L(D|θ,M),
is called the likelihood and represents the probability of observing data D for a specific set θ val-
ues. It is generally determined by comparing D with the prediction given by M , y. In most cases
measurement errors are assumed to be Gaussian random6, giving:

6If there are multiple error contributions from different sources this is generally a safe assumption by virtue of
Central Limit Theorem. Irrespective of the shape of the individual error distributions, if there are enough of them then
their sum will tend towards a Gaussian.
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L(D|θ,M) =
1

(2π)m/2 |C|1/2
exp

[
−1

2
(D− y(θ,M))T C−1 (D− y(θ,M))

]
, (1.27)

where C is the data covariance matrix. This can be written in a simpler form:

− 2 lnL = χ2 = RTC−1R, (1.28)

where we have rewritten the residual difference between data and theory as R ≡ D−y. In practice
C can be a very large matrix, and its computation and inversion is often extremely slow (see
Section 2.2.5) Once the covariance has been obtained, parameter estimation is then simply a case
of repeatedly evaluating equations (1.26) and (1.27) using different trial θ.

For calculations involving few parameters, P (θ|D,M) can be evaluated on a grid in parameter
space. For high dimensionality, other techniques such as Markov Chain Monte Carlo (MCMC),
Importance sampling and adaptive MultiNest or Population Monte Carlo techniques become com-
putationally more efficient. The number of cosmological analyses based partly or entirely on
Bayesian statistics has multiplied in the past decade (see, for example Lewis & Bridle 2002; Wraith
et al. 2009; Kilbinger et al. 2011; Feroz et al. 2009). Several widely-used packages implementing
these techniques, such as EMCEE7 and COSMOMC8, are available. Each have relative merits and
should be chosen according to the dataset size and the parameter space dimensions.

In most cases a confidence region in multidimensional parameter space is more useful than a
point statistic such as the maximum likelihood. In practice, however, it is inevitable that a signif-
icant fraction of θ will be made up of relevant unknown but uninteresting parameters, describing
astrophyical or measurement systematics. It is therefore very common to contract the parameter
space using a process called marginalisation. To understand this, consider a simple cosmological
experiment, which tells us about two parameters. One of these is the target of the measurement
a1, but the second a2 is uninteresting (say an instrumental systematic). If the two parameters are
completely independent we can simply discount a2, but in general a1 and a2 might be degenerate,
which means we can only map out a joint distribution p(a1, a2). We can pick a point on the y
axis and take a 1D slice, but that can only give us a conditional distribution p(a1|a2), predicated
on somehow knowing a2 with absolute certainty9. If we really don’t care about a2, and wish to

7dan.iel.fm/emcee
8cosmologist.info/cosmomc
9If this were the case, via external datasets or some other means, the proper way to incorporate this knowledge

would be in the prior.
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stop thinking about it at this point, we can simply sum over the probability of all the alternative
a2 values at any given a1. This effectively compresses the parameter space into the dimension of
interest:

p(a1) =

∫ ∞

−∞
p(a1, a2)da2, (1.29)

leaving a 1D probability distribution for a1. Since a2 is no longer a factor here, and we have
accounted for all of the values it could possibly take, we say we have marginalised it.

1.2.2 Cosmic Shear

A standard and well tested prediction of GR is that a concentration of mass will distort the space-
time around it, and thus produce a curious phenomenon called gravitational lensing. The most ob-
vious manifestation is about massive galaxy clusters, where background galaxies can be elongated
into cresent-shaped arcs. A subtler, but potentially more powerful, consequence of gravitational
lensing is that background fluctuations in the density of dark matter induce coherent distortions to
a photon’s path. This effect is known as cosmic shear, and it was first detected by four groups at
around the same time close to two decades ago (Bacon et al., 2000; Van Waerbeke et al., 2000;
Kaiser, 2000; Wittman et al., 2000).

Figure 1.6: Graphic illustration of the concept
of cosmic shear. Photons emitted from galax-
ies embedded in the cosmic web of dark matter
(shown in red) are continuously deflected as they
pass through the surrounding large scale struc-
ture. Image credits: Stephane Coulombi (IAP).

Cosmic shear is potentially one of the most powerful probes in modern cosmology. The spatial
correlations in galaxy shape due to lensing are a direct imprint of the large scale mass distribution
of the Universe. Thus they allow one to make inferences about the mass density and level of
structure in the low-redshift Universe or to map out the spatial distribution of dark matter on the
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sky. Unlike comparable probes it is theoretically very clean, responding directly to the power of
dark matter without complications due to our limited ability to model baryonic physics. The angle
through which a bundle of photons is deflected is determined by two factors: the geometry of
the lens-source system and power of the lens. The latter is very intuitive; a lens becomes more
powerful as the total mass enclosed by it (baryonic and dark) increases. As with its classical
analogue, the lens has most impact when positioned approximately mid-way between the observer
and the source. The standard approach in lensing cosmology, then, is to divide a line of sight into
a series of infinitely thin slices of mass, each defined by a surface density.

Though gravitational lensing both magnifies and shears (see the next chapter for more rigorous
definitions), it is the latter effect which is most useful for cosmology. In large part this is sim-
ply because it is the more accessible to the observer. If the orientation of the (unlensed) intrinsic
galaxy shapes is entirely random, then over a sufficiently large enough population they should av-
erage to zero. The cancellation will not be exact in practice, even without systematics, and the
numerical residual due to use of a finite number of galaxies is called shape noise. In principle,
however, this means that given a large enough sample with coherent gravitational shear, one can
isolate the cosmological signal by averaging galaxy ellipticities. This is not the case with mag-
nification, for which no convenient cancellation occurs. The basic observable unit in any lensing
based cosmology is, then, galaxy ellipticities.

Cosmological weak lensing is sensitive to the Hubble parameter, but unfortunately projecting
shear measurements into the sky plane mixes physical scales and reduces sensitivity to this pa-
rameter. Standard ruler measurements such as the CMB and BAO are more typically considered
as the primary geometric probes. The most powerfully constrained quantity is a combination of
the mean matter density and σ8, and exhibits a characteristic curved degeneracy, roughly given by
S8 ≡ σ8 (Ωm/0.3)α, where α ' 0.5. See Bartelmann & Schneider (2001); Munshi et al. (2008);
Massey et al. (2010); Hoekstra (2013); Kilbinger (2015) for extensive reviews of weak lensing
theory and methods.

The Dark Energy Survey (DES) is the largest of the current generation of lensing surveys
(known as “Stage III”, in the language of a seminal report commissioned by the US Department
of Energy from a group of scientists under the umbrella of the Dark Energy Task Force, Albrecht
et al. (2006)). Since the first detection of cosmic shear, the field has expanded rapidly. In just under
two decades we have gone from detection of weak lensing around clusters, to field measurements
using thousands of galaxies, to state-of-the-art lensing surveys containing tens of millions of high-
quality galaxy shape measurements. The group of early measurements, labelled retrospectively as
Stage I surveys, include VIRMOS-Descart (Van Waerbeke et al., 2005), CTIO (Jarvis et al., 2006),
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SDSS (Hirata et al., 2004) and COSMOS (Schrabback et al., 2007). These surveys were typically
limited to fields of 10s of square degrees, but they pioneered the first measurements of cosmic
shear. Stage II surveys included DLS (Jee et al., 2013), RCSLenS (Hildebrandt et al., 2016). The
first truly competative cosmology constraints with cosmic shear came from the Candada France
Hawaii Telescope Lensing Survey (CFHTLenS; Heymans et al. 2012), in a first non-tomographic
analysis by Kilbinger et al. (2013), and then a more complete study using shear measurements in
redshift bins by Heymans et al. (2013), who jointly fit for cosmology and multiple systematics.
These analyses used state-of-the-art shear measurement techniques, sophisticated photo-z codes
and non Gaussian covariance estimates, and set a benchmark for modern cosmic shear inference.
A few years later came the preliminary Science Verification (SV) results from DES (Jarvis et al.
2015, Dark Energy Survey Collaboration 2016), which followed much the same methodology with
comparable results.

We are now well into Stage III, which includes DES, KiDS and HSC (Aihara et al., 2017), all
designed with science programmes featuring prominent cosmic shear components. These surveys
are currently engaged in the task of collecting photometric images covering fields of 100s to 1000s
of square degrees. DES will eventually survey 5000 square degrees, and has currently completed
four out of its five (post-SV) seasons of data. To date the most advanced lensing-based cosmology
constraints from Stage III come from the analysis of the first year of KiDS data, which covers 450
degrees of the northern sky and is known as the KiDS-450 (Hildebrandt et al., 2016). The analysis
of the Year One DES results is also complete (Troxel et al., 2017), and has been submitted for
publication. The most recent published constraints from DES SV and KiDS are shown in Figure
1.7.

The next generation of surveys, known as Stage IV will provide a new paradigm for cosmology,
with unprecedented late-time constraints not only on the properties of dark matter, but also of dark
energy. These planned surveys are curently in the stages of commissioning or construction, and
include the satellites Euclid and WFIRST and large ground based experiments, LSST and SKA;
these are forecast to afford measurement of the dark energy equation of state to a precision of 1%.

In what has become one of the major questions in modern cosmology, there is a persistent
mild tension between the late-time constraints from lensing and those from the Comic Microwave
Background radiation, which probes a fixed epoch of around z∗. Specifically, both CFHTLenS and
KiDS report a best-fitting S8 ∼ 2.0 − 3.0σ lower than Planck. This is remarkable given the fact
that the two lensing datasets are entirely independent, as are the technical analysis pipelines. The
published DES results are agnostic, being consistent with both results, largely due to the relatively
low number densities afforded by the SV catalogues. The results of these two flagship cosmology
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Figure 1.7: A summary of the most recent cosmic shear based cosmology constraints at the time
of writing. The upper and lower panels show 1 and 2σ confidence countours under ΛCDM and
wCDM models of cosmology. The left and right-hand panels are the equivalent results from KiDS-
450 and DES SV cosmic shear two-point analyses of Hildebrandt et al. (2016) and Dark Energy
Survey Collaboration (2016), which are interim studies based on subsets of the final area of each
of these experiments.
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analyses can be seen in Figure 1.7, alongside the constraints from Planck.
The source of this tension has been the focus of much recent literature, particularly in light

of emerging tensions with other low-z probes. Reanalysis of the CFHTLenS data using various
conservative systematics models (Joudaki et al., 2017), for example, has been carried out, but
finds no convincing single systematic that can account for the disagreement. Choi et al. (2016)’s
spectroscopic cross-correlation measurements point to a systematic photo-z bias in CFHTLenS,
an idea supported by Kitching et al. (2016b), who claim that the data prefer a combination of
(unphysical) negative intrinsic alignment (IA) amplitude in combination with non-zero redshift
error.

Later work by Kitching et al. (2016a) asserts that the CFHTLenS tension can be alleviated
by higher order (beyond flat sky) extensions to the Limber equation. This claim is, however,
contended by Kilbinger et al. (2017), who undergo a comprehensive comparison of such extensions
and their expected cosmological impact.

More recently, reanalysis of the KiDS-450 data using an alternative Fourier space shear esti-
mator (Köhlinger et al., 2017) and lensing in combination with galaxy clustering measurements
from the GAMA survey (van Uitert et al., 2017) have produced results that are largely consistent
with the earlier findings of Hildebrandt et al. (2016).

This is by no means a comprehensive list of such studies, and there has been much discussion,
citing everything from redshift error to new physics as plausible explanations for the tension. The
current broad consensus is that, as a community, we have not yet ruled out all sources of system-
atics in one or both datasets, and that robustly doing so would be a necessary precursor to claims
about new physics.

1.2.3 Strong Lensing

Strong gravititational lensing is the name given to the distortion of galaxy images in regimes where
the weak limit no longer applies. Primarily used as a probe of cluster mass and substructure,
strong gravitational lensing is most apparent at intermediate-to-large radii around the most massive
structures in the Universe. In recent years, however, it has also been proposed that strong lensing
could have a contribution to make as a cosmological probe.

The cosmological power of strong lensing comes in the potential for cosmography (see Treu
2010). Most commonly this is exploited using time delays between images of a single background
source. If an observer can accurately measure the time delay between image arcs from a single
source carried along different geodesics around a massive foreground lens, she can infer the ratio
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Figure 1.8: An example of a strongly lensed galaxy cluster as imaged by the HST. The lower panel
shows a selection of quadrupole lenses identified as part of the H0LiCOW program (Suyu et al.,
2016).

of angular diameter distances within the lens equation. This provides a standard ruler measurement
equivalent to the BAO scale in large scale galaxy clustering. In cosmological terms it provides a
potentially valuable independent measure of H0. Specifically one measures a quantity called the
time delay distance:

D∆t(z) = (1 + zL)
DLDS

DLS

, (1.30)

where the subscripts denote quantities relating to the source and the lens and DL, DS and DLS are
angular diameter distances. The steps from identifying a strong lens to constraints on H0 follow
as: (a) measure the time delay using the light curve of a variable source with multiple images, (b)
predict what the ∆t should be under an assumed model for the lens mass distribution, for a given
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cosmology, (c) repeat multiple times to map out the likelihood of H0.
The power of strong lensing as a way to directly infer the local Hubble parameter was recog-

nised about midway through the Twentieth Century in an essay by the Norwegian astronomer Sjur
Refsdal (Refsdal, 1964). In practice, however, it has yet to realise this potential. The latest effort
is a project referred to as H0LiCOW (Suyu et al., 2016), which was launched with the stated aim
of measuring H0 to 1% precision using data from the Hubble Space Telescope (HST). A selection
of strong lenses identified in the Hubble Deep Field data can be seen in Figure 1.8. Using quasar
time delay distances from single lenses, the current best constraints are at just under 4% precision
(Wong et al., 2017; Bonvin et al., 2017).

Attempts to use strong lensing as a cosmological probe are currently limited on two fronts.
First, there are simply too few strong lenses in the current data of sufficient quality for time delay
measurements. This is likely to change in the near- to mid-term future: under some assumptions
about the distribution of strongly lensed sources at high z , DES is forecast to reveal 1300 such
objects over its lifetime. LSST and Euclid are expected to bring well over 10,000 new strong lens
measurements (Collett, 2015). The second limitation, which is less easily bypassed, comes from
theoretical uncertainties in the lens models (Treu & Marshall, 2016; Harvey et al., 2016). The
biases that can be introduced are currently poorly understood and are without definite mitigation
strategies.

1.2.4 Galaxy Clustering & Galaxy-Galaxy Lensing

One alternative to cosmic shear is to map out the positions of galaxies, under the assumption that
dark matter collapsing under its own gravity will drag visible matter along with it. Galaxies are
believed to form in the centres of dark matter halos, and so one would expect the density of galaxies
to trace out the underlying mass fluctuations. In general the correspondence is not exact, due to the
complications of late-time effects produced by the collapsing baryons (generically termed baryon

feedback). One can write a general relation between the power spectra of galaxies and dark matter
overdensities,

Pgg(k, z) = b2
gPδ(k, z), (1.31)

where we have defined (2π)3δD(k − k′)Pgg(k) ≡
〈
δg(k)δ∗g(k

′)
〉
, and δg is the overdensity of

galaxies, defined analagously to equation 1.18. The galaxy bias bg is actually the first term in a
series expansion of the galaxy overdensity δg. A single linear bias is commonly assumed to be
sufficient to describe observations on scales above ∼ 100 Mpc. In general, though, bg can be a
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function of both scale and redshift. If bg is known perfectly, galaxy clustering is a powerful probe
of cosmology; as things stand, however, cosmological constraints from clustering are significantly
degenerate with bg, and there are considerable gaps in our theorectical understanding of galaxy
bias. Clustering is, in general, more commonly considered as a complementary probe, most useful
when combined with other measurements.

We will consider four measurements based on mapping out galaxy positions which can be use-
ful, from a cosmological standpoint: baryon acoustic oscillations (BAO), redshift space distortions,
the broadband shape of the power spectrum and galaxy-galaxy lensing.

Shape of the Matter Power Spectrum

If one can successfully mitigate the uncertainty of galaxy bias galaxy density measurements pro-
vide a direct window onto the dark matter power spectrum, with a peak sensitivity determined
by the chosen galaxy sample. This sensitivity is completely analogous to the Limber equation in
cosmic shear (see the next chapter), but with the lensing efficiency kernels replaced with the raw
redshift distribution of galaxies. That, of course, brings information on all of the cosmological
parameters that enter Pδ (σ8, As, Ωm, ns and in principle the neutrino mass).

Baryon Acoustic Oscillations & Redshift Space Distortions

Instead of considering the information from the full power spectrum, one could instead choose to
focus on a range of scales where there are characteristic features of particular interest. Specifically,
the acoustic oscillations left at the time of matter-radiation equality leave a distinctive sinusoidal
pattern at intermediate k scales, which persists at late times.

The length scale associated with BAO rs thus provides a standard ruler measurement of ge-
ometry and expansion. Unlike supernovae, for example, which provide an unambiguous H0 mea-
surement, BAO probe a degenerate combination of H0rs, and thus require an independent measure
of rs in order to meaningfully constrain H0. One particularly interesting result to emerge from
galaxy clustering measurements in the past decade has been from the combination of BAO and
CMB data. Specifically, the combination of WMAP and SDSS (Aubourg et al., 2015) favours a
low H0, in tension of ∼ 2.5σ with more direct late-time measurements.

In addition to BAO, line-of-sight peculiar velocities also leave an imprint on the measured
distribution of galaxies, distorting distances deduced using equation (1.8). These effects are called
Redshift Space Distortions (RSD). On scales . 1h−1Mpc the peculiar velocities of galaxies are
dominated by random intracluster cluster motion, which tends to elongate apparent structure along
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the line-of-sight. Conversely, at distances & 10h−1 Mpc, cluster-scale objects have yet to become
virialised and gravitational collapse dominates motion. It is these distant measurements through
which RSD become a probe of structure formation.

The RSD datavector commonly incorporates cosmology directly, with each RSD measurement
using a sample at some mean redshift providing a single datapoint f(z)σ8, where the prefactor is
the logarithmic growth rate f(z) ≡ d lnD(a)/d ln a. (Percival et al., 2011).

Galaxy-Galaxy Lensing
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Figure 1.9: A recent example of the constraining power of galaxy-galaxy lensing, as measured
from DES SV. The filled blue contours indicate the constraints on cosmological parameters (left)
and galaxy bias (right) from galaxy-galaxy lensing combined with galaxy clustering. The left-
hand panel also shows the comparable confidence contours provided by cosmic shear alone and
the CMB. The solid and dashed lines in the right-hand panel indicate two sets of scale cuts, and
were used by the authors to locate the angular scale above which nonlinear bias could be neglected.
Figure credits: Kwan et al. (2017).

In the above we have discussed the use of galaxy clustering and cosmic shear correlations to
independently probe cosmology. The cross-correlation of the two, however, also contains infor-
mation beyond the sum of the two autocorrelations. This statistic, which correlates the positions
of forground “lenses” with the shapes of background “source” galaxies, probes the galaxy-mass
cross spectrum Pgδ(k). Though mapping either Pgδ(k) or Pgg(k) onto the matter power spectrum
is complicated by an unknown galaxy bias coefficient bg, they each relate to Pδ(k) in a slightly
different way. Thus the combination of galaxy clustering and galaxy-galaxy lensing can break the
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degeneracy between the power spectrum amplitude and bg. This ability does, however, in general
depend on the galaxy bias being linear (i.e. independent of k), which is not the case on small
scales. In general one has three options: (a) to cut the data sufficiently such that linear bias holds
to good approximation, (b) to explicitly model higher order bias terms (e.g. Kwan et al. 2017) or
(c) to devise a statistic which nulls or downweights small scales such that the bias can be treated
as linear (Baldauf et al., 2010).

Like galaxy clustering, galaxy-galaxy lensing in isolation is a rather weak probe of cosmol-
ogy due to uncertainty in galaxy bias. In combination with galaxy clustering, however, it starts to
become competitive as a cosmological probe (Mandelbaum et al., 2013; Kwan et al., 2017). We
show an example of the constraining power of such data in Figure 1.9, which illustrates the primary
value in constraining the linear bias coefficient. Indeed as part of the so-called 3x2pt combination
of late-time probes, alongside cosmic shear and galaxy clustering, it has the potential to internally
constrain lensing systematics as well as adding statistical constraining power. This was demon-
strated in principle by Eifler et al. (2014), Samuroff et al. (2017b) and Krause et al. (2017), and
more recently in practice by van Uitert et al. (2017) and DES Collaboration et al. (2017).

1.2.5 Supernovae & Supernova Lensing

A class of exploding star called the Type Ia supernova has been known for some time to produce
largely predictable light curves, and so act as a form of standard candle. Measurements of these
extreme astrophysical objects provide a direct measurement of the Hubble parameter at specific
redshifts through equation (1.8).

Generated by thermonuclear explosions in collapsing carbon-oxygen white dwarfs, every SNIa
should have a standard (or at least standardisable) duration and peak luminosity. The measurable
quantity is the distance modulus or the difference between the apparent and absolute magnitudes,
µ = mL−ML = 5 lnDL+25. The luminosity distance,DL, is sensitive to geometry and expansion
as,

DL(z) =





c(1+z)

H0
√

ΩK
sinh(

√
ΩK

c
H0χ) ΩK > 0

(1 + z)χ ΩK = 0

c(1+z)

H0

√
|ΩK|

sin(

√
|ΩK|
c

H0χ) ΩK < 0,

(1.32)

where χ = c
∫ z

0
H−1(z′)dz′ from equation 1.6. In the local Universe geometric effects are small

and DL is approximately linear with z, providing a direct measure of H0. At high z equation 1.32
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Figure 1.10: An example of the constraining power of type Ia Supernova. Joint constraints on dark
energy and dark matter from a joint analysis of low and high redshift supernovae from the SNLS
and SDSS datasets. Figure credits: Betoule et al. (2014)

can be fitted to constrain Ωm, Ωde, ΩK, w0 and wa. For general reviews of SNIa cosmology see
Goobar & Leibundgut (2011) and Weinberg et al. (2013).

In practice SNe are imperfect standard candles, exhibiting finite astrophycial scatter in ML.
Typically one will make corrections for systematics in the measured shape, colour and peak bright-
ness of the SN light curve. Interstellar reddening, z-evolution, time-dilation, and an observed re-
lation between luminosity and host galaxy mass must also be corrected or marginalised. Due to
limitions in the accuracy of theoretical models, SNIa luminosities must be calibrated using external
distance estimates. It is common to use variable stars with well-defined periodicities for this (see
e.g. Riess et al. (2009); Efstathiou (2014)).
In a discovery which was later awarded a Nobel prize, it was from SNIa lightcurves that Riess
et al. (1998) and Perlmutter et al. (1999) derived the first observational evidence for accelerated
late-time expansion of the Universe. They found a systematic increase in DL for given z relative
to predictions based on a flat matter dominated (Einstein de Sitter) universe. Their observations
implied a flat universe with Ωm= 0.3, Ωde= 0.7. Significant strides have been made in the size
and redshift range of SN catalogues in recent years, thanks in part to improved targetting of host
galaxies and new tailored surveys. For example, the Supernova Legacy Survey (SNLS; Guy et al.
2010) and Equation of State: Supernovae trace Cosmic Expansion (ESSENCE; Sollerman et al.
2006) have provided high-time resolution imaging of several hundred SNIa at z = 0.3 − 1.0.
Others such as the Carnegie Supernova Project (Freedman & Carnegie Supernova Project 2005)
have been useful in tracing the local (z < 0.1) part of the DL − z relation. In addition ∼ 400 low-
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to mid-redshift SNe have been detected by the SDSS-II SN Survey.
The most precise measurements of H0 and high-z (> 1) SNe currently come from space based

instruments. Given the narrow field-of-view, targeted searches of distant clusters greatly aid de-
tection efficiency. The total well-measured SNIa sample contains ∼ 700 objects, although the
number in the high-z regime useful for probing dark energy is still small. As has been noted
elsewhere, low-z uncertainties are dominated by flux calibration and poor understanding of astro-
physical systematics, while high-z measurements are currently noise-dominated due to the small
samples available.

As alluded to previously there has been some discussion of a mild tension between direct local
measurements ofH0 (e.g. using type Ia supernovae) and the early-time standard ruler measurement
of the CMB. This has also been noted in BAO-based studies, which provide an entirely independent
direct local H0 constraint.

The SN-CMB tension was highlighted in Riess et al. (2011) and is still present in more recent
work by the same authors. Riess et al. (2016) present aH0 = 73.24±1.74 km s−1Mpc−1 constraint
based upon the HST SHOES Survey, which is discrepant with the Planck-only best-fit by over 3σ.
Recent reanalysis by Efstathiou (2014) reduces but does not remove this disagreement.

Given the precision and direct nature of these measurements, it has become standard practice to
adopt their constraints as a prior on H0 in analyses based on other probes. Using high-z SNIa from
a range of surveys various attempts have been made to derive constraints on dark energy (Sullivan
et al., 2011; Suzuki et al., 2012; Betoule et al., 2014). With the Riess et al. (2016) prior on H0,
their results are consistent with flat ΛCDM. As shown in Figure 1.10, the parameter combination
probed by SNe alone exhibits some degeneracy between matter density and w0.

The same is true of the CMB, but the difference in degeneracies makes them complementary
cosmological probes. Joint analysis including CMB+BAO measurements from Planck and SDSS
alongside SNe, tightens constraints to w0 = −1.013+0.068

−0.073 (Betoule et al., 2014). Whereas the
Planck+BAO combination weakly favours w0 < −1 (see Figure 1.10), the addition of the SN data
appears to shift the joint fit back towards ΛCDM.

Though these authors make the attempt, the current data is insufficient to meaningfully con-
strain wa. As pointed out by these authors tomographic analysis, which may aid in this task, is
currently hindered the available SN sample size. This situation is unlikely to change at a stroke,
and clearly one cannot simply collect supernovae from a survey in anything close to the abun-
dances of galaxies involved in cosmic shear measurement. Larger survey volumes will, however,
bring more and deeper supernova samples. By the end of its lifetime, for example, the Dark Energy
Survey is projected to provide around 4000 Type Ia SNe (Bernstein et al., 2012).
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One final interesting point to note is that photons from distant supernovae will be lensed in
the same way as all other light as it propagates through the Universe. This can induce scatter in
the measured magnitudes of SNe, detectable either as a change in the moments of the magnitude
distribution, or else through the correlations it induces between supernovae. Such signals are in
principle detectable but, again, at present time of limited cosmological use due to the size of the
available SN samples (Quartin et al., 2014; Scovacricchi et al., 2017).

1.2.6 The Cosmic Microwave Background & CMB Lensing

Temperature fluctuations in the ambient cloud of photons that has pervaded the Universe since
the end of the radiation dominated era are a direct imprint of sound waves during that epoch
(see Section 1.1.4). On first approach the power spectrum of temperature fluctuations (of which
we show an example in Figure 1.11) is a rich source of cosmological information. The flat left-
hand region represents super-horizon scales at the time of recombination. As such, its amplitude
and gradient reflect the primordial matter power spectrum, (As, ns and potentially dns/dk). The
height of the primary peak above this plateau measures Ωmh

2. Its angular scale is sensitive to
the product of the angular diameter distance to the CMB last-scattering surface and H0. Via the
Hubble parameter H(z), it is also sensitive to the density parameters (Ωm,ΩK,Ωr,Ωde). These
features are all encoded in the CMB at early times and, assuming foregrounds and instrumental
systematics are properly accounted for, provide a window onto the era of radiation domination.

At late times the temperature spectrum is modified by interactions with foreground large scale
structure. In addition to being systematics, these alterations can provide useful information about
the late-time mass distribution. For example localised gravitational redshifting of the CMB (i.e.
the Sunyaev Zel’dovich effect) is commonly used as a method to identify massive galaxy clusters
(e.g. Carlstrom et al. 2002; Planck Collaboration 2015b). Lensing by large scale structure also has
a net smoothing effect on the CMB temperature fluctuations.

In recent years a number of novel approaches have been suggested for extracting information
from the CMB data. Since it passes through the same large scale structure as light from distant
galaxies, the CMB undergoes continuous cosmological shear, and so in principle probes the same
large scale structure, albeit with a lensing efficiency kernel g(z) which peaks at higher redshift (eg.
Planck Collaboration 2016, Kirk et al. 2016).

Though no cosmological observation can be guaranteed to be entirely systematics-free, the
widely divergent natures of both the probe and the measurement itself suggest that the systematics
entering cosmic shear and the CMB shoud be different and (hopefully) uncorrelated. A number of
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perature anisotropies, as obtained
from the Planck 2015 dataset. Error
bars show 68% confidence regions.
The blue points are each averaged
over ∼ 31 modes. The best-fitting
ΛCDM prediction is demarked by the
red line. Lower panel: Data-model
residuals, relative to the best fitting
ΛCDM case. Image credits: Planck
Collaboration (2015a).

studies have thus suggested using cross-correlations between the two to constrain systematics in
both the late and early time data (see e.g. Schaan et al. 2016, Harnois-Déraps et al. 2017)

The first detection of the CMB (Penzias 1965) was a serendipitious observation, suspected in
the first instance as having avian origin. In the decades that followed, however, CMB measure-
ments have become an observational mainstay of the standard ΛCDM model. The satellite-based
Cosmic Background Explorer (COBE; Bennett et al. 1996) made the first detection of the tempera-
ture anisotropy map at higher order than the dipole. There were a number of interim balloon-based
surveys, but the first major cosmology constraints from the CMB came from the the Wilkinson
Anisotropy Probe (WMAP; Spergel et al. 2003); the final 9-year data release offered the most
stringent constraints at that time (Hinshaw et al. 2013). A new generation of ground-based in-
struments (e.g. the South Pole Telescope, or the Atacama Cosmology Telescope) have sought to
add complementary data to the satellite-based WMAP and Planck, providing high-resolution but
narrow-field observations, which are sensitive to the high-` tail of the spectrum.

The strongest single-experiment cosmology constraints came in 2015 with a second data re-
lease from Planck (Planck Collaboration, 2015a). Measurement of ns< 1 to 6σ has been con-
firmed. They have provided the most stringent measurements of large scale geometry, combining
Planck CMB data with low redshift galaxy clustering data from SDSS (Blake et al. 2007) and as-
suming wa = 0, to find ΩK = 0.0005 ± 0.0033. In a particularly intriguing element of the recent
CMB analyses, mild tension had emerged with local estimates of H0 based on SN and variable
stars (discussed in Sec. 1.2.5).

A number of recent attempts have been made to measure two-point functions of CMB lensing,
either with itself or the cross-spectra with conventional galaxy lensing or clustering. For example,
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after Planck Collaboration (2016), Giannantonio et al. (2016) present the first tomographic CMB
lensing results with SPT. As alluded to before, a growing body of work focuses on CMB cross
correlations, as a cosmological probe and a means to internally constrain systematics (Hand et al.
2015; Liu & Hill 2015; Kirk et al. 2016; Harnois-Déraps et al. 2017). The main cosmology results
of these studies assume a fiducial cosmology, and rescale the lensing power spectrum to match the
data. As discussed in Liu & Hill (2015) (see also e.g. Di Valentino et al. 2017) Planck-CFHTLenS
cross-correlations seem to favourAlens < 1 (i.e. σ8 smaller than the Planck-only best fit). Although
apparently consistent with tensions between the datasets taken apart, it still not clear at this point
that one or more systematic is not responsible for this apparent disagreement.

1.3 Stage IV and the Future of Cosmology

Within the next decade the current generation of Stage III surveys will reach the end of their
lifetime. These are the most ambitious projects in mapping the late-time Universe ever undertaken.
It will not, however, be long before they are superceded by a new generation of experiments,
which are currently in the stages of planning. Unlike their predecessors, these are instruments built
primarily for cosmology, and will offer a paradigm shift in statistical power. These experiments
are referred to as Stage IV in the language of Albrecht et al. (2006). The following paragraphs will
review the field of major cosmology-oriented surveys, planned and extant. We will conclude this
chapter with a brief discussion of novel lensing probes which may offer new insights in the years
ahead.

1.3.1 Photometric Surveys

For reasons discussed above, the most statistically powerful datasets for cosmic shear necessarily
use broad band photometric filters. Table 1.2 summarises the basic characteristics of some recent
notable examples in modern cosmology.

The Kilo-Degree Square Survey (KiDS; de Jong et al. 2013), Dark Energy Survey (DES;
Flaugher et al. 2015), and Hyper SuprimeCam (HSC; Aihara et al. (2017)) are the largest of the
ongoing cosmic shear surveys. Inevitably their survey strategies must compromise depth and area,
and clearly the science aims must play a role in survey strategy. Deep data has clear advantages in
terms of photo-z accuracy (Benjamin et al., 2013) and resolution. Depth is also useful as it max-
imises the number of faint, high redshift galaxies in which the cosmological shear is strongest, and
may suppress some astrophysical systematics (Krause et al., 2015). It is, however, also susceptible
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to PSF instability and cosmic variance. A series of forecasting studies have more or less settled
this debate by demonstrating that optimising area for given exposure time even at a cost to depth
can in general improve the constraining power of a survey (Amara & Réfrégier, 2007; Kirk et al.,
2013).

KiDS and DES favour breadth over depth at 1500 and 5000 square degrees respectively. No-
tably the former has significant overlap with the VIKING near-infrared field and with the GAMA
survey, providing high-quality wide-band imaging. By contrast HSC favours a slightly different
balance. The survey is being conducted in two layers, the first covering 1400 square degrees to an
r-band depth of ∼26th magnitude. The second reaches almost to 27 mag, but over a tiny field of
3.5 square degrees. The ultimate aim of these surveys is to make the first competitive (non-CMB)
constraints on w0. By the end of their lifetimes they are set to afford percentage level constraints
on the dark energy parameters.

For obvious reasons Stage IV will suffer far less from cosmic variance than the current gen-
eration. Covering 20,000 square degrees over its 10 year lifespan, the Large Synoptic Survey
Telescope10 (LSST; LSST Science Collaboration (2009)) will provide a step change in statistical
power. It is expected that the project will achieve the first competative (i.e. percentage level) late-
time constraints on w0 and wa (Albrecht et al., 2006). An analogous weak lensing project at radio
frequencies will be undertaken by the Square Kilometre Array11 (Dewdeney, 2015). Though the
survey strategy is still the subject of much discussion, cosmic shear in a population of faint radio
sources has been proposed, both as a means to constrain cosmology and a complementary way
to constrain systematics through cross-correlations with optical counterparts (Brown et al., 2015;
Patel et al., 2015; Harrison et al., 2016).

It is finally worth mentioning briefly an idea that has been mooted but hitherto not realised: us-
ing specialised balloon-bourne observations for weak lensing measurement. Balloon experiments
have been implemented with some success in the context of the CMB (Mauskopf et al., 1999; Crill
et al., 2008). The most recent incarnation of this concept is a NASA-led project called SuperBIT
(Romualdez et al., 2016), which in current form will benefit from a wider field of view than extant
optical satellites as well the as advantageous seeing conditions brought by altitude. This project is
still very much in its interim stages, and the science goals focus on cluster lensing.
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Survey (Telescope) Observing Time Bands No. Galaxies Sky Coverage
(×106) (square degrees)

KiDS (VST) 2012-2016 ugri 90 1500
DES (Blanco) 2013-2018 grizY 300 5000
HSC (Subaru) 2014-2019 grizY 400 1400
PAU (WHT) 2013-2016 40 narrow-band 0.03 100-200

LSST (LSST) 2021-2031 ugrizY 4000 20000
Euclid (Euclid∗) 2020-2025 R+I+Z,Y,J,H 1500 14700
SKA2† (SKA) 2023+ Radio Bands 1,2,3 1100 30000

WFIRST (WFIRST∗) 2024-2030 Y+J+H+F184 500 2000

Table 1.2: Summary of recent, ongoing and planned lensing surveys. All listed include large-scale
structure or cosmic shear measurement programmes. Adapted from Table 2 in Kirk et al. (2015).
The lines marked with an asterik are hosted by satellites, where the rest are ground-based. † Interim
forecasts for for a second-stage SKA galaxy lensing survey taken from Harrison et al. (2016).

1.3.2 Spectroscopic Surveys

Cosmologically speaking, spectroscopy has two main uses. First, it is highly useful for estimation
of the source redshift distribution in lensing, both as a means to test photo-z algorithms and also to
eliminate systematic errors through cross-correlation (Kirk et al., 2013). Second, it provides highly
accurate per-object (rather than ensemble) redshift estimates, which are needed for standard ruler
(BAO) measurements. Such detailed single-object information is also necessary for direct mea-
surement of localised astrophysical phenomena such as intrinsic alignments. Dedicated surveys in
planning such as SDSS-IV’s eBOSS12 programme will target massive luminous red galaxies (LRG)
and quasars to considerably deeper redshifts than its predecessors. This is designed to cover the
epoch of transition to dark energy domination, a region where currently spectroscopic sampling is
poor. The planned Dark Energy Spectroscopic Instrument13 (DESI; Levi et al. 2013) will be larger
and deeper still. In addition to valuable photo-z validation for other surveys, early plans for that
experiment list neutrino mass detection amongst its science goals, anticipating a 2σ measurement.

Potentially even more valuable will be a handful of new satellite missions with spectrocopic ca-
pabilities, primarily ESA’s Euclid14 (Refregier & Douspis, 2008) and NASA’s WFIRST15 (Spergel

10lsst.org/lsst
11skatelescope.org
12sdss.org/surveys/eboss
13desi.lbl.gov
14euclid-ec.org
15wfirst.gsfc.nasa.gov
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Survey (Telescope) Observing Time No. Galaxies Sky Coverage
(×106) (square degrees)

eBOSS (APO) 2014-2020 0.6 LRG +0.07 Lyman-α 7000
DESI (NOAO) 2018-2022 32.0 LRG + 2.0 Lyman-α 18000
PFS (Subaru) 2018-2023 4.0 1400

4MOST (VISTA) 2019-2024 6.0-20.0 bright objects 15000
Euclid (Euclid∗) 2020-2025 75.0 14700

WFIRST (WFIRST∗) 2024-2030 20.0 2000

Table 1.3: Summary of recent, ongoing and planned spectroscopic surveys. All listed include BAO
observation programmes. Adapted from Table 1 in Kirk et al. (2015). As in Table 1.2 the lines
marked with an asterik are hosted by satellites and those without are ground-based.

et al., 2015). Euclid’s near-infrared spectrograph affords higher sampling density but narrower
sky-coverage, reducing statistical noise within the field with the obvious caveat of sample vari-
ance. Deep low noise, high resolution optical data is invaluable for many reasons. Apart from the
benefits to photo-z accuracy already mentioned, these missions will provide input for the next gen-
eration of shear calibration simulations. At present time virtually all mock galaxy catalogues using
real galaxy morphologies (including those presented in this thesis) borrow from the low noise HST
COSMOS imaging. For obvious reasons over reliance on a relatively small calibration field to test
shape measurements in ever larger/deeper datasets is not ideal (see Kannawadi et al. 2015 for a
more detailed discussion of this issue).

1.3.3 Non-Conventional Lensing Methods

Finally in this chapter we will give a very short overview of a number of lensing-based methods
that are widely accepted as potentially valuable, but for various reasons have yet to realise that
potential.

One such novel probe is lensing by voids. Cosmic scale underdenstities, like their overdense
counterparts, induce deflections to light from distant sources. More accurately thought of as a
reduction in the amplitude of the background distortions, this in effect produces radial ellipticity
component. This effect has been detected on a handful of occasions (Melchior et al., 2014; Gruen
et al., 2016; Sánchez et al., 2017). Cosmological applications largely centre on testing for signs of
modified gravity (Cai et al., 2015), though these ideas are yet to be put into practice.

In addition to undergoing a coherent shear, one might expect background sources to be magni-
fied by the continuous background mass distribution. Lensing magnification is significantly harder
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to detect than shear, simply because one cannot accurately predict the mean of the unlensed galaxy
size distributon. With the aid of galaxy number counts, however, a number of studies have reported
detection of a magnification signal (Schmidt et al., 2012; Garcia-Fernandez et al., 2016). Though
in principle a probe of large scale structure akin to shear, the veracity of magnification-based in-
ference is largely dependent on accurate fore-knowledge of the galaxy luminosity function.

It has been understood for some time that constructing maps of shear on the sky and searching
for local peaks above the noise can be used to identify massive galaxy clusters. There has, however,
been more recent recognition that the raw abundance, and correlation functions of shear peaks
can also be viable probes of cosmology. In practice this has been shown to be comparable in
constraining power to non-tomographic cosmic shear correlelations (Kacprzak et al., 2016). There
are, however, still significant gaps in our understanding of the systematics, and much less time
and effort has been expended into understanding how effects such as intrinsic aligments enter peak
counts, compared with two-point cosmic shear statistics.



Chapter 2

The Basic Principles of Weak Gravitational
Lensing

2.1 Cosmic Shear in Theory: Formalism

Gravitational lensing is a fundamental consquence of General Realivity, and has been confirmed
repeatedly over the course of the Twentieth and Twenty First Centuries. A detailed understanding
of GR’s formalism is not, however, necessary in order to derive the basic set of results upon which
most shear-based analyses rest. This is well-trodden ground, and we refer the reader to the many
serviceable reviews of the subject for more detailed derivations.

2.1.1 Point Deflectors, Critical Density & Convergence

To proceed we will perform a simple thought experiment. Imagine one has a lensing system in
which a distant source of photons (the “source”) is distorted by foreground mass which is con-
tained by a thin slice of space at a common distance DL. It isn’t important how that arises; just
imagine one has a highly compact mass causing lensing and nothing else. Under this thin lens
approximation, the path taken by photons between the source, lens and observer follow straight
lines, with a single instantaneous point of deflection when they reach the lens plane. We show a
sketch diagram of our lens configuration in Figure 2.1.

We’ll now make our first and last call upon GR; in the case where the lens has no two dimen-
sional extent (i.e. a point mass in the lens plane) Einstein’s relativity predicts that the deflection
angle should be given by

53
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Image Plane 

Lens Plane 

DLS 

DL 

DS 
R 

θ 
β 

â 

Figure 2.1: Schematic diagram of a
simple lensing system. The purple
(foreground) slice represents an ide-
alised thin lens plane, which contains
all of the lens mass. A galaxy ob-
served in the lens plane (green, back-
ground) has a true angular position
(denoted β) and a projected position
after lensing (θ), which are not triv-
ially the same. The purple arrows
show the trajectory of a photon from
emission at the galaxy’s true position
to observation. The dotted purple
line shows the backwards projection
to the apparent position of the galaxy
in the image plane. The distances be-
tween observer, lens and source (DL,
DS and DLS) are angular diameter
distances as defined in equation 1.9.

α̂(R) =
4Gm

c2R
R̂. (2.1)

As in Figure 2.1, R is the radial position at which the photon hits a lens plane defined about point
mass m. The vector quantity R̂ is a unit vector in the direction of that deflection point. Assuming
small angles simple geometry then gives us an expression for the deflection angle α ≡ θ − β =

(DLS/DS)α̂. One then finds

α =
DLS

DSDL

4Gm

c2θ2
θ, (2.2)

since we know the angle of deflection must follow the physical radius R in the lens plane.
This description can be generalised for to describe an arbitrary mass distribution composed of

an ensemble of point deflectors. If we call dα the small deflection due to a tiny mass dm, then the
total deflection angle is simply the sum of contributions from all of the point masses in the lens.
Since we can write the intercept angle as R = DLθ, it follows that a small area of the lens plane
at position θ′ will contain a total mass

dm(θ′) = D2
LΣ(θ′)dx′dy′. (2.3)
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The lens is again considered to be a thin mass sheet with surface density Σ(θ) and the coordinates
x, y are Cartesian position coordinates in the image plane, θ = (x, y). Combining equations
2.2 and 2.3 the deflection angle for an ensemble lens distribution is given by the sum over its
constituent masses:

α(θ − θ′) =
4G

c2

DLS

DSDL

∑

i

dm(x′i, y
′
i)
θ − θ′
|θ − θ′|2

≈ 4G

c2

DLSDL

DS

∫
θ − θ′
|θ − θ′|2 Σ(θ′)d2θ′

(2.4)

It is then common to rewrite this in a slightly more elegant form,

α =
1

π

∫
θ − θ′
|θ − θ′|2κ(θ′)d2θ′, (2.5)

by defining quantities called critical density

Σcr ≡
DS

DLDLS

c2

4πG
, (2.6)

and convergence

κ(θ) ≡ Σ(θ)

Σcr

. (2.7)

We should note that it is through Σcr that lensing becomes sensitive to the angular diameter dis-
tances within the lens system, and thus the background geometry of the Universe.

At this point it is common to define another scalar quantity called the effective lens potential
or the deflection potential as the scalar analogue to the vector field of the deflection angle:

ψ(θ) ≡ π−1

∫
κ(θ′) ln(|θ − θ′|)d2θ′, (2.8)

which implies

∇θψ = α, (2.9)

and

∇2
θψ = 2κ. (2.10)

One can think of the three quantities κ, ψ and α as representative of the physical properties of the
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lens: a (weighted) mass density, the local gravitational field and the deflection angle imposed on
photons, all evaluated at a particular point in the lens plane θ.

2.1.2 The Lens Equation

Now consider a small aperture in the observed image plane containing total pixel intensity Iim(θ).
We can state in general terms that lensing maps photons back onto the source plane1. If the deflec-
tion angle is small the position mapping can be assumed to be linear, and to conserve the total flux
in the aperture. One can then write IS(β) = Iim(Aθ), where IS and Iim are the intensities of points
in the source and image planes, or more usefully in terms of a position mapping

δβ =
∂β

∂θ
δθ = Aδθ, (2.11)

where we’ve defined a 2 × 2 matrix A, which is just the Jacobian of the mapping of a small shift
in the image plane back onto the source plane. We will refer to it as the distortion matrix.

Considering Figure 2.1 again, more simple geometry provides what is generally labelled the
lens equation,

β = θ −α. (2.12)

Using the last two equations, it is then just a matter of algebra to obtain

Aij = δij −
∂αi
∂θj

= δij −
∂2ψ

∂θiθj
, (2.13)

where the indices denote the two spatial coordinate axes and δij is the Kronecker delta function
(i.e. 1 if i = j, 0 otherwise). The second equality relies on the earlier definition in equation 2.9.

Next consider how the lensing distortion alters a straight line between two points in the image
plane. In general terms we can decompose the transformation into the sum of two parts. First we
have an isotropic (i.e. diagonal) distortion, which changes the length of the line but leaves its shape
and direction unchanged. Second, we have a trace-free part, which can extend or compress the line
but also rotates it through an angle 2φ. That is,

A = Aiso + ATF =

(
1− κ 0

0 1− κ

)
−
(
γ1 γ2

γ2 −γ1

)
. (2.14)

1i.e. the image plane as it would appear in the absence of lensing.
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Here we have introduced a complex quantity called shear, γ = γ1 + iγ2 = |γ| exp(−2iφ), where
2φ is the rotation angle referred to above which describes the anisotropic part (essentially a rotation
matrix with amplitude γ). One can then see that the shear and convergence are given by the second
derivatives of ψ:

γ1 =
1

2

(
∂2

∂x2
− ∂2

∂y2

)
ψ, γ2 =

∂2ψ

∂x∂y
, κ =

1

2

(
∂2

∂x2
+

∂2

∂y2

)
ψ. (2.15)

So in general lensing will induce both an anisotropic shear and an isotropic magnification.

κ>0	γ1=0	γ2=0	

κ<0	γ1=0	γ2=0	

κ=0	γ1>0	γ2=0	

κ=0	γ1<0	γ2=0	

κ=0	γ1=0	γ2>0	

κ=0	γ1=0	γ2<0	

Figure 2.2: Graphical illustration of shear and convergence. The black circles represent an un-
lensed source, while the shaded ellipses are the same source under various types of distortion.

The schematic diagram in Figure 2.2 gives a qualitative example of how a circular galaxy’s image
responds under shear and magnification. The factor by which an image is expanded due to the
latter effect is given by the inverse determinant of the distortion matrix:

µ = |A|−1 =
1

(1− κ)2 − γ2
. (2.16)

In general this is very difficult to infer from measurements, since one cannot know a priori the
inherent size of the galaxy before lensing.

Finally, by evaluating each element in the distortion matrix for a lens comprising two masses
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using equation 2.5, and taking the trace-free part, it is possible to derive a general expression for
γ. Most commonly this is stated in the form

γ = π−1

∫
κ(θ′)D(θ − θ′)d2θ′, (2.17)

with the complex quantity

D(θ) ≡ y2 − x2 − 2ixy

|θ|4 . (2.18)

In practice, the convergence can be recovered from shear measurements via a process called the
Kaiser Squires Inversion (Kaiser & Squires, 1993). This method relies on the fact that the convolu-
tion here reduces to a product in Fourier space. With this in mind, one can see that reconstructing
a spatial convergence map is just a case of taking the inverse Fourier transform of the product
κ(θ′)D(θ − θ′)2.

2.1.3 Cosmology with Cosmic Shear

Effective Convergence

All of the above is valid in the case of a thin lens at fixed distance. In reality, however, the Universe
does not contain one foreground lens sheet that is responsible for all observed lensing. Rather, it
contains a continuous distribution of mass out to the horizon, which lenses an ensemble of galaxies
to different degrees. It is also worth noting here that though the lensing field is just a mathematical
quantity tracing the large scale mass distribution, it is only possible to measure it at specific points
where galaxies happen to sit. With this in mind we will define a new quantity, which we’ll call the
effective convergence as a weighted sum over the redshift distribution of galaxies observed along
the line of sight:

κeff(zL) =
∑

S

κS =

∫ ∞

zL

κsp(zs)dzs. (2.19)

This is the lensing convergence associated with a thin sheet of mass at redshift zL, and includes
contributions from all of the observed sources behind that sheet. Note that we’ve used the lower

2There is a small practical point we should note here: the integral diverges as ` → 0, meaning it is necessary
to impose some finite lower bound `min. This leads to an additive term, which in general is unknown. This effect,
known as mass sheet degeneracy, is problematic for reconstruction of individual cluster lens masses. In the weak
lensing regime for the purpose of constructing mass maps, however, the low ` modes simply introduces a unknown
flat normalisation.
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case s to denote continuous quantities relating to sources in general, and upper case S to indicate
one specific source. It follows from the definition of convergence that

κeff(θ, zL) =
4πGDL

c2
Σ(θ, zL)

∫ ∞

zL

DLS(zs)

DS(zs)
p(zs)dzs. (2.20)

Redshift z p(z) 

Lens Plane zL Observer z=0 

Figure 2.3: A cartoon diagram of background shear by large scale structure. Light from source
galaxies (red ellipses) are lensed a series of effective lens slices along the line of sight. The shaded
purple pane shows an example of a single thin slice of the dark matter distribution at redshift
zL, which induces distortions in all galaxies observed at zS > zL. The left-hand axes (the blue
curve) show the observed source density p(z), which falls away to zero at high redshift due to the
observer’s finite flux sensitivity.

As we said, any line of sight will pass thorough a spatially fluctuating mass density field; we can
think of this as a multitude of thin lenses stacked in series. The total convergence accrued along
the line of sight is thus the sum of κeff contributions. This time there is no need to weight by the
galaxy distribution, because the background dark matter is responsible for lensing, not only the
visible matter. One finds:
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0.0 0.2 0.4 0.6 0.8 1.0 1.2

Redshift z

Figure 2.4: An example of a set of lensing effi-
ciency kernels for realistic redshift distributions.
The purple (solid) curves show the estimated
photometric redshift distributions for the Year
1 Dark Energy Survey IM3SHAPE catalogue of
Zuntz et al. (2017) in the four tomographic bins
used in the Y1 cosmic shear analysis of Troxel
et al. (2017). The blue (dotted lines) in each
panel show the corresponding lensing efficiency
gi(z), normalised to unity over the redshift range
shown. As can be seen here lensing correla-
tions in each bin probe slightly different redshift
ranges, illustrating how cosmic shear can be used
to explore the expansion history of the Universe.

κeff(θ) =

∫ χhor

0

g(χ)(δ(χ) + 1)dχ, (2.21)

with

g(χ) =
3

2

H2
0

c2a(χ)
Ωm

∫ χhor

χ

p(χ′)
SK(χ)SK(χ′ − χ)

SK(χ′)
dχ′ (2.22)

where Σ has been rewritten in terms of comoving density, and we make use of equations 1.14 and
1.9. The kernel g(χ), which is often called the lensing efficiency, is defined for a specific set of
source galaxies and absorbs the geometry of the lens system. As a function of redshift, it defines
a window onto the matter power spectrum and thus the epoch to which lensing is most sensitive.
As a rule of thumb g(χ) peaks approximately midway between the observer and the maximum
redshift of the galaxy sample (though this is only exactly true if the observed source distribution is
a delta function at at χmax). Figure 2.4 illustrates the relationship between redshift distribution and
lensing efficiencies for a set of real tomographic redshift measurements from DES Y1.

For clarity the “effective” subscript will be dropped hereafter, and we’ll assume that if a spe-
cific lens redshift isn’t given then the convergence is an effective measured convergence over an
ensemble of foreground lenses.
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The Equivalence of the Convergence & Shear Power Spectra

One non-trivial but key feature of equation 2.17 is that the two-point statistics of the shear and
convergence can be treated interchangably. This can be demonstrated as follows.

We will make a brief diversion here into the general properties of fields, and define some
statistics which will be used heavily in the rest of this thesis. First consider a Gaussian random
field. It could be scalar or complex (convergence and shear), and it can be two or three dimensional.
Call the field α and the nD position coordinate x. The two-point correlation between any two
points is then

C(X) = 〈α(x)α∗(x′)〉 , (2.23)

where the angular brackets denote averaging over pairs of points with the same separation X =

|x2 − x
′2| 12 . The above assumes isotropy in α, which requires any moments of the field to be

uniform in space (and so C is dependent only on the separation of the points, not their exact
positions or orientation).

If we wished to describe the field in Fourier space we could perform an nD transform on each
of the α terms before correlating the result:

〈α̃(k)α̃∗(k′)〉 =

∫ ∫
eix.ke−ix

′.k′ 〈α(x)α∗(x′)〉 dnxdnx′. (2.24)

By using X = x− x′, and dX = dx′ the above becomes

〈α̃(k)α̃∗(k′)〉 =

∫ ∫
eix.(k−k

′)eiX.k
′ 〈α(x)α∗(x′)〉 dnxdnX. (2.25)

Each of the integrals reduces to triviality under scrutiny. The first, with respect to x, simply yields
a Dirac delta function multipled by a factor of (2π)n, under the assumption that the k modes are
uncorrelated on different scales. It then becomes apparent that

(2π)nδD(k − k′)P (k) = 〈α̃(k)α̃∗(k′)〉 , (2.26)

where we’ve defined the power spectrum of an arbitrary field α as the Fourier transform of the real
(i.e. not harmonic) space correlation P (k) =

∫
eiX.kC(X)dnX .

Now we’ll return to the specific case of lensing. Consider equations 2.17 and 2.18 again. We
can make two elementary obeservations here. First, equations 2.17 is effectively a convolution, in
which the real space shear field smoothed with a spatial filterD(θ). If the operation is mapped into
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2D multipole space, the convolution becomes a product,

γ̃(`) =
1

π
κ̃(`)× D̃(`), (2.27)

and under Fourier transform the filter in equation 2.18 takes the form

D̃(`) =
`2

1 − `2
2 + 2i`1`2

`2
, (2.28)

where ` = (`1, `2) is the Fourier pair to the spatial coordinates θ = (x, y). Taking the product at
two multipoles one finds

D̃(`)D̃∗(`′) =
1

`2

1

`′2

[
(`2

1 − `2
2)(`

′2
1 − `

′2
2 ) + 4`1`

′
1`2`

′
2 + 2i`′1`

′
2(`2

1 − `2
2)− 2i`1`2(`

′2
1 − `

′2
2 )
]
.

(2.29)

Now using the definition of the two dimensional shear power spectrum from equation 2.26,

(2π)2δ2
D(`− `′)Cγγ(`) =

〈
κ̃(`)D̃(`)κ̃∗(`′)D̃∗(`′)

〉
, (2.30)

into which we can substitute in equation 2.29, whereupon the result simplifies considerably by
virtue of the delta function. In fact, the product of D(`)D∗(`′) goes to unity when we enforce the
equality ` = `′. The result is

(2π)2δ2
D(`− `′)Cγγ(`) = 〈κ̃(`)κ̃(`′)〉 , (2.31)

and so from the definition of the convergence spectrum,

Cγγ(`) = Cκκ(`). (2.32)

Relating Convergence to the Matter Power Spectrum

For reasons that will become apparent we will now write out explicitly the definition of the Fourier
space pair of the convergence in terms of angular multipoles `:

κ̃(`) =

∫
ei`.θκ(θ)d2θ, (2.33)

where the tilde denotes the two dimensional Fourier transform. The equivalent (inverse) transform
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for the overdensity is

δ(χ) =
1

(2π)3

∫
e−ik.χδ̃(k)d3k, (2.34)

or if we explicitly separate out 2D modes perpendicular to the line of sight and those parallel to it
we can write

δ(SK(χ)θ, χ) =
1

(2π)3

∫
e−ik⊥.θSK(χ)e−ik0χδ̃(k)d3k. (2.35)

We note that the position argument has not changed, but is simply written in terms of parallel
and perpendicular components, χ = (SK(χ)θ, χ). Next, let us define two populations of source
galaxies i and j, each of which can be used to measure a convergence. Substituting equations 2.35
and 2.21 into 2.33 then gives us

〈
κ̃i(`)κ̃(`′)j

〉
=

∫ ∫ ∫ χhor

0

∫ χhor

0

∫
(2π)−3

∫
(2π)−3gi(χ)gj(χ)

〈
δ̃(k, χ)δ̃∗(k, χ)

〉

× e−i(k⊥SK(χ)−`).θe−i(k
′
⊥SK(χ′)−`′).θ′e−i(k0χ−k

′
0χ

′)d3k′d3kdχ′dχd2θ′d2θ. (2.36)

The definition of the power spectrum then eliminates one of the integrals

〈
κ̃i(`)κ̃(`′)j

〉
=

∫ ∫ ∫ χhor

0

∫ χhor

0

∫
(2π)−3gi(χ)gj(χ)Pδ(k, χ̄)

× e−i(k⊥SK(χ)−`).θe−i(k⊥SK(χ′)−`′).θ′e−ik0(χ−χ′)d3kdχ′dχd2θ′d2θ, (2.37)

where the correlation is actually between two points at different distances and so the power spec-
trum is evaluated an intermediate distance χ̄ (the exact value isn’t terribly important for reasons
we’ll come back to). Now the integrals with regard to angular coordinates revert to two dimen-
sional Dirac delta functions of the form δ2

D(SK(χ)k⊥ − `). If we separate the 3D k mode integral
into parts which are perpendicular and parallel to the line of sight d3k = d2k⊥dk0, after some delta
function manipulation we arrive at the expression



Chapter 2. The Basic Principles of Weak Gravitational Lensing 64

〈
κ̃i(`)κ̃(`′)j

〉
= 2π

∫ χhor

0

∫ χhor

0

∫
gi(χ)gj(χ)S−2

K (χ)Pδ (k, χ̄)

× δ2
D

(
`′ − `SK(χ′)

SK(χ)

)
e−ik0(χ−χ′)dk0dχ

′dχ. (2.38)

Finally the integral with respect to k0 yields another Dirac delta function (thanks to the last expo-
nential), and from there the dχ′ integration simply becomes a statement of equality χ = χ′ (and
so χ̄ becomes superfluous). We end up with an expression for the convergence correlation of the
form

〈
κ̃i(`)κ̃j(`′)

〉
= (2π)2δ2

D (`′ − `)
∫ χhor

0

gi(χ)gj(χ′)

S2
K(χ)

Pδ

(
`

SK(χ)
, χ

)
dχ (2.39)

or

Cij
γγ(`) =

∫ χhor

0

gi(χ)gj(χ′)

S2
K(χ)

Pδ

(
k =

`

SK(χ)
, χ

)
dχ. (2.40)

This simple expression, known as the Limber equation, illustrates why cosmic shear is so potent as
a cosmological tool; the basic lensing observable (the two-point function of galaxy shear) accesses
the power spectrum via a pair of kernels which are sensitive to the redshift distribution of sources
and a ratio of of angular diameter distances. All of these parts are in principle very well understood
(although see Section 2.2.4). Clearly the amplitude of Cγγ responds directly to σ2

8 and to Ωm (or
Ωmh

2 via the efficiency kernel), and so the two exhibit a characteristic degeneracy.

2.2 Cosmic Shear in Practice: Observables

The era of large scale cosmological surveys has necessitated collaboration between experts in var-
ious sub-fields. Providing all of the elements for cosmic shear to the required accuracy often needs
an in depth understanding of measurement algorithms and their systematics and uncertainties. In
general it is no longer feasible for any individual or body of code to handle every aspect. Typ-
ically a survey will have multiple (sometimes disjoint) working groups, which each gather the
experts and algorithms required. In recent years, then, it has become meaningful to talk of a “shear
pipeline” tying together the various ingredients to go from photometric pixel fluxes to constraints
on cosmology. The following paragraphs provide a short review of the essential components of
such a pipeline.
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2.2.1 The Point Spread Function

In a dataset like DES Y1 it is inevitable that there will be degadation in the quality of an image
due to the atmosphere and the optics of the telescope. The net effect of stochastic atmospheric
distortions is to blur the image, spreading the flux of a point source across several pixels. This
is equivalent to a convolution with a kernel known as the point spread function (PSF). If the PSF
is approximately circular, this tends to make a galaxy appear slightly larger and rounder than it
would be otherwise. Unfortunately in ground-based measurements it is often the case that the PSF
is comparable in size to the underlying galaxy. It is thus essential that we devise an accurate way
to measure and remove the impact if we are to accurately recover the galaxy’s shape.

The most common method for PSF estimation is to use a sample of bright local stars, which
can be assumed to be point sources to good approximation. This provides a window on to the PSF
at particular fixed points in the image, which must then be mapped onto the positions of galaxies.
Typically one would use a polynomial basis set on the coordinates of the image to quantify spatial
variations. A number of algorithms have been built to perform that task to varying degrees of
accuaracy (Jarvis et al., 2008; Bertin, 2011; Chang et al., 2012). If one has a PSF reconstruction
for a particular galaxy it can then be folded into the shape measurement, either by convolving
the model during the forward modelling process to construct mock galaxy images, or else by
deconvolving the real image prior to measurement.

Finally it is worth noting here that a selection of measurement algorithms explicitly compen-
sate for anisotropy in the PSF using a process known as “Gaussianisation”, whereby the image is
convolved with an additional kernel in order to symmetrise the PSF distortion. We do not use these
methods in detail, but refer the reader for Kaiser et al. (1995), Hirata & Seljak (2003), Massey
et al. (2007b) and Herbonnet et al. (2017) for examples.

2.2.2 Galaxy Shapes

With the PSF estimates in hand, the next task is to compile a catalogue of reliable galaxy shapes.
This is a highly non-trivial technical challenge and, as data volumes steadily grow, can require
significant computational resources. The following sections provide a brief overview of the basic
observables of shape measurement and their relation to cosmic shear.
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Ellipticity Definitions

The derivations above give us the building blocks for cosmic shear: the basic quantities of conver-
gence, deflection angle and shear, which pertain to the physical (but generally unseen) properties
of a lens system. We have seen how these quantities are links to the underlying properties of the
Universe. The next inevitable question must be how can we go about measuring these basic quan-
tities. The data emerging from our telecopes is not a 3D grid of shear or convergence; rather it is a
set of noisy, pixelised photometric fluxes.

To begin, imagine we have a cutout galaxy image, consisting of a smooth light profile, which
varies with position in the image I(θ). We can define unweighted first and second moments as 2D
integrals over position :

µi =

∫
I(θ)θid

2θ∫
I(θ)d2θ

, (2.41)

and

Qij =

∫
I(θ)(θi − µi)(θj − µj)d2θ∫

I(θ)d2θ
, (2.42)

where the 2D position θ = (x, y) is given relative to a centroid position, defined by the first
moment. The second moments, or the quadrupole moments of the light profile, form the basic
building blocks of galaxy shape measurement. One can construct numerical shape estimators by
combining these moments. For example two common quantities, both loosely termed “ellipticity”,
are defined as the distortion

ε ≡ Qxx −Qyy + 2iQxy

Qxx +Qyy +
√
QyyQxx − 2Q2

xy

(2.43)

and polarisation

χ ≡ Qxx −Qyy + 2iQxy

Qxx +Qyy

. (2.44)

Due to their respective mathematical properties each of these quantities has its advantages. In
recent years equation 2.43 has become the favoured definition in many circles, for reasons that we
will return to below. We show an example of the shear and distortion for a random set of galaxies
from DES in Figure 2.5. In the sections of this thesis beyond the present discussion we’ll simply
refer to a galaxy’s ellipticity e, meaning the first of these definitions.
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Figure 2.5: Illustrative example of the difference between the two ellipticity definitions described
in the text. Top: the distribution of a random subsample of 10,000 galaxies from the DES Y1
IM3SHAPE catalogue in the e1, e2 ellipticity plane as defined by each of the definitions. The black
dotted line shows the unit ellipticity circle in each case. Bottom: The one dimensional distribution
of ellipticity magnitude e =

√
e2

1 + e2
2 of the same galaxies using each definition.
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Returning to the expression for the distortion matrix in equation 2.14, we note that it can be
written,

A = (1− κ)

(
1 + g1 −g2

−g2 1− g1

)
, (2.45)

where we’ve defined

g ≡ γ

1− κ. (2.46)

The quantity defined in equation 2.46 is called reduced shear. Since in general it is possible
to measure a coherent elongation from a population of galaxies but not an analogous change in
surface area, in practice we can typically recover A only up to a multiplicative amplitude. Thus
the reduced shear g, and not the shear γ is the observable quantity. In the context of cosmic shear
γ and κ are each O(10−2). For all measurements to date it is safe to ignore the factor of 1− κ and
treat γ and g as interchangable.

If we define two sets of galaxy properties, in the (unlensed) source plane and in the oberved
image plane, the positions transform as θsrc = Aθimg, and so equation 2.43 gives us (Seitz &
Schneider, 1997):

εimg =
εsrc + g

1 + εsrcg∗
. (2.47)

It is generally, then, reasonable to treat the measured shape of a galaxy as the sum of an inher-
ent part εsrc, which would be measured without lensing, and a cosmological shear g. Under the
assumption that the ellipticities of galaxies in the source plane are randomly oriented, clearly the
mean ε over a large number of galaxies gives an unbiased estimate for the mean shear 〈g〉. Unfor-
tunately this is not true of the alternative ellipticity definition, and the equivalent calculation yields〈
χimg

〉
= 2/(1 − 〈|χsrc|2〉) × 〈g〉. That is, accurate recovery of the cosmological shear using χ

requires prior knowledge of the unlensed ellipticity distribution.

Measurement Algorithms

Modern shape measurement techniques can be divided, broadly, into two classes: moments-based

and model fitting methods. The former were well represented in the earliest generations of shear
algorithm (e.g. KSB, Reglens, Ellipto, RRG; see Kaiser et al. 1995; Heymans et al. 2006), and
there are a number of successor codes in use today (Bernstein & Armstrong, 2014; Herbonnet
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et al., 2017). The key idea is to measure the quadrupole moments of each galaxy image, and
then fit these measurements together to construct an estimator for ellipticity. A related technique,
referred to as shapelets, involves reconstructing a light profile using a finite sum of polynomial
basis functions. In general, although moments-based methods are agnostic to galaxy type in the
sense of not requiring a specific analytic model, they do require radial weighting in order for the
integrals in equation 2.42 to converge.

Model fitting methods take a more direct route, using galaxy ellipticities as the basic unit of
observation. The process typically involves a forward modelling loop, wherein a galaxy model is
repeatedly simulated with trial parameter values. The prediction is compared with the data in order
to map out the likelihood of the model parameters. Such techniques have become increasingly
sophisticated over the decades, and are often now favoured over more traditional moments-based
approaches. It is worth pointing out that all of the major shear cosmology studies of the Twenty
First Century have adopted such methods, notably IM3SHAPE and NGMIX, which were used in
DES SV and DES Y1 (Jarvis et al., 2015; Zuntz et al., 2017) and LENSFIT, which was used in
CFHTLenS and KiDS (Miller et al., 2013; Fenech Conti et al., 2016).

2.2.3 Estimators of Cosmic Shear

Two-Point Statistics

Implicit in the discussion of Section 2.1 is that on large scales the one-point shear statistics should
approach zero3. In practice it is necessary to use statistics of second order or higher in the shear.
One practically useful two-point shear statistic is known as the correlation function:

ξij±(θ) ≡
〈
γi+γ

j
+

〉
θ
±
〈
γi×γ

j
×
〉
θ
, (2.48)

defined for two populations of galaxies (i, j), and with the angular brackets denoting averaging
over galaxy pairs separated by a particular angular distance θ. The subscripts (+,×) indicate
the orthogonal components of shear rotated into coordinate axes defined by the separation vector
between the galaxies:

(γ+, γ×) = (−(γ1 cos 2φ+ γ2 sin 2φ),−(γ2 cos 2φ− γ1 sin 2φ)) . (2.49)

3If this is not immediately obvious consider equation 2.4. If the density of dark matter is a homogeneous Gaussian
random field, then each slice along the line of sight is essentially a randomly distributed collection of point sources.
Over many positions in the lens plane, then, positive and negative θ values will average to an expectation of zero.
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By noting the equivalence of γ = γ+ + iγ× = γ1 + iγ2, and writing the shears in terms of their
inverse Fourier transforms it can be shown that

ξij±(θ) =

∫ ∞

0

`

2π
J0/4(`θ)Cij

γγ(`)d`, (2.50)

where the Bessel function of the first kind,

Jn(x) =
1

inπ

∫ π

0

eix cosα cos(nα)dα, (2.51)

serves as an effective window function onto the angular shear spectrum. The two populations
referred to here are most commonly galaxies in different photometric redshift bins. By performing
coarse binning along the line of sight, one can use the fact that the lensing efficiency kernels in
equation 2.40 are sensitive to the redshift distribution of the source galaxies to probe the power
spectrum at a particular epoch.

Various alternative two-point statistics have been devised for addressing specific perceived
deficiencies in the correlation functions. The Bessel function kernels are relatively wide, which
helps to maximise the signal-to-noise of the measurement, but has the drawback of mixing power
from different ` modes. For example there are various public codes for measuring the angular
spectra directly from individual galaxy shapes. Though C(`) estimators are closer to the theory
and thus avoid the complication of the numerical Hankel transform above, they do not naturally
factor in the spatial configuration of the survey masks.

The standard practical estimator for ξ± (see Dark Energy Survey Collaboration 2016; Hilde-
brandt et al. 2016) can be constructed as

ξij±(θ) =

∑
a

∑
bw

i
aw

j
b

(
ei+(θa)e

j
+(θb)± ei×(θa)e

j
×(θb)

)
∑

a

∑
bwawb

, (2.52)

with the sum being over galaxies within a finite bin of angular separation θab ∈ [θ − ∆θ, θ +

∆θ]. The galaxy weights wa are typically provided by the shape measurement algorithm, and are
intended as a measure of the quality of the ellipticity measurement for each galaxy.

E-Modes & B-Modes

It is often useful to decompose a measured shear in pairs of galaxies into a tangential part, which
might be expected from lensing, and a cross part, which would not. A convenient way to do this
is to define a vector field u(θ), which is defined as the 2D gradient of the convergence field ∇κ
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(Schneider et al., 2002). From 2.10 it is then easy to show the new field in terms of the derivatives
of shear

u =

(
∂γ1
∂x

+ ∂γ2
∂y

∂γ2
∂x
− ∂γ1

∂y

)
. (2.53)

If κ is a pure scalar field then one finds:

∇.u = ∇2κ ∇× u = ∇× (∇κ) = 0 (2.54)

In practice, however, if one attempts to reconstruct u using measured shears the result will not
always follow the second equality. Astrophysical systematics and foreground instrumental effects
can induce a spurious shear component, which in this formalism translates into an imaginary con-
vergence component. In general, then, one can recast the convergence as a complex quantity,
consisting of a dominant (real) term κE and an imaginary κB, such that ∇× u = ∇2κB.

Positive 
E-Mode  

Negative 
E-Mode 

Positive 
B-Mode  

Negative 
B-Mode  

Figure 2.6: Stick diagram of the impact on a
round source galaxy of E- and B-mode distor-
tions. Positive E-modes are caused by physi-
cal mass overdensities, which lens background
galaxies along tangential arcs about the mass
centre.

This decomposition κ = κE + iκB, is equivalent to separating the parts of the convergence that
cause tangential shear-like (cruciform) and X-like (rotated cruciform) distortions. These two forms
of distortion are known as E-modes and B-modes, and are charactured in Figure 2.6.

This additional signal is expected to enter the observed shear correlations in equation 2.50
additively:
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ξ±(θ) =

∫ ∞

0

`

2π
J0/4(`θ) (CEE(`) + CBB(`)) d`, (2.55)

where the two additional terms are the angular power spectra of κE and κB. In practice attempting
to detect a B-mode signal signal is used as a null test to ensure a shear measurement is free of
systematics (see e.g. Becker et al. 2015, Hildebrandt et al. 2016, Jee et al. 2016). Spurious (though
generally small) B-modes can be generated by local interactions between galaxies and foreground
source clustering, as well as instrumental effects.

2.2.4 Photometric Redshifts

It has been shown elsewhere that dividing galaxies into redshift bins and utilising the extra infor-
mation in the auto- and cross-correlations is extremely helpful for the cosmological constraining
power of a set of shear measurments (Hu, 1999). Unfortunately, however, the photometric image
of a galaxy does not trivially demark it in redshift. Instead, an observer must make what inferences
she can with the often crude photometry available.

The most accurate method for estimating redshift uses high resolution spectroscopy. If known
emission lines can be identified, measurement of the offset from the known rest-frame frequency
gives one a precise z measure. Unfortunately spectrosopic redshift estimation requires specalised
equipment and long exposure times to reliably identify typically faint spectral lines. This quickly
becomes unfeasible for lensing surveys, which must image hundreds of millions of galaxies in
a timespan of months to years. Indeed, it is the small faint galaxies which carry the strongest
cosmological signal and are thus most valuable for cosmic shear based studies.

A much faster and widely used alternative relies on the use of wide multi-wavelength filters
(typically ugrizY , or some subset thereof). Pre-calculated spectral templates are fitted to flux in
different bands to obtain a z estimate (photo-z). Such methods commonly rely on broad-band
features in optical galaxy spectra such as the Lyman-α break. Although much faster than spec-z
these techniques are often highly unreliable, susceptible to large scatter and systematic errors, and
should be treated with caution.

Typically a photo-z code provides a conditional probability distribution, encoding how likely
it is that a galaxy with observable properties α is at redshift z. The standard process for recon-
structing the ensemble redshift distribution of population i is then to simply add the PDFs for each
individual constituent galaxy j:
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pi(z) =

catalogue∑

j

p(z|αj) ≈
∫
p(z|α)p(α)dα. (2.56)

This process, known as stacking, effectively marginalises the observable properties of the individ-
ual galaxies. In the simplest case i refers to the entire catalogue of galaxy measurements from
a survey, but more commonly it is a subset of objects defined by some observable property (e.g.
using the mean of p(z|α) to sort galaxies into tomographic bins).

A middle path between phtometric and spectroscopic redshift estimation is to use an instrument
with superior multi-band photometry to obtain high quality photo-z. Examples of this include the
HST GEMS 30-band photometry and the planned 40-band PAU survey (Castander, 2008). Clearly
this capability must be built into the instrument during the design stages, but such measurements
exist for a number of small fields (e.g. COSMOS), which have become a benchmark for validating
the redshift estimates in larger overlapping surveys.

Many analyses, particularly those involving cosmic shear and related lensing measurements,
are predicated on an ability to accurately reconstruct galaxy redshifts. Unconstrained redshift error
can be a major systematic in our attempts to make inferences about cosmology using photometric
data, and can be strongly degenerate with the cosmological parameters we are trying to constrain.

There has, as a result, been much recent focus on identifying and mitigating photo-z error.
At the highest level it has become common practice to include some level of redundancy in cos-
mology analyses, with multiple independent photo-z codes used to verify the robustness of results
(Hildebrandt et al., 2016; Dark Energy Survey Collaboration, 2016).

In the long term, there has been some effort to improve machine learning algorithms trained on
spectroscopic fields (De Vicente et al., 2016; Hoyle, 2016; Cavuoti et al., 2017).

For more immediate needs there has been some discussion of cross calibration with spec-
troscopic or high-quality photometric samples as a means to constrain errors (Choi et al., 2016;
Samuroff et al., 2017b), bypassing longer running development of photo-z techniques. Cross cor-
relations with galaxy clustering measurements have also been mooted as an alternative means to
constrain the redshift distribution of photometric galaxy catalogues (Newman, 2008; Ménard et al.,
2013; Johnson et al., 2017).

2.2.5 Covariance Matrices

The final piece required before equation 1.28 can be used to evaluate the likelihood of a trial
cosmology is a covariance matrix of the data. Clearly there is some uncertainty in the measured
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datavector resulting from the limited statistical precision of the measurement. It is also possible
that the data could have become contaminated by residual systematics in any of the previous steps
in such a way that mimics lensing (see Section 2.3 below). In some cases we might, to the best of
our knowledge, correct for a particular systematic adequately, but concede that there are gaps in
our knowledge which could be leading us to over- or under-correct the data. The most common
way to handle this is to incorporate a systematic uncertainty into the prior when we marginalise
over the systematic. It is also, however, possible to include it as an additional contribution to the
covariance matrix. Finally, there is the issue of sample variance. The measured shear could be
a perfectly accurate representation of the actual lensing signal in that patch of sky, but still result
in inaccuracies in the recovered cosmological parameters. Since the measurement encompasses a
finite volume of the Universe, there is no guarantee that our line of sight does not, by chance, pass
through a particular clumpy patch of the dark matter field. Known as cosmic variance, the size of
this uncertainty clearly scales with the volume of space probed by the data.

Since we have only one dataset (and indeed one realisation of the Universe) calculating the
relevant uncertainties is not simply a case of repeating the measurement and considering the spread
of results. Faced with this task there are three broad routes one could take.

The first is to use the data itself by, for example, bootstrap resampling the survey to compute a
variance between sub-patches.

The second is to use an analytic approximation. When the constraining power of the data is
not great, it is common to assume δ(χ) is Gaussian random on all scales, which affords a sig-
nificant simplification in the required calculation. There are, however, an increasing number of
implementations of more sophisticated halo-model calculations, which provide a far more realistic
error estimate (e.g. Hildebrandt et al. 2016; Krause et al. 2017).

The last, most computationally expensive, route is to use numerical simulations. By assuming
a fixed cosmology one can generate multiple universe realisations (or well separated chunks of
a single simulation volume) to evaluate the uncertainty of a measurement. Each method has its
limitations, and it is not unprecedented to use multiple methods as a test of the robustness of a set
of results.

2.3 Biases in Cosmic Shear

There are a great many ways in which a measurement of cosmic shear can become biased. Given
that it will be repeated many times though this thesis, it is worth taking a moment to define “bias”.
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In the context of cosmological inference, a bias is any factor (other than parameters of interest)
which ultimately influences the outcome of the measurement. Inevitably the data will be subject to
such effects, and the task of the observer is to prevent them translating into cosmological biases. In
the following paragraphs we introduce a number of known biases, known to afflict cosmic shear-
based measurements.

2.3.1 Shear Measurement Bias

The most common parameterisation for inaccuracies in the shear recovered from an ensemble of
galaxies was introduced by (Heymans et al., 2006) in the context of the STEP challenge. Since the
cosmological signal in cosmic shear is small we can expand the residual between the true shear γtr

(which we assume to be constant on a small patch of sky) and the measured shear γ̃. The result is:

γ̃i = (1 +mi)γ
tr
i + ci, (2.57)

where γi is the i = (1, 2) component shear measured from an ensemble of galaxies, and γtr
i is

the input or “true” value, which is assumed to be the same for all of these galaxies. Note that we
assume here that there is no cross-talk between shear components (i.e. the bias in γ1 is not sensitive
to γtr

2 ). For completeness mi and ci could be replaced by 2 × 2 matrices, but in general there are
no significant off-diagnonal terms and most authors favour the simpler index notation.

Is is also uncommon for there to be systematic differences between m1 and m2 in any region
of parameter space, and typically one will assume a simple arithmetic mean m = m1 ≈ m2. The
additive terms are often dominated by the PSF-induced effects, whereby the PSF ellipticity at a
particular position leaks into measured shear.

There are many ways bias can enter an ensemble shear estimate based on a population of
galaxies, and this has been the subject of a decade or more of rigorous simulation-based tests
(Heymans et al., 2006; Massey et al., 2007b; Bridle et al., 2010; Kitching et al., 2012; Mandelbaum
et al., 2015). There is an extensive canon of literature on the nature and origins of such biases, and
we will return to this topic in Chapters 3 and 4.

2.3.2 Intrinsic Alignments

In an idealised case the intrinsic ellipticities in equation 2.47 would average away to zero. While
a finite number of galaxies will always produce a finite level of shape noise, this vanish given
a sufficiently large shear catalogue. Unfortunately, however, galaxy shapes are not uncorrelated
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samples of the large scale shear field, but complex astrophysical objects embedded in a particular
local environment. Specifically galaxies may share a common dark matter halo, the spin and the
gravitational tidal field of which will induce local shape correlations. A slightly more pervasive
effect arises from the fact that a mass concentration on the line of sight lenses background sources
whilst simultanously tidally distorting foreground galaxies. These astrophysical correlations are
called intrinsic alignments (IAs). If we measure shape-shape correlations, based on equation 2.47
(assuming we are in the weak lensing regime) we find:

〈
ei(θ)e(θ + θ′)j

〉
=
〈
γi(θ)γj(θ + θ′)

〉

+
〈
esrc,i(θ)γj(θ + θ′)

〉
+
〈
γi(θ)esrc,j(θ + θ′)

〉

+
〈
esrc,i(θ)esrc,j(θ + θ′)

〉

= GG+GI + II,

(2.58)

where the angle brackets denote averaging over galaxy pairs i, j at positions θ and θ+θ′. The inter-
pretation of correlations of measured galaxy shapes is no longer a pure measure of the cosmological
shear. The additive terms, commonly called II and GI correlations, are typically subdominant to
the cosmological GG signal, but sufficiently large that they will bias cosmic shear based inference
if we neglect to account for them (Kirk et al., 2012; Krause et al., 2015).

2.3.3 Baryons & Modelling Uncertainties

Though often dominated by shear and photo-z inaccuracies and IA, a great many other effects
can influence the result of a shear measurement. Many of the theoretical uncertainties have been
shown using numerical forecasts to be acceptable for the current generation of surveys. The Limber
approximation, the flat sky approximation and the convergence weighting (magnification bias) all
fall under this category. Likewise, the modelling of baryons, which can shift power between scales
in the dark matter power spectrum, is somewhat phenomenological and depends significantly on
the specific models fed into hydrodynamical simulations. Fortunately many of these effects are also
strongly scale dependent, and a large part of the mitigation strategy of past analyses has involved
removing scales thought to be worst affected by such uncertainties.
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2.3.4 Expectation Bias

There has been a gradual recognition in recent years of another, perhaps less tangible form of
cosmological bias, which arises from the observer, rather than the objective measurement they are
making. It has long been understood in other fields of science that expectation of a particular result
can lead to unconcious bias. In simple terms, measurements which differ from an experimenter’s
preconceived notion of what the result should be will be tested more rigorously than those which
seem to agree. This is known as expectation bias, or experimenter bias. Definite instances of this
are difficult to identify, but there is clear potential, given the nature of observational cosmology,
where results are released as a continuous series ever tighter constaints on a handful of basic
parameters.

A case in point is the discrepancy between Planck and lensing datasets that have emerged in
recent years. Each new analysis published on the topic may be internally robust, but if there is a
tendency to search for systematics that drive new lensing results towards Planck (or vice versa)
the final cosmology result may be biased. Likewise, analyses (including revisting public datasets)
are more likely to be continued to completion and submitted for publication if they resolve known
tensions. In recognition of this the most recent lensing cosmology analyses have included some
form of blinding at the galaxy catalogue level (Dark Energy Survey Collaboration, 2016; Hilde-
brandt et al., 2016; Mandelbaum et al., 2017; Troxel et al., 2017). Additionally, and arguably
equally important, there is a growing consensus in the lensing community that individual investi-
gations should be blinded at the level of hiding cosmologically sensitive axes until the details of
the analysis have been fixed.



Chapter 3

Measuring Cosmic Shear in Year 1 of the
Dark Energy Survey

As discussed in the earlier chapters of this thesis, extracting an unbiased measurement of cosmic
shear from pixelised galaxy images is a highly challenging task. This chapter presents a summary
of work carried out within the weak lensing working group of the Dark Energy Survey with the
aim of doing just that. Specifically we detail the process of measuring galaxy shapes using a
forward modelling code, IM3SHAPE, and then calibrating and validating those measurements using
simulations. The end result is a shape catalogue of sufficient quality for weak lensing cosmology,
given the statistical power of DES Y1. The following forms part of the Y1 shear pipeline paper,
which has been submitted for publication in Zuntz et al. (2017). In the following we will refer to
this longer manuscript as Z17.

3.1 Introduction

Weak lensing, the deflection of light rays by wide-field matter, presents a powerful probe of cos-
mology and the laws of gravity. As discussed in earlier chapters, the deflection to which a bundle of
photons is subjected is dependent on two factors: the geometry of the source-lens system relative
to the observer, and the inherent lensing strength of the lens. On cosmological scales the former
depends on the expansion history of the Universe via the redshift-distance relation. The latter de-
pends on the level of structure in the Universe (the second moments of the cosmic density field),
or alternatively the laws governing large scale gravity. These sensitivities allow lensing to impose
limits on the history of the Universe, its underlying cosmological parameters and the equation of

78
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state of dark energy.
The most direct way to measure weak lensing is via the ellipticity of distant galaxies. The net

impact of intervening mass is to induce a shear, coherently stretching galaxy images on nearby
lines of sight. The magnitude of this effect is only a few percent, (smaller than both the variance of
intrinsic galaxy shapes and typical seeing), requiring us to construct vast catalogues of millions of
galaxies to maximise statistical power. This chapter reports on weak lensing shape measurements
from the first full year of data in a survey designed to meet these requirements.

The Dark Energy Survey (DES) is the largest extant lensing survey, and is part of the current
generation of Stage III experiments (Albrecht et al., 2006). As discussed in the opening chapter,
Stage III represents the current wave of ongoing surveys, and includes DES, KiDS and HSC. The
final footprint of DES will cover 5000 square degrees of the southern sky, and at the time of writing,
it has completed four out of its five planned observation seasons (discounting the first science
verification phase). The catalogues described in the following chapter are based on images from
the first of those years, a dataset covering 1500 square degrees. With a number of Y1 analyses now
awaiting publication, work continues apace to extract shape measurements from the much larger
Y3 dataset.

Building a catalogue of galaxy ellipticities from image data is a long process, at each stage of
which of which one must pay careful attention to potential biases. For more details of the initial
image processing steps see Z17. The first stage involves artefact detection and noise measurement.
Composite images are built by coadding single exposures, and stars and galaxies are detected
and classified on these so-called coadds. Astrometric transforms and the point spread function
are derived from each single-epoch image. We collect single-epoch postage stamps about each
detection in a coadd and stack them in a collection of binary tables called a Multi-Epoch Data
Structure (MEDS) file (see Jarvis et al. 2015). Finally, we arrive at the shape measurement process
itself, which forms the basis of this chapter.

Galaxy shape algorithms naturally fall into two categories. Any such measurement must ac-
count for non-cosmological distortions such as convolution by the PSF, which alter the apparent
shapes of galaxies. Forward modelling methods are currently the most widely used class of tech-
nique, and involve generating parametric models of the underlying galaxy, and distorting them
in a way designed to mimic instrumental effects. The model predictions are compared with the
data in order to obtain a likelihood for the galaxy parameters. The second class are known as
inverse methods and typically involve measuring second-order moments directly from the image
data. Corrections are applied retrospectively to compensate for the effects of the observing pro-
cess, and the extracted moments are used to calculate the ellipticity. This category includes many
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early methods such as KSB (Kaiser et al., 1995) and Shapelets (Refregier, 2003). Within each class
there are a great many qualitatively different algorithms with different assumptions. An advantage
of model-fitting codes, which has contributed to their widepread use in practical shear studies, is
that they return a likelihood for each fit. This provides a useful metric for assessing the quality of
the shape estimate.

Inevitably all of these techniques will be subject to biases, which will be strongly dependent
on the specifics of the implemention and the cuts applied. There are various ways in which one
can seek to eliminate (or at least mitigate) such estimation biases. The simplest is to accept the
existence of biases, and to constrain them by processing mock data with known input properties
through the same pipeline as the real data. A number of early studies derived a single global
calibration factor (Schrabback et al., 2007; Jee et al., 2013) from simulations, but more recent
studies have involved constructing per-galaxy corrections as a function of the measured properties
(e.g. Jarvis et al. 2015 and Hildebrandt et al. 2016). This is the approach taken by the IM3SHAPE

code in DES Y1.
Naturally, simulation-based calibration methods require the mock images to be carefully matched

to the properties of the data. Any mismatch could result in inappropriate calibration factors, which
would ultimately translate into a cosmological bias. Sparked by the computational and technical
challenges of generating large highly accurate simulations, there has been a flurry of interest in re-
cent years in alternative methods that reduce or remove the dependence on simulations. In Fenech
Conti et al. (2016), the KiDS collaboration used a method they call self-calibration, in which a
parametric copy of each object is generated from the best-fit model parameters. This new version
is re-measured and used to correct the initial measurement on the data, a process which removes
about half of the noise bias and reduces required simulation volumes. An alternative form of self-
calibration is set out by Huff & Mandelbaum (2017) and Sheldon & Huff (2017). This technique,
called metacalibration is implemented in the DES Y1 METACALIBRATION pipeline. Estimator bi-
ases are calibrated by applying an added shear to the real galaxy images and assessing its impact on
galaxy measurement and selection. This has been demonstrated to be highly effective in simulated
tests.

The shape measurement methodology in the DES Science Verification (SV) period was ex-
haustively detailed in Jarvis et al. (2015), hereafter J16. Many aspects of our methodology are
identical to the equivalent in SV. We refer the reader to that paper for details of these processes,
and focus here on the aspects that have been improved upon since SV.

This chapter is organised as follows: in Section 3.2 the observations upon which this work is
based are described. This includes all steps from image reduction to PSF measurement; though a
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large and time-consuming effort was expended in these early steps, the involvement of the author
was limited. The current chapter is thus limited to a brief overview of these processes. In Section
3.3 we describe the construction of the Y1 IM3SHAPE catalogue, and Section 3.4 outlines the
more delicate task of calibrating and testing it using simulations. Section 3.5 outlines the intended
usage of the Y1 shape catalogues, including recommended systematic priors based on our current
confidence in the calibration method. We conclude in Section 3.6.

3.2 Data

3.2.1 Observing Period and Conditions

The Dark Energy Survey Year One (DES Y1) catalogues are derived from image data from the
Dark Energy Camera (DECam) (Flaugher et al., 2015), which is installed on the Blanco telescope
at the Cerro Tololo Inter-American Observatory in Coquimbo, northern Chile. The data were
collected during the first full season of DES operations, between 29 Aug 2013 and 9 Feb 2014
and targeted regions at −60◦ . δ . −40◦. The aim was to obtain 4 “tilings” per filter over this
subset of the Y5 region, since covering the full area would reduce the average tiling depth to half of
this, which would significantly hinder our ability to mask cosmic rays and per-exposure systematic
errors. Due to variable atmospheric conditions the depth of the Y1 area is non-uniform. Figure 3.1
shows the footprint of the Y1 shape catalogues.

Compared to the SV catalogues described by J16, the Y1 shape catalogues represent a signifi-
cant step forwards in area but with a lower integrated exposure time (up to 4 × 90 s exposures in
griz vs 10 in SV). The quality of the Y1 imaging is superior to that taken in SV in several respects
(see Z17 for a list of improvements), the cumulative result of which is a smaller and less elliptical
PSF, and more uniform depth.

3.2.2 Fields in DES Y1

The DES Y1 footprint is shown in Figure 3.1, and covers a total of 1500 square degrees. Though
less than half of the eventual 5000 square degrees in the DES Y5 footprint, this still represents the
largest contiguous lensing survey to date. The area is divided into four areas, known as fields. The
broad southern area, which accounts for the bulk of Y1 overlaps with the South Pole Telescope
(SPT) CMB survey. This region was selected as the main Y1 science sample due to its large
continuous area. The Science Verification dataset, which reached the full Y5 depth, was also taken
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from ∼ 130 square degree patch within the SPT field, known as SPT-East. The elongated strip
along the top of the Y1 footprint is known as Stripe 82 due to its significant overlap with the
SDSS Stripe 82 region. A collection of 10 supernova fields are also included in Y1. These are
significantly deeper than the main survey. Along with the spectroscopic overlap fields, they were
used for validation of photometric redshifts, but not included in our final shear catalogues.

3.2.3 The GOLD Catalogue & Star/Galaxy Separation

The initial selection of galaxies on which shape measurement was performed is detailed in Drlica-
Wagner et al. (2017), and the selection described therein is referred to as the GOLD catalogue. The
steps from raw images through image reduction, photometric calibration, and object detection to
the catalogues are described in that paper. The star-galaxy separation process outlined by those
authors is applied to the IM3SHAPE catalogue.

Objects detected in the Y1 area are identified as galaxies or stars in the GOLD catalogue using a
classifier called MODEST. This quantity is based on the SEXTRACTOR SPREAD MODEL vari-
able, and is designed to discriminate between point sources and extended object. The IM3SHAPE se-
lection flags used throughout this chapter and the next incorporate a star cut using the the MODEST

classifier.

3.2.4 Blinding

In order to counter possible expectation bias, whereby participants of an analysis preferentially
accept findings which agree with previous published results to be correct, the Y1 shape catalogues
were blinded. The blinding operation transforms the ellipticity magnitude |e| of each galaxy as
|η| ≡ 2 arctanh |e| → f |η|, with a factor f assigned an unknown value drawn randomly from
a uniform distribution with bounds 0.9 < f < 1.1. This mapping preserves the fact that the
raw measured e values are confined to a unit circle, while rescaling all inferred shears. All Y1
cosmology analyses which made use of the shape measurements were required to freeze their
methodology before access to the unblinded catalogues was granted. Additional blinding measures
were mandated by the lead authors of individual investigations, as appropriate for the analyses in
question.
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Figure 3.1: The footprint of the DES Y1 IM3SHAPE catalogue. The colour map shows the local
raw number density and the solid outline shows the bounds of the Year 5 DES area. METACAL-
IBRATION covers the same area, but at slightly higher number density. The area is divided into
fields, as labelled. The largest section at the base of the footprint overlaps with the SPT survey,
and is thus referred to as the SPT region. The long equatorial strip to the north is known as Stripe
82. The disjoint supernova fields are not shown here, but fall within the same bounds.

3.2.5 PSF Estimation

One of the most important tasks prior to shape measurement is accurately reconstructing the PSF
at each position on the sky. The PSF describes how any point source on the sky is blurred into a
two-dimensional profile on the image. The galaxy images we have access to can thus be considered
as a convolution of the true surface brightness profile with a PSF kernel.

Since they are essentially point sources, observations of stars give us a direct (albeit noisy)
estimate of the PSF at fixed locations. Unfortunately, it varies across, as well as between, single-
exposure images and must be interpolated from the positions of stars (where it can be measured)
to the locations of galaxies (where it is required).

The process for PSF estimation in Y1 is largely unchanged from the procedure used in J16.
We used the PSFEX (Bertin, 2011) software to generate a PSF estimate at the position of each
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galaxy in the Y1 shape catalogues. In short, the process involves first identifying stars using a size-
magnitude diagram (Z17). The PSF shape and size is measured at the locations of the input stars
and interpolated using a second-order polynomial in CCD chip coordinates, which is interpolated
separately on each chip. The polynomial is then evaluated at the positions of a subset of stars
reserved for validation. We define the PSF size and shape in terms of the second moments of the
surface brightness profile (Seitz & Schneider, 1997):

T = Qxx +Qyy (3.1)

e = e1 + ie2 =
Qxx −Qyy + 2iQxy

Qxx +Qyy + 2
√
QxxQyy −Q2

xy

(3.2)

where the moments are defined in equation 2.42. The moments are measured using an adaptive
moments based algorithm (HSM; Hirata et al. 2004).

3.3 The IM3SHAPE Catalogue

3.3.1 Overview

As implied above, there are two shape catalogues based on DES Y1, both of which are available
for use within the survey’s membership. The author played a major role in generating one of
these two science-ready catalogues, and it is upon this that we will focus here. This dataset was
generated with the maximum likelihood code IM3SHAPE, a forward modelling algorithm that uses
Levenberg-Marquardt minimization of the likelihood of fitted parametric profiles. In its current
for IM3SHAPE performs two independent fits using Sérsic models with power-law indices n = 1

and n = 4. We fit all of the single-exposure data simultaneously with one model, but exclude the
coadd. The mimimization uses unmasked pixel data from all of the postage stamp cutouts of each
galaxy, weighted according to the estimated noise variance. Each galaxy is then identified as either
a bulge or a disc, depending on which model returned the superior likelihood. A diagram of the
iterative fitting cycle for a given model (i.e. bulge or disc) is shown in Figure 3.2.

The IM3SHAPE code1 (Zuntz et al., 2015) is largely unchanged from the version used in SV,
though the simulations used to calibrate are significantly different. We refer the reader to J16 and
the original code release paper Zuntz et al. (2015) for more details about the algorithm itself.

1https://bitbucket.org/joezuntz/im3shape-git
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Single-Exposure 
Galaxy Cutouts 

Trial parameters 
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Figure 3.2: Schematic diagram of the fitting process implemented by IM3SHAPE. Trial solutions
(bottom left) are repeatedly generated and combined with PSF estimates to create a convolved
model prediction. The per-pixel predictions are subtracted from the image, and used to evaluate
the likelihood of the model parameters. The process continues iteratively until the likelihood has
converged.

The galaxy models used by IM3SHAPE have six free parameters: two ellipticity components
(e1, e2), a half light radius r, a centroid offset (x0, y0) and an amplitude A. We also compute
a signal-to-noise ratio (S/N ) for each measurement using the convention of Mandelbaum et al.
(2015) and J16, and a PSF-normalised size Rgp/Rp. As we point out in J16, this signal-to-noise
measure is analogous to a matched filter, favouring maximal agreement between the model fit and
the image pixel fluxes. Rgp/Rp, is defined as the ratio of the full width at half maximum (FWHM)
of the convolved galaxy to the PSF FWHM, where the former is measured from a circularised
version of the best-fit galaxy profile.

The mean time required by IM3SHAPE to analyse a single galaxy in DES is 1.6 seconds per
exposure. In practice many objects converge in less time, and the mean is raised by a small number
of faint or otherwise poorly fit objects. The total time required for shape measurements on the
full Y1 dataset to complete was approximately 200, 000 CPU hours, although this ignores the
computation time for running and analysing the necessary suite of calibration simulations.
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All IM3SHAPE measurements presented here were carried out at the National Energy and Sci-
entific Research Computing Center2 (NERSC) and the GridPP grid computing system3 (Britton
et al., 2009). The Y1 HOOPOE simulations were generated entirely using the NERSC facility.

3.3.2 Galaxy Weights

We compute a measurement weight for each galaxy in DES Y1 using a very similar calculation
to that outlined by J16. In summary, we first define a 2D grid of signal-to-noise and size, with
each cell containing roughly the same number of galaxies. In each cell a zero-centred Gaussian
is first fitted to the histogram of the e1 component ellipticity, and the standard deviation is also
calculated directly. This yields two similar but non-identical variance estimates, of which we adopt
the maximum. The resulting grid is then interpolated using two dimensional radial basis functions
to the position of each galaxy in this parameter grid. The weight allocated to a given galaxy is
simply the inverse of the interpolated variance at that position. This process is designed to estimate
the total uncertainty of an ellipticity measurement, including both shape noise and measurement
uncertainty. The simulated galaxies used to calibrate IM3SHAPE are assigned weights by the same
process, and these weights are used in constructing the shear calibration.

3.4 The HOOPOE Image Simulations

In this section we describe an extensive suite of image simulations, tailored to DES Y1 and built
specifically for the purpose of constraining shear measurement bias. The resulting cloned survey,
the so-called HOOPOE simulations, were used to model the biases, as parameterised in the standard
way in equation 2.57. The additive term ci can be constrained directly from the data, as it does not
rely on knowing the underlying shear we are trying to recover at the outset. This is not the case
for the multiplicative bias m. No evidence of a systematic difference between m1 and m2 has been
detected in any region of parameter space, and so our calibration uses the arithmetic mean of the
two components m = (m1 +m2)/2.

The Y1 simulations differ in philosophy from those used in SV. The latter started with postage
stamp images of isolated galaxies, to which observational features were added as deemed neces-
sary. For Y1 we start with a set of reduced survey images, and create an object-for-object simu-
lacrum of the entire image plane, preserving as much of the original detail as possible.

2http://www.nersc.gov/
3https://www.gridpp.ac.uk/
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Figure 3.3: Flow-chart illustrating the steps
in the DES Year 1 shape analysis, from low-
level calibrated data products released by
DES Data Management to the final science-
ready shape catalogues. Yellow stages
are performed by the DES Data Manage-
ment division prior to releasing the data
to the collaboration. Green blocks are
tasks conducted within the weak lensing
group. Processes unique to each of the
two shape pipelines, IM3SHAPE and META-
CALIBRATION, are shown in blue and red
respectively.

3.4.1 Simulating DES Y1: The Image Pipeline

The simulation pipeline for the HOOPOE image simulations is shown in the blue (left-hand) part of
Figure 3.3. Subsequent analysis of the simulations was closely matched to the equivalent process
used on real data, although we do not repeat the coaddition of single-epoch data or PSF estimation.
The galaxy positions, noise levels, and PSFs of each simulated galaxy are taken directly from the
real observations. An image mask is constructed from a bad-pixel map, which is imported from
the data, and an object segmentation map, which is remade on the simulations.

The HOOPOE image simulator begins by choosing one of the 0.75 × 0.75 degree coadd tiles
output by the DESDM pipeline. Each tile is the result of coaddition of around 70 partially over-
lapping exposures. In order to simulate each tile we require (a) a source catalogue generated by
SEXTRACTOR (or similar object detection algorithm), (b) a WCS specifying the image bounds
and the transformation between pixel and world coordinates per exposure, (c) a model describing
the PSF variation across the image plane, (d) a noise variance weight map per exposure.

With these basic inputs the simulation then proceeds as follows:

1. A set of noise images is generated from the SEXTRACTOR weight maps, matched to the
bounds of each real input image for this tile. A simulated coadd-image is also generated in
the same way.
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2. The true detection catalogue for the region is imported, and a population of fainter undetected
galaxies is added (see Section 3.4.2).

3. It the iterates through galaxy positions, selecting a random COSMOS profile from a rolling
cache, set to give an expectation value of the number of unique profiles per coadd tile of
2000. Profiles are simulated with an additional shear and rotation angle drawn from g1,2 ∈
[−0.08, 0.08], and θ ∈ [−π, π].

4. The profile is convolved with the PSF at the appropriate position in each image. The con-
volved profile is then drawn into each image (including the coadd).

5. If a faint galaxy is associated with a particular position (see Section 3.4.2) then another
profile is drawn from a secondary cache of COSMOS faint profiles. It is placed at a random
point in the region encompassed by the overlap of all the exposures that contain the current
galaxy. This is intended to ensure it is placed in approximately the same part of the image
bounds, but will not guarantee that it is a close neighbour. It is convolved, sheared and
rotated as in the previous steps, using its own independent random values.

6. Once the full image has been simulated, SEXTRACTOR is run on it, generating a new detec-
tion catalogue and segmentation mask.

7. It iterates through the detection positions a second time, building the SEXTRACTOR mask
for each and extracting a postage stamp cutout. In the version of the simulations the stamp
size was not recomputed for each object, but was imported from the parent data. Later code
versions modified this, but the change was not included for the Y1 simulation runs. As
discussed in the final section of this chapter, this has implications for the priors we place on
post-calibration residual biases.

8. Our code then stores and stacks the galaxy cutouts in the MEDS format (J16).

9. Finally IM3SHAPE is run on the HOOPOE MEDS files. Deblending flags are propagated into
the selection flags, and the measured shears are blinded using the prescription described in
Section 3.2.4 with the same factor f as is applied to the data.

3.4.2 Galaxy Sample

To capture the range of morphologies found in a photometric survey like DES, the Y1 HOOPOE sim-
ulations use real galaxy profiles rather than analytic constructions. Ideally the selection of galaxies
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used for calibration should extend to at least the same depth as the data and have sufficiently low
levels of noise and seeing to allow them to be degraded to match DES precisely. These require-
ments somewhat limit our options. The galaxy catalogue used by HOOPOE comes from Advanced
Camera for Surveys (ACS) imaging of HST’s COSMOS field (Scoville et al., 2007). The catalogue
of ∼73,000 objects has been “whitened” (correlated noise removal; see Rowe et al. 2015), and is
a deeper superset of the galaxies used in the GREAT3 challenge4. It extends significantly beyond
the Y1 detection limit of Mr,lim = 24.1, reaching ∼ 25.2 mag in the HST F606W filter and ∼ 27.9

mag in the DES r-band. The publicly available HST data is limited to wide band photometry in
the optical F606W filter. In order to obtain the desired magnitudes, we match the sky position of
each of these galaxies to the COSMOS mock catalogue of Jouvel et al. (2009), which includes
photometry specific to the transmission curves of the DES filters.

The input sample for a tile is then generated by splitting the COSMOS catalogue about the
DES Mr,lim and excluding objects too faint for detection. Each of these galaxies is simulated at its
original COSMOS magnitude, rescaled to the zero-point of the DES images.

Simulated Stars

The mock images also contain stars, simulated at the positions of objects classified as stars in the
real data. Stars are rendered as point sources and account for around 10% of simulated objects.
This should capture any effect they may have as a source of neighbour bias, including changes
they induce in the galaxy selection. Each simulated star is drawn at the measured magnitude of the
real star whose position it inherits, and so should the distribution of simulated stellar magnitudes
should match the data by construction. We do not re-run star/galaxy separation in the simulations,
and so do not account for any bias from mis-classification. The cuts to the IM3SHAPE catalogue
in size and S/N , however, will remove the majority of the ambiguous objects, so we expect the
impact of this decision be small (see Section 3.5.5).

Galaxies Below the Detection Limit

In addition to simulating objects detected in parent data we also wish to simulate a population of
fainter objects that escaped detection. These objects do not correspond to detection positions, but
nonetheless appear in the real images. In reality such objects will contribute flux to the images
and may affect both the measurements and the selection function of the detected galaxies. The

4http://great3.jb.man.ac.uk
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code chooses a number of faint galaxies for each tile Nfaint by integrating the full distribution of
COSMOS magnitudes,

Nfaint =
ffaint

(1− ffaint)
×Ndet, (3.3)

where ffaint ≡
∫∞
Mr,lim

p(Mr)dMr is the fraction of the weight of the normalised magnitude distri-
bution p(Mr) above the nominal DES detection limit, and Mr is the aperture magnitude. Each of
these extra objects is randomly assigned a companion from the detections within its coadd tile. The
faint object is placed at a random positions in the same set of exposures as its detected companion.
It does not replace it, nor are their properties linked in any other way, but its position is constrained
to the overlapping bounds of the same subset of single-exposure images5.

In the real data the flux from these galaxies enters the images prior to reduction, and would
affect the background subtraction. For computational reasons we do not to not simulate thermal
sky emission and rerun the background subtraction. To gauge the impact of the extra background
flux, a small subset of the simulations was rerun with the same random seed settings, but omitting
to draw the faint galaxies. The background estimation algorithm was then applied to the two sets of
images, which were identical apart from the flux of the faint objects. In summary we find that the
first order impact of the sub-detection galaxies is a uniform shift in the mean of the estimated sky
background. To correct for this effect we apply a uniform additive flux correction prior to shape
measurement. This correction subtracts off the mean per-pixel flux of the faint objects drawn
into the specific tile, which is roughly equivalent to their impact on the background flux level.
The numerical experiment outlined above is described in more detail in Appendix A. The impact
of subdetection galaxies on shear measurement is also explored in more detail in Section 5.4 of
Samuroff et al. (2017a) and in the next chapter of this thesis. In the tests presented therein we find
a net contribution to the bias budget m ∼ −0.01.

3.4.3 Comparing Simulations & Data

Given the sensitivities of measurement bias to the observable parameters of an image, most notably
signal-to-noise, size, and ellipticity, it is important that the simulations should cover the same
parameter space as the data. Whereas the calibration explicitly bins in S/N and Rgp/Rp, and so
exactly matching the shape of the distributions is only of secondary importance, the same is not

5We note that the use of random positions neglects small-scale correlations, which could lead us to underestimate
the level of blending in the data. The significance of this effect is beyond the scope of the current analysis, but is a
useful subject for further investigation.
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true of ellipticity or PSF properties.
In general we find good agreement between observables in the simulations and data. Figure 3.4

compares the measured distributions for a number of salient quantities. Unlike in previous studies,
we are convolving simulated galaxies with the measured PSF at each position on the sky. This
avoids quantising the PSF, which typically requires a large representative pool of distortion kernels
in order to accurately mimic the measured distributions of these properties. It also accurately
captures spatial correlations that would be lost if we were to draw randomly from a pool of analytic
PSFs. Even using the measured PSF as input, after quality cuts it is non-trivial that the PSF
properties still match well to the data. It is thus reassuring that the blue and purple curves in the
upper-most row of Figure 3.4 agree as well as they do. Any significant difference in PSF properties
after these cuts would imply a different selection behavoiour with respect to PSF in simulations
compared to the data. Unlike in real data the simulations do not include PSF errors, though we do
test this and recognise it as a contribution to the final prior on multiplicative bias m. (see Section
3.5.5).

The distribution of input simulated ellipticies in Figure 3.4 is notably narrower than the mea-

sured distributions in both simulations and data. This is not unexpected as a consequence of both
pixel noise and blending. It is, however, interesting to compare these results with shape mesure-
ments on a set of spin-off simulations described in Chapter 4 (see also Samuroff et al. 2017a). In
those simualations, which are identical to HOOPOE, other than the removal of neighbour flux, we
find a histogram of measured ellipticities that is much narrower. The qualitative match to the input
distribution suggests that blending is a non-trivial factor in determining the shape of the measured
ellipticity distribution.

There are still noticeable differences in the measured Rgp/Rp distributions, increasing in small
galaxies despite the distributions of PSF size and best-fit radius individually matching the data well.
A similar discrepancy was apparent between in SV (see J16’s Figure 12), though it was largely
eliminated by the more stringent size cut we adopted there. This is thought to be a result of the
(partially overlapping) COSMOS sample used in both simulations, or the similar PSF estimation
methodology employed in Y1 and SV.

Finally in the lower panel we compare the input and output magnitudes from the simulations.
The green shaded (dotted) histogram represents the full COSMOS catalogue, which is complete
down to a 25.2 mag in the HST F606W filter. Clearly drawing randomly from this distribution
would leave us with many galaxies well below the DES detection limit. The dashed and solid
purple lines show respectively the input COSMOS magnitudes, selected to use in the simulation,
and the values remeasured from the simulated images. No significant bias in the remeasured mag-
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nitudes is detected, nor any serious disagreement with the data.

3.4.4 Bias Calibration & Diagnostics

Multiplicative Bias Scheme

With the simulations generated and shape measurements complete, this section will now define a
scheme to correct for the multiplicative bias measured in the simulations. This task by necessity
involves interpolating among noisy measurements. Both on theoretical grounds for noise bias (Re-
fregier et al., 2012) and as has been found in practice (e.g. J16 and Fenech Conti et al. 2016), shear
biases are primarily sensitive to galaxy size and the S/N of the measurement. As is now standard
in weak lensing analyses the Y1 calibration model is built as a function of these parameters.

The first step in this process the involves sorting the simulated HOOPOE data into a 16×16 grid
according to the measured S/N and Rgp/Rp, allowing the bin width to vary such that each grid
cell contains roughly the same number of galaxies. A multiplicative bias is derived within each
cell by subdividing the galaxies into bins of gtr and fitting a linear function to the bin-averaged
shear response 〈ei〉 − 〈gtr

i 〉 (see equation 2.57). The resulting bias surface mij is shown in Figure
3.5.

It is important here to define a well motivated gridding scheme in terms of binning along each
axis; too coarse a grid will result in real structure in this parameter space being washed out, while
an overly fine sampling will inflate the statistical variance on our grid nodes. We have verified that
varying our fiducial 16× 16 grid between 6× 6 and 20× 20 does not lead to a significant change
in the results.

The next task is to interpolate this grid onto the actual galaxies in this parameter space. To en-
sure the results presented here are robust, we compare three methods for performing this mapping.
In the first scheme, we follow Fenech Conti et al. (2016), and compute a fine grid in m. If a galaxy
falls within cell ij, the mean m in that cell is taken as the bias estimate. The accuracy of such an
approach will clearly depend on the resolution of the grid.

In the second scheme we interpolate between grid nodes using radial basis functions. The bias
at a given point is calculated as a linear combination of radial basis functions, each of which is
centred on one of the nodes:

m(x, y) =

∑
imif((x− xi)2 + (y − yi)2)∑
i f((x− xi)2 + (y − yi)2)

(3.4)
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Figure 3.4: A comparison of normalised distributions in the Y1 simulations used for
IM3SHAPE calibration (purple) and data (blue). The upper panels show (clockwise from upper
left) PSF ellipticity; PSF size, as measured using HSM; the fraction of pixels masked out, av-
eraged across each object’s exposures; IM3SHAPE’s measure of galaxy size relative to the PSF,
Rgp/Rp; flux signal-to-noise; and total galaxy ellipticity. In the latter we show both the input
and remeasured distributions to the simulations as dashed and dot-dash lines respectively. The
lower-most panel shows the distribution of measured and input magnitudes from the simulation, in
addition to the data. The shaded green (dotted) curve shows the equivalent r-band magnitudes for
the full COSMOS catalogue from which we draw our input sample.
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Method ∆m(1) ∆m(2) ∆m(3) ∆m(4)

Uncalibrated -0.0886 -0.0981 -0.1200 -0.1547
Grid 0.0069 -0.0014 -0.0074 0.0013

Radial Basis 0.0056 -0.0024 -0.0082 -0.0022
Polynomial 0.0049 -0.0028 -0.0078 -0.0000

Table 3.2: Residual multiplicative bias in the IM3SHAPE calibration simulations, after calibration
using different methods for interpolating mij nodes onto individual galaxies. The calibration is
derived globally, and the residuals are computed for the redshift bins used in the cosmic shear
analysis in Troxel et al. (2017).

where
f(r2) =

(
r2/ε2 + 1

)− 1
2 (3.5)

and the (x, y) coordinates are S/N and Rgp/Rp suitably weighted to give the two dimensions
parity, ε is a fixed smoothing parameter, and the sums are over the grid nodes.

Finally, we fit the polynomial basis used in J16. It is not particularly useful to not write out the
entire functional form here, but we note that it consists of a linear combination of 18 terms of the
form (S/N)−α(Rgp/Rp)

−β , where the indices α, β ∈ (1.25, 1.5, 1.75, 2, 2.5, 3, 4). We will refer
to these three methods respectively as grid, RBF and polynomial calibration schemes. Owing to
slightly better performance in diagnostic tests the grid scheme is taken as our fiducial choice.

The relative performance of the three schemes can be assessed visually from Figure 3.6, where
we show the residual bias after calibration as a function of signal-to-noise and galaxy size. The
residual bias after applying the grid-based calibration might naively be expected to be zero, when
binning on the same quantities used to calculate the calibration in the first place; this is only true if
the same binning is applied, which is not the case in Figure 3.66.

3.4.5 Robustness to Tomographic Binning

A simulation-based calibration of the sort presented here may be valid for the full dataset, and yield
residual biases within tolerance, but it does not trivially follow that this is true of all sub-divisions
of the data. It is perfectly possible that there are competing sources of biases, which by chance

6Imagine taking a set of galaxies with roughly the same S/N , dividing them into two bins about the median S/N ,
and calculating the mean m in each half. If we apply those corrections to the same halves and recompute m, then
indeed, by construction the residual bias will be zero. Instead we can define a new box, placed across the interface of
the two bins, such that it contains galaxies from both. It is no longer trivial that fitting for m in this new selection will
give the mean of the values computed from the two bins
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Figure 3.5: Top: Multiplicative bias estimates for Y1 IM3SHAPE, using the HOOPOE image sim-
ulations for objects fitted using bulge profiles (right) and disc profiles (left) . The colored circles
represent the grid of directly evaluated m described in the text. The underlying colour map is
generated using radial basis functions to interpolate between nodes, and is for illustrative purposes
only. Bottom: Bulge fraction as a function of galaxy signal-to-noise and size. The bulge fraction
is calculated on a 16 × 16 grid and interpolated to generate the smooth map shown. The circles
represent the grid cell positions, and are drawn at a size proportional to the total IM3SHAPE lensing
weight of the galaxies contained.
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Figure 3.6: Multiplicative bias for IM3SHAPE measured from the full Y1 simulations, as a function
of galaxy signal-to-noise ratio and size. The blue circles in both panels are the measured biases
prior to calibration. The other points, labelled grid, RBF and polynomial are the result of correction
using the three methods described in the text. The shaded blue band marks the±1σ Gaussian width
of the recommended m prior for the Y1 IM3SHAPE catalogue.

cancel to zero. It is also possible to induce biases by introducing extra post-calibration selections
based on quantities which correlate with galaxy shape. We show some explicit examples of this in
Section 3.5.3.

Many science applications of the Y1 shape catalogues require a calibration that is robust to
selection in bins of redshift and angular scale. Unlike the equivalent simulations in previous WL
studies, HOOPOE generates images in sky coordinates, allowing us to test both of these. In this
section we focus on the tomographic selection; we refer the reader to Samuroff et al. (2017a) and
Section 4.6.2 of this thesis for discussion of scale-dependent selection effects.

The redshift information we have for each COSMOS galaxy has the form of single point-
estimate photo-z, as estimated using the ACS 30-band photometry. In the following we assume
this measurement is of sufficient quality to allow us to treat it as an input “true” redshift ztr.
Unfortunately large ground-based surveys typically have only a handful of broad filters, affording
somewhat less reliable point redshifts. The best photometric redshift estimates in DES Y1 are
unlikely to match their true redshifts exactly.

We build two sets of redshift bins for the calibration. For the first we use only the best es-
timate of of ztr directly for each object; this corresponds to ideal tophat redshift bins n(z) (how
the galaxies would be binned in the absence of redshift errors). In the second set we mimic the
scatter in photometric redshift: each HOOPOE galaxy is stochastically allocated to one of the four
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Y1 redshift bins. First, we construct a realistic set of DES Y1 redshift estimates using the Y1
IM3SHAPE catalogue. The redshift PDFs obtained from the BPZ code are stacked in four bins
z = [(0.2−0.43), (0.43−0.63), (0.63−0.9), (0.9−1.3)], resulting in four normalised distributions

ni(z). We assign each galaxy with true redshift ztr to a bin i, with probabilty ni(ztr)/[
4∑
j=1

nj(ztr)].

The resulting histograms of ztr in each bin cover the full range z ∈ [0.2− 1.3], and approximately
match the measured n(z) in each bin. This random assignment of redshifts does not simulate sys-
tematic correlation between photometric redshifts and shear. It does, however, address the smear-
ing out of the estimated redshift information due to noise, which we expect to be the dominant
effect.

To test the redshift dependence of our calibration, we measure the residual bias after splitting
into these bins. The results are shown in Figure 3.7 and Table 3.2 (the latter also includes values
comparing alternative interpolation methods). The tophat results show larger scatter than the ones
in slightly more realistic bins, which blur out the bias slightly. This worsens the residual m,
particularly in the upper bin, although the residual is still within the 1σ width of our final m prior.

The residuals in our tophat redshift bins demonstrate an important limitation of our current
calibration procedure: namely that galaxy morphology (and thus measurement bias) varies with
redshift. Our calibration assumes that S/N and size are a sufficient proxy for change, which will
be true only to some level of accuracy. The results on DES-like photometric bins suggest this has
less impact on the real data, but as the requirements on m become ever tighter and we find new
ways to improve the accuracy of our redshift estimates, this effect is something of which lensing
community must be aware.

It may be argued that the tests outlined above are somewhat circular; we derive a calibration
from the simulation, then use the same simulation to test its accuracy. As a further test we split the
simulated dataset sample into halves, and use one half to generate a calibration model for the other.
We perform this test twice, using different splitting methods. First, dividing the catalogue that each
part contains an equal number of HOOPOE galaxies. The second time we define a split such that
roughly equalises the number the unique COSMOS profiles in each half. Since measurement biases
depend on both the distribution of galaxy morphologies and the specific observing conditions,
neither test is redundant to the other. The results are shown in Table 3.3.

Though subdominant to the other forms of systematic bias discussed in this paper, the residual
bias in the third redshift bin is statistically significant. Some residual biases might be expected,
given that we are using a rigid two parameter grid to describe complex morphology-dependent
biases. Unfortunately, it is not possible to predict the magnitude or sign of these residuals, which
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Split Type ∆m(1) ∆m(2) ∆m(3) ∆m(4)

None 0.0069± 0.0044 −0.0014± 0.0046 −0.0074± 0.0030 0.0013± 0.0034
At random 0.0021± 0.0046 −0.0018± 0.0039 −0.0095± 0.0039 −0.0027± 0.0054

By COSMOS profile 0.0034± 0.0062 −0.0006± 0.0060 −0.0048± 0.0037 0.0073± 0.0039

Table 3.3: Residual multiplicative bias in the HOOPOE simulations under various divisions. For
reference the top line shows the result of applying the fiducial calibration to the whole catalogue,
and is identical to the “grid” line in Table 3.2 and the purple diamonds in Figure 3.6. The other
lines show the remeasured biases when using disjoint calibration and validation subsets of the
simulation. We split first at random, such that there are equal numbers of HOOPOE galaxies in
each subset, and then such that there are equal numbers of COSMOS profiles in each.
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Figure 3.7: Residual multiplicative
bias for IM3SHAPE measured from
the full HOOPOE catalogue in four to-
mographic bins after fiducial calibra-
tion. For the “tophat” points objects
are binned by their COSMOS red-
shifits, and for the “DES” bins they
are assigned to match DES Y1 red-
shift distributions, partially simulated
photometric redshift errors. As above
the shaded band shows the 1σ width
of our Gaussian prior on m in the Y1
IM3SHAPE catalogue, and the hori-
zontal dotted lines the redshift bin
boundaries.

depend on the details of the COSMOS sample and how they are distributed between redshift bins.
It is thus not guaranteed that the measured residualm in the third redshift bin implies an equivalent
bias in the data.

To account for this uncertainty we widen our prior on the residualm in the calibrated catalogue.
The maximum amplitude of the residual bias in Figure 3.7 is |∆m(i)| = 0.0080. We include this
amplitude rounded up to σm = 0.01 as a systematic contribution to the prior on residual bias in the
IM3SHAPE catalogue (see Section 3.5.5). In order to ensure we are not underpredicting the level
of uncertainty we also widen the m prior to account for the fact that these residual biases will be
correlated between redshift bins.
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3.4.6 Validating the HOOPOE Simulations

The calibration tests presented above are promising, but make use only of the simulations them-
selves. As will inevitably be the case with simulations, however, HOOPOE is not a perfect copy of
the data, and systematic differences are present that may affect the multiplicative bias calibration.

The first limitation comes from the fact that a finite selection of COSMOS galaxies is used to
simulate a much larger sample of DES galaxies. The cache of input profiles, though continuously
updated, is relatively small. This results in particular COSMOS galaxies appearing repeatedly
within particular regions of the simulated images. Such effects could conceivably lead to biases,
either additive (since the drawing process is directional) or multiplicative, if the frequency of rep-
etition is sufficiently high. To test this we divide the HOOPOE galaxies according to COSMOS
identifier. For each unique profile we construct a k-d tree data structure on the coadd pixel grid.
This is repeately queried to locate the nearest instance of the same COSMOS profile. The distance
to this self-neighbour is referred to as the reccurrence scale.

We find a mean reccurrence scale of ∼ 150 pixels or 40.5 arcseconds, though there is a sig-
nificant asymmetry in the distribution of distances with a heavy tail out to 1000 pixels and higher.
The fraction of galaxies with a relatively close self-neighbour is, however, also non-vanishing. We
thus perform the following test. HOOPOE galaxies are first assigned to four tophat redshift bins,
as described in Section 3.4.5. In each bin we fit for multiplicative and additive biases (a) using all
galaxies and (b) using only galaxies with no instance of the same profile within a radius of 100 pix-
els. The raw number removed by the cut is relatively small, but it could conceivably favour small
round objects. To ensure we are measuring the true impact of self-neighbours, and not a selec-
tion effect from the cut devised to remove them, we reweight the surviving galaxies. Weights are
assigned based on S/N and Rgp/Rp, such that, when applied, the 2D histogram p(S/N,Rgp/Rp)

matches the data. We find no significant change in multiplicative nor additive bias in any of the
redshift bins (∆m ∼ 10−4, ∆ci ∼ 10−5).

A second limitation concerns the nature of the input COSMOS profiles themselves. The simu-
lations make use of an early release of the deep COSMOS catalogue. Due to masking errors and
deblending failures a (small) fraction of this input catalogue are visibly defective. Given that these
represent unphysical characteristics, it is very difficult to gauge their impact on shape measure-
ment. Though one might expect the majority to be flagged by IM3SHAPE’s quality cuts, we cannot
assume that they have no net impact. To test this, an internal collaboration crowdsourcing exer-
cise was devised, the details of which can be found in Appendix B. The aim was to categorise the
COSMOS galaxies into groups according to their visual characteristics. In total the cut resulting
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from this exercise to excise the corrupted profiles removes 0.51M/18M objects from the simulated
shape catalogue. Using a similar nearest neighbour search as described above, we estimate mean
distance to the nearest “bad” COSMOS profile to be ∼ 90 pixels. We recompute the biases m and
ci under three scenarios: (a) using all galaxies, (b) cutting COSMOS profiles classed as artefacts
or oversized relative to their postage stamps and (c) the same as (b), but also removing galaxies
drawn within 100 pixels of a bad COSMOS profile. We find the computed biases are stable to well
within 1σ in all apart from the upper redshift bin. Here we lose the bulk of the galaxies flagged
by this cut, which is perhaps unsurprising given that these objects tend to be small, faint and thus
most susceptible to deblending failures. The change in all scenarios is at the level of the 1σ sta-
tistical error at ∆m ∼ 0.005 − 0.0075. Though small, this is non-trivial and we incorporate this
uncertainty as a systematic contribution to our m prior (see Section 3.5.5).

The use of the Y1 detection catalogue to source the positions of simulated galaxies is intended
to capture the galaxy clustering patterns across the survey. It does have some drawbacks, chiefly
that it omits undetected or strongly blended galaxies (see Section 3.4.2). A second potential lim-
itation is this: not all detections in the Y1 source catalogue correspond to real galaxies. Spurious
detections can be produced by CCD chip edges and by image artefacts such as satellite trails and
ghosts. It should be stressed that the real images undergo rigorous processing and vetting prior to
shape measurement, and so these features are not included in the final gold catalogues described
by Drlica-Wagner et al. (2017). The raw detection catalogues, which are used as inputs to our
simulations, however, do not provide sufficient information to distinguish real from false detec-
tions during runtime. We tried a simple detection algorithm to flag these features using boxcar
averaged source densities along rows of pixels, but this was not found to reliably detect diagnonal
or curved streaks. The HOOPOE images consequentially include infrequent but visually striking
lines of COSMOS galaxies in these locations. To quantify the impact, a second crowdsourcing ex-
ercise was implemented analogous to the one described in Appendix B. Participants were asked to
inspect approximately half of the simulated tiles, each of which was split into 5×5 square patches.
Patches in which the detection positions exhibited structure were flagged for removal. As before
we then divide HOOPOE galaxies into DES-like redshift bins and recompute m and ci, including
and then excluding the flagged regions. Using all galaxies (no redshift binning) we find a shift
∆m = 3.7 × 10−5, which is equivalent to less than 2% of the 1σ statistical uncertainty on m. In
four redshift bins we remeasure the bias befor and after the cut, and find a difference m by at most
∆m = 0.0007. Since any systematic shift is comfortably subdominant to statistical uncertainty,
we do not consider spurious detections further as a source of systematic calibration error.
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3.4.7 Sensitivity to Observable Distributions

Finally, we seek to quantify the impact of the differences in observable characteristics seen in
Section 3.4.3. The only quantities that show systematic differences are flux (note that we treat
bulge and disc fluxes as separate parameters here) and Rgp/Rp. The raw distributions of Rgp/Rp

and flux are shown by the solid lines in Figure 3.8, with the parent DES data shown by the shaded
histograms.

We assess the importance of these differences by reweighting the HOOPOE measurements to
match the real data. In the case of Rgp/Rp we simply divide galaxies into bins of size and assign a
uniform weight to each bin, such that the simulated distribution p(Rgp/Rp) matches the data. In the
second case we carry out the same procedure for galaxy flux. This time, however, an independent
set of weights is computed for bulge and disc galaxies, such that they each match the corresponding
sub-populations of the data. The reweighted distributions are shown by the dashed lines in Figure
3.8.

As pointed out by Fenech Conti et al. (2016), who carried out a similar test for KiDS, reweight-
ing can be problematic if the quantities in question are covariant with ellipticity. In such cases
reweighting to match a 1D projected distribution p(q) may be inadequate to correct (or even
worsen) differences in the 2D joint distribution p(q, e). In each case we check both the 2D dis-
tributions (not shown here) and the 1D p(e) histograms (shown in the right-hand panels of Figure
3.8). Neither reweighting operation is found to produce such spurious differences.

Finally, galaxies are divided into four Y1-like tomographic bins, as before, the fiducial cali-
bration is applied, and the residual m is calculated in each bin. The results are shown in Figure
3.9. The maximum change under reweighting ∆m in both cases is O(10−3). This is not found to
have a coherent direction across z bins, and is well within both the statistical error margin (the blue
shaded boxes) and the 1σ width of our prior (the dashed horizontal lines).

3.5 Using the Shear Catalogues

3.5.1 Mean Shear

Both catalogues show a non-zero mean ellipticity over the entire Y1 survey, with a value e1,2 =

(2.9, 1.8) × 10−4 for METACALIBRATION and e1,2 = (−1.5, 2.7) × 10−4 for IM3SHAPE. This is
marginally too large to be the mean of cosmic shear over the field: in log-normal simulations we
find a standard deviation of the mean e1,2 ∼ 1 × 10−4 over our region. An added constant shear
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Figure 3.8: Histograms of flux (upper left), size (lower left) and ellipticity (upper/lower right) in
the data and simulations used for IM3SHAPE calibration. In the upper panel we show bulge and
disc galaxies separately in red and blue respectively. In all panels the filled distributions are the
DES Y1 data and the solid lines show the full HOOPOE simulations. The dashed lines in the upper
two panels represent same simulation sample, but reweighted to match the flux distributions of the
data, as described in the text. The lower panels show the same, but reweighted for size.

will appear as a constant offset in correlation function measurements. We thus have the choice
of either empirically subtracting a constant value from the datavector, or marginalising over an
additional nuisance parameter in cosmological parameter estimation.

The origin of the mean shear is unknown, and is likely to be the combination of several effects.
Charge self-interaction effects in the DECam CCDs are expected to cause mean shears in the
e1 direction that are or the order of a few times 10−4 (see Table 1 of Gruen et al. 2015). Residual
shear-PSF correlations might also be expected to contribute a directional shear to the measurement.
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Figure 3.9: Change in the resid-
ual IM3SHAPE bias resulting
from reweighting the simula-
tions prior to calibration, shown
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3.5.2 Catalogue Flags

Each catalogue uses its own flagging scheme to determine which galaxies can safely be used in
science applications. The scheme adopted for IM3SHAPE is similar to that in J16. A small num-
ber of “error flags” that identify the most extreme objects, and a larger number of “info flags”
are designed to select the highest quality shape measurements. These shape measurement flags
are combined into a single FLAGS SELECT=0 value in our released catalogues. The requirement
of zero-valued flags is imposed when computing the calibration scheme, and should be likewise
applied in precision applications that make use of it.

The flag values are described in Table 3.4. The main changes implemented since J16 are a
reduction in minimum S/N from 15 in SV to 12 here, and our minimumRgp/Rp from 1.15 to 1.13.
These decisions reflect the improved treatment of small faint objects in the calibration simulations.
The following cuts are strongly recommended for the IM3SHAPE catalogue:

S/N > 12,

Rgp/Rp > 1.13.

(3.6)
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Deciding the exact numerical values of these cuts is not an exact science. The lower bounds
are imposed on these quantities due to limitations in the input COSMOS sample we use in the
simulations (see Mandelbaum et al. (2015)). It is worth reiterating that additional selection beyond
the recommended cuts should be approached with extreme caution. This point is elucidated in the
following section, where we describe the correct application of the simulation-derived calibration.
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Figure 3.10: Multiplicative bias for IM3SHAPE, measured from the HOOPOE image simulation.
The solid lines show the measured bias after imposing a maximum r-band magnitude, using the
measured values from the SEXTRACTOR run on the simulation. Dashed lines show the same,
but defining the cut using the input magnitudes. In the purple curves the shear measurements are
corrected using the fiducial scheme described in Section 3.4. Blue curves are uncalibrated. This
illustrates the danger of selection biases when cutting on any observable which correlates with
ellipticity, as does magnitude. The points in the right-hand panel show the same, but dividing
galaxies into narrow bins of magnitude instead of imposing an upper-limit cut.

3.5.3 Applying the IM3SHAPE Calibration

The IM3SHAPE calibration yields m and c values for each object, but because they include cor-
rections for selection biases these values are only valid if the recommended set of IM3SHAPE cuts
is imposed. Further selection can induce biases due to noise that is correlated between ellipticity
and other quantities. We have verified in Section 3.4.5 that division into the four tomographic
bins recommended for the Y1 DES analyses does not induce a significant bias. This cannot be
guaranteed for arbitrary subdivisions of the catalogue. In the right hand panel of Figure 3.10 we
show a dramatic example of this. Dividing the simulated galaxies into narrow bins by magnitude
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Figure 3.11: Multiplicative bias for NG-
MIX shear measurements on GREAT-DES
simulated data as a function of redshift.
The red circles show the bias calculated
using all galaxies that pass the NGMIX se-
lection criteria. The blue triangles show
the bias when also including the recom-
mended SV IM3SHAPE selection. The
grey band represents a margin of ±3% in
m

(either observed or input) induces multiplicative biases of 30% or more. A perhaps more practical
example is shown in the left-hand panel. An upper-limit magnitude cut (denoted by the horizonal
axis) introduces a selection biases of 2 − 6%, even after calibration. Indeed, depending on the
cut, the calibration can actually worsen the bias considerably. Cuts on measured quantities are not
the only concern here: one should be wary of any change in the population of galaxies beyond
that which the calibration is tuned to. Figure 3.11 shows the result of a demonstrative exercise
carried out using the SV catalogues. In the analysis of J16 we ran two simulation codes on the
same simple simulation, referred to as GREAT-DES. The two codes generate their own flags,
fail on different galaxies, and thus have slightly different selection functions. As we can see here,
imposing the selection function of one catalogue on another (IM3SHAPE on NGMIX in this case)
without regenerating the calibration can induce a selection bias of several percent. Direct compar-
ison of two shear catalogues is clearly complicated by the difference in selection at any point prior
to cosmology constraints.

The IM3SHAPE calibration is applied to the Y1 catalogue using the prescription set out by J16.
The mean shear estimator for an ensemble of galaxies is:

〈γi〉 =

∑
αw

α(eαi − cαi )∑
αw

α(1 +mα)
(3.7)

where i = 1, 2 and α runs over rows in the catalogue, and wα denotes the per-galaxy weights
described in Section 3.3.2. For a shear two-point estimator, the additive c correction should first be
applied, then the galaxy pairs rotated to the tangential and cross directions e+ and e×. The weights
and multiplicative corrections should be applied to these rotated values:



Chapter 3. Measuring Cosmic Shear in Year 1 of the Dark Energy Survey 108

ξ±(θ) =

∑
α

∑
β w

αwβ(eα+e
β
+ ± eα×eβ×)∑

α

∑
β w

αwβ(1 +mα)(1 +mβ)
(3.8)

where the sums run over pairs of galaxies (α, β), whose angular separation falls within a bin of
some finite width θ ±∆θ.

3.5.4 Number Density

Values of the (effective) number density and shape variance for three definitions for the two cat-
alogues are shown in Table 3.5. The raw value is simply the total number of selected objects per
unit of unmasked survey area Ω:

nraw ≡
Ngal

Ω
. (3.9)

This is not the most useful quantity for gauging the power of a catalogue for lensing cosmology.
It is instead common to construct weighted density estimators, which upweight the contribution
of galaxies for which we have high-quality shape measurements. The estimator devised by Chang
et al. (2013) is the a particularly useful one for assessing cosmological constraining power. It is
defined as:

nC13
eff ≡

1

Ω

∑ σ2
sh

σ2
sh + σ2

m,i

, (3.10)

where the sum runs over galaxies and σ2
sh is the intrinsic scatter in galaxy shapes. The second com-

ponent σ2
m,i is the measurement uncertainty for galaxy i, which naturally depends on the S/N of

the object in question. The denominator here is the total shape variance σ2
e , or the sum of an intrin-

sic shape dispersion and a measurement noise term σ2
sh + σ2

m,i. In practice we estimate σ2
sh using

the highest signal-to-noise objects, which have vanishing measurement error. We do not attempt
to isolate σm for each galaxy, but rather evaluate σe as a whole using the IM3SHAPE measurement
weights (see Section 3.3.2).

A second common definition is presented in Heymans et al. (2013). This estimator has been
used in previous shear analyses, and to facilitate comparison we evaluate it for DES Y1:

nH13
eff ≡

1

Ω

(
∑
wi)

2

∑
w2
i

. (3.11)

In the case of applying equal weights for all galaxies (as is the case in our METACALIBRATION cat-
alogue) this reverts to the raw number density.
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Catalogue Definition ngal / arcmin−2

IM3SHAPE Raw 4.50
C13 3.16
H13 3.71

METACALIBRATION Raw 6.40
C13 5.88
H13 6.28

Table 3.5: Effective number density evaluated for the two Y1 catalogues. The three quantities
shown here are differently weighted measures of the statistical power of the catalogues, as defined
in equations 3.9, 3.10 and 3.11.

As is apparent from Table 3.5, the METACALIBRATION catalogue is the larger of the two. This
is primarily the result of the fact that the fits used multi-band riz data, whereas IM3SHAPE uses
only the r band. The cuts applied in METACALIBRATION are also less stringent, which contributes
to the difference.

3.5.5 Choosing a Prior on Residual Calibration Bias

In the following we outline an exercise designed to characterise the budget of post-calibration
error in the IM3SHAPE catalogue. From a cosmologist’s perspective, the practical use of this is to
gauge (as objectively as possible) our confidence that the data are systematics free. That feeds into
cosmological likelihood calculations via a prior on residual m.

We start with the simplest form of uncertainty: statistical error. The volume of our simulations
is large but finite, leading to a zero-centred prior contribution of width of σm = 0.002. We take
this as our baseline, to which we will add contributions to reflect the systematics tests below.

In SV, where the systematic uncertainty in the multiplicative bias calibration was determined
from the (dis)agreement of our two shape measurement pipelines on the GREAT-DES postage
stamp simulations. Thanks to the level of detail in HOOPOE and the complications in directly
comparing the two codes, the systematics budget for IM3SHAPE is now set by a set of simulation-
based tests

In general, when we identify an entirely untreated systematic the prior absorbs the full am-
plitude of the change in m it induces (we assume a top-hat prior contribution). If a systematic is
treated, but imperfectly so, we add 50% of the amplitude to the prior as a zero-centred Gaussian
contribution.

We assume Gaussian priors in the following, although the exact functional form is unlikely to
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impact the derived cosmology constraints significantly.
There is one final subtlety we should note here. In practice, many science applications of shear

catalogues will involve some form of tomographic binning, and typically one wishes to place a
prior on the residual m per bin. If the systematic error contributions are just an unknown scatter,
which applies independently to the galaxies in each bin, then simply taking the quadratic sum of
the error components derived in the following paragraphs and applying it independently in each
bin would be a proper treatment of the uncertainties. If they are correlated between bins, however,
the situation is slightly less straightforward; assuming an independent prior per bin could under-
or overestimate the uncertainties, depending on how the particular statistic used responds to the
shear in each redshift bin. To be conservative in the general case, or if this is not known for certain,
we thus recommend that the contributions that are believed to correlate between bins should be
widened in the calculation of the tomographic m prior. For a more detailed explanation of this
argument see Appendix D of Z17 and Hoyle et al. (2017).

Systematic Uncertainities in the Calibration

A significant part of the uncertainty is due to systematic imperfections in the simulations. The
dominant systematic uncertainties arise from:

• The impact of neighbours. Comparison of IM3SHAPE runs on identical sets of simulations
with and without neighbouring galaxies (Samuroff et al. 2017a; see their Figure 13) show a
mean shift in calibration corresponding to ∆m = −0.034; mean shears measured in simula-
tions with neighbours are about 3 percent smaller than for a sample of fully isolated galaxies.
While the simulation-based calibration is a valid treatment of this effect, and should capture
its dominant influence on shape measurement, one cannot say with absolute confidence that
all aspects of neighbour bias are accurately reflected in the simulations. We therefore assume
half of the neighbour-induced shift in our calibration as an uncertainty, σm = 0.017, which
is conservative given the degree of realism in the simulations.

• Assignment of cutout sizes. While stamp size in the real data is based on measurements of
a source’s size and ellipticity performed on the coadd using SEXTRACTOR, in the bulk of
the simulations the code truncated each simulated galaxy’s image at the bounds of a postage
stamp of the original source whose position it was taking. The largest and most highly
elliptical galaxies are, then, typically assigned smaller boxes than they would in the data.
Assessing this problem from the existing simulations is complicated by the lack of a reliable
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measure for what the stamp size should be. We were unable to devise a cut based on the
true input properties of the simulated galaxies that did not significantly alter the ellipticity
and size distributions. Reweighting was found to be unreliable, since the cut leaves very few
large elliptical galaxies to upweight, and was not found to be robust to binning in S/N and
Rgp/Rp. Re-running a subset of the simulation with this problem fixed, we find a maximum
change in multiplicative bias of 0.025. We assume a tophat prior of |m| < 0.025 per redshift
bin, corresponding to a Gaussian σm = 0.014. While this is a non-negligible contribution to
our overall error budget, rerunning the full simulation with box sizes assigned according to
properties measured in the stack, as is done in the data, would require a large computational
overhead. We postpone such an undertaking to future work.

• Removal of bad objects from the COSMOS galaxy sample. Within the DES collabo-
ration, we have manually identified galaxies among the COSMOS library that show issues
potentially affecting multiplicative bias calibration (see Appendix B). The change in cali-
bration when removing flagged galaxies is at most 0.009 among tophat redshift bins (see
Section 3.4.5). Despite these efforts, the choice of which galaxies to remove is somewhat
subjective. To account for uncertainty in how the cut changes the morphology distribution
of galaxies, we assume half of the observed shift, or 0.005, as a systematic uncertainty.

• Parameterisation of the calibration. As discussed in the earlier sections, our calibration
is generated as a function of S/N and size, and performed separately for galaxies better fit
by bulge- and disc-type Sérsic profiles. Noise bias, however, depends on additional galaxy
properties, the distributions of which at given signal-to-noise ratio and size vary as a func-
tion of redshift. When we apply the calibration derived from the full galaxy sample, we find
that then imposing a redshift binning can induce non-zero multiplicative bias. The maxi-
mum amplitude of these residuals is found to be |∆m| ∼ 0.008, and is robust to the choices
that enter the calibration scheme (interpolation, binning etc). Since lensing analyses virtu-
ally always employ some form of redshift-dependent binning or weighting, we assume an
additional systematic uncertainty σm = 0.01 in each redshift bin.

These contributions are summarised in the upper portion of Table 3.6. We constrain them as a set
of raw amplitudes, by which m is found to change under the various tests described above. When
choosing a prior one could simply assume each contribution corresponds to a uniform m prior of
the equivalent width. This is less than desirable for two reasons: (a) it does not facilitate easy
combination and manipulation of the prior components and (b) it underplays our confidence in the
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simulation, implying no confidence in the veracity of the simulation within some bounds. We thus
convert these amplitudes ∆m into Gaussian contributions with the variance of the equivalent tophat
distributions. (see Z17). Combined in quadrature, these effects amount to a Gaussian systematic
uncertainty of σm = (0.0172 + 0.0142 + 0.0052 + 0.0102)

0.5
= 0.0247.

PSF Size Inaccuracy

In Y1 there is a mean residual between the predicted PSF size and that measured at the positions of
stars due to imperfect interpolation (see Z17). While the dominant effect of PSF error will be di-
rectional, and thus contribute a mean shear, isotropic size residuals will manifest themselves as an
excess m. To assess the impact we run IM3SHAPE on a set of very simple noise-free simulations
devised expressly for this purpose. The simulations consist of analytic galaxies under constant
shear g = (0.01, 0.00), convolved with highly elliptical analytic Moffat PSFs. Two versions were
created, first with a constant reference PSF, and then with a constant fractional PSF dilation of
∆TPSF/T = 8.3 × 10−4. Assuming the same reference PSF used in shape measurement for both
simulations, the mean multiplicative bias is seen to vary by ∆m = 0.006 between the two simula-
tions. While these PSF simulations likely capture the dominant part of the effect, realistic galaxy
morphology could conceivably change the result marginally. Adopting a conservative approach,
we scale this observed change by a factor of 1.5 before incorporating it into our m prior. After
conversion to Gaussian width, maintaining variance, the total impact is σm = 0.005. Note that we
find no change in additive biases between the two simulations.

Stellar Contamination

Stellar contamination of the IM3SHAPE source sample is believed to have negligible impact due
to the stringent cuts to remove point sources. We test this using the COSMOS field, where robust
flagging of stars using HST photometry has been carried out. The total impact of misidentified
stars on m is estimated to be less than 10−3, and including it has no impact on our prior width,
after rounding.

Final Prior

Adding the effects listed above in quadrature, (summarised in Table 3.6), we arrive at a multiplica-
tive bias of m = 0.000± 0.025.

This value is the baseline Y1 prior recommended by Z17, and is valid for the full catalogue,
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Effect Centre Gaussian Width σm Correlated
Between Bins

Neighbour Bias 0.0 0.017 X
Stamp Size 0.0 0.014 ×

COSMOS Sample 0.0 0.005 ×
Morphology 0.0 0.010 ×

Calibration Statistical 0.0 0.002 X
Stellar Contamination 0.0 0.001 X

PSF Size Bias 0.0 0.004 X
Total 0.0 0.025

Table 3.6: Multiplicative bias budget for IM3SHAPE. The upper part of the table lists the systematic
uncertainties, arising from potential sources of shear bias that are not fully treated in the image
simulation or the calibration. These systematics include potentially uncalibrated neighbour biases,
truncation bias in the rendering of COSMOS profiles, removal of bad objects from the COSMOS
sample, and variation in morphology as a function of redshift beyond that captured by S/N and
size. The three rows below the divider show other known uncertainties in the calibration, and
the final row is the total prior width, given by the quadratic sum of the listed uncertainties. The
right-most column indicates whether or not we expect these contributions to be correlated between
redshift bins.

as presented. It is finally worth making a cautious note with regards to tomographic binning. A
number of the systematics described will not act independently in disjoint populations of galaxies.
For reasons set out in mentioned above, if one divides the catalogue into N redshift bins, it is
advisible to widen the prior contributions marked in the last column of Table 3.6 by a factor of
∼
√
N to account for inter-bin correlations in m. We refer the reader to Appendix D of Z17 for

details on the calculation of the precise factor.

3.6 Summary and Discussion

In this chapter we have discussed the construction of one of two independent shear catalogues in
Year One of the Dark Energy Survey. The IM3SHAPE catalogue covers 1500 square degrees of the
Southern sky and contains 21.9 million galaxies. It has passed a battery of tests that demonstrate
that, when appropriately used with calibration and error models, it is suitable for weak lensing
science. These data have been used in some of the most powerful leading-edge weak lensing
studies to date. A raft of science papers due for release with Z17 demonstrate that IM3SHAPE and
its sister catalogue METACALIBRATION, provide consistent cosmological constraints. Troxel et al.
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(2017) focuses on constraints from cosmic shear alone, Prat et al. (2017) measure and explore the
constraining power of galaxy-galaxy lensing, and DES Collaboration et al. (2017) uses both, in
addition to galaxy density correlations.

This work made use in the IM3SHAPE catalogues of the most sophisticated simulations cur-
rently used in practice for shear bias calibration. They account for a range of systematic effects
including blending, and the impact of spatial masking. We have emphasised the importance of
matching the simulations to the data with extreme care and as much detail as possible. We have
also demonstrated that even a catalogue with zero residual bias when taken as a whole can very
easily become inaccurate for shear measurement under additional cuts.

Like all weak lensing catalogues, the DES Y1 results have some inherent uncertainty in the
calibration in the form of a multiplicative bias m. Determining appropriate priors on this quantity
is a vital part of characterising a lensing catalogue. Considering a number of factors that could
contribute systematic bias, which we quantified using the simulations, led us to a zero-centred
Gaussian prior of width σm ∼ 2.5× 10−2 for Y1 IM3SHAPE.

The data we have presented here comprise only 20% of the full Dark Energy Survey. Work to
analyse the subsequent two years of data has already begun, and to fully exploit that new dataset
will require the methods described in this chapter to be refined in a number of ways.



Chapter 4

The Impact of Image Plane Neighbours on
Shear Cosmology

There are many ways in which ensemble shape measurements may be biased relative to the under-
lying cosmic signal. In the previous chapter we presented a detailed guide to shape measurement,
simulating and calibrating the estimates for Year 1 of DES. That process is largely agnostic to the
mechanism and potential impact of bias; We are concerned with the practical matter of generating
catalogues fit for use in cosmology analyses. In the following we present a more detailed examina-
tion of a particular source of bias: the impact of image plane neighbours. There is relatively little
exising literature on this subject, and yet it will become increasingly important to understand the
impact of blending, as lensing datasets become inexorably deeper and probe higher redshifts. The
following study has been submitted for publication in Samuroff et al. (2017a).

4.1 Introduction

A standard and well tested prediction of General Relativity is that a concentration of mass will
distort the spacetime around it, and thus produce a curious phenomenon called gravitational lens-
ing. The most obvious manifestation is about massive galaxy clusters, where background galaxies
can be elongated into crescent-shaped arcs. So-called strong lensing was first observed in the late
1980s and has been confirmed many times since. A far subtler, but from a cosmologist’s perspec-
tive far more powerful, consequence of gravitational lensing is that background fluctuations in the
density of dark matter will induce coherent distortions to photons’ paths. This effect is known as
cosmic shear, and it was first detected by four groups at around the same time close to two decades
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ago (Bacon et al., 2000; Van Waerbeke et al., 2000; Kaiser, 2000; Wittman et al., 2000).
Cosmic shear has the potential to be the single most powerful probe in the toolbox of modern

cosmology. The spatial correlations due to lensing are a direct imprint of the large scale mass
distribution of the Universe. Thus it allows one to study the total mass of the Universe and the
growth of structure within it (Maoli et al., 2001; Jarvis et al., 2006; Massey et al., 2007a; Kilbinger
et al., 2013; Heymans et al., 2013; Dark Energy Survey Collaboration, 2016; Jee et al., 2016;
Hildebrandt et al., 2016), or to map out the spatial distribution of dark matter on the sky (eg Kaiser
1994; Van Waerbeke et al. 2013; Chang et al. 2015). As a probe of both structure and geometry,
cosmic shear is also attractive as a method for shedding light on the as yet poorly understood
component of the Universe known as dark energy (Albrecht et al., 2006; Weinberg et al., 2013).
Alternatively, lensing will allow us to place ever more stringent tests of our theories of gravity
(Simpson et al., 2015; Harnois-Déraps et al., 2015; Brouwer et al., 2017). Unlike comparable
probes it is theoretically very clean, responding directly to the power of dark matter, which is
affected by baryonic physics only on very small scales, and avoids recourse to poorly-understood
phenomenological rules such as the mass-observable scaling used in cluster cosmology. Indeed
galaxy number density enters only at second order as a weighting of the observed shear due to the
fact that one can only sample the shear field where there are real galaxies (Schmidt et al., 2009).

Though well modelled theoretically, cosmic shear is technically highly challenging to measure;
as with all these probes it is not without its own sources of systematic error. It also cannot be
reiterated too many times that the shear component of even the most distant galaxy’s shape is
subdominant to noise by an order of magnitude. Indeed, the ambitions of the current generation of
cosmology surveys will require sub-percent level uncertainties (both systematic and statistical) on
what is already a tiny cosmological signal g ∼ 0.01.

It was realised early on how significant the task of translating photometric galaxy images into
unbiased shear measurements would be. In response came a series of blind shear measurement
challenges, designed to review, test and compare the best methods available. The first of these,
called STEP1 (Heymans et al., 2006) grew out of a discussion at the 225th IAU Symposium in
2004. The exercise was based around a set of simple SKYMAKER simulations (Bertin & Fouqué,
2010), which were designed to mimic ground based observations but with analytic galaxies and
PSFs and constant shear. The algorithms at this point represented a first wave of shear measurement
codes and included several moments-based algorithms (Kaiser, 1995; Kuijken, 1999; Rhodes et al.,
2001), some early forwards modelling methods (Bridle et al., 2002), as well as a technique called
shapelets, which models a light profile as a set of 2D basis functions (Bernstein & Jarvis, 2002;
Refregier & Bacon, 2003).
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The simulations and the codes themselves steadily grew in complexity. STEP2 was followed
by series of GREAT challenges (Massey et al., 2007b; Bridle et al., 2008; Kitching et al., 2010;
Mandelbaum et al., 2014), which focused on different aspects of shape measurement bias and
have been essential in quantifying a number of significant effects. In recent years the drive to
find ever more accurate ways to measure shear has intensified, with many novel approaches being
suggested. For example Fenech Conti et al. (2016) use a form of self-calibration, which repeats
the shape measurement on a test image based on the best-fitting model for each galaxy. A related
approach, named metacalibration, involves deriving a shear response directly from the data, using
counterfactual copies of the image with additional shear (Huff & Mandelbaum, 2017; Sheldon &
Huff, 2017). More advanced moments-based approaches include the BFD method (Bernstein &
Armstrong, 2014), which derives a prior on the ensemble ellipticity distribution using deeper fields,
and SNAPG (Herbonnet et al., 2017), a similar approach which builds ensemble shear estimates
using shear nulling.

The following is intended as a companion study to Zuntz et al. (2017) (Z17 henceforth), where
we present two shear catalogues derived from DES Y1 dataset. Containing over 24 million galax-
ies, these catalogues are the product of two independent maximum likelihood codes. The first,
called IM3SHAPE, implements simultaneous fits using multiple models and we calibrate externally
using simulations. The second implements a Gaussian model fitting algorithm, NGMIX, supple-
mented by shear response corrections using metacalibration. Whereas that paper focuses on the
catalogues themselves, presenting a raft of calibration tests and a broad overview of the value-
added data products, here we use the same resources to explore a narrower topic: the impact of
image plane neighbours on shear measurement. Specifically we use the image simulations de-
scribed in Z17, from which the Y1 IM3SHAPE calibration is derived, to explore the mechanisms
for neighbour bias, and then propagate the results to mock shear two-point data to investigate the
consequences for weak lensing cosmology.

This chapter is structured as follows. we first briefly review the formalism of lensing, and the
observables discussed in this work. In Section 4.3 we present a series of numerical calculations
using a toy model to characterise neighbour bias. Section 4.4 decribes the simulated DES Y1
datasets, generated using our HOOPOE simulator. we test the earlier predictions under more typical
observing conditions in Section 4.5, and extend them into a quantitative set of results using the
more extensive Y1 HOOPOE dataset. Section 4.6 then presents a numerical analysis designed to
test the cosmological implications of neighbour bias of the nature and magnitude found in our
simulations. we conclude in Section 4.7.
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4.2 The Shear Measurement Problem

The problem of shape measurement is far more intricate than it might first appear. Any cosmolog-
ical analysis based on cosmic shear is reliant on a series of technical choices, which can have a
non-trivial impact on measurement biases, precision and cosmological sensitivity. Specifically we
must choose (a) how to parameterize each galaxy’s shape, (b) which measurement method to use
to estimate that shape, (c) what selection criteria are needed to obtain data of sufficiently high qual-
ity for cosmology and (d) how biased is the measurement and what correction is needed? These
choices should be made on a case-by-case basis, since the optimal solutions are dependent on a
number of survey-specific factors. we discuss each briefly in turn below.

4.2.1 Shape Measurement with IM3SHAPE

The shape measurements upon which the following analyses are based make use of the maximum
likelihood model fitting code IM3SHAPE1 (Zuntz et al., 2013). It is a well tested and understood
algorithm, which has since been used in a range of lensing studies (Dark Energy Survey Collabo-
ration, 2016; Whittaker et al., 2015; Kacprzak et al., 2016; Clampitt et al., 2016). It was also one
of two codes used to produce shear catalogues in the Science Verification (SV) stage and Year 1 of
the Dark Energy Survey. We refer the reader to Jarvis et al. (2015) (hereafter J16) and Z17 for the
most recent modifications to the code.

we use the definition of the flux signal-to-noise ratio of Z17, J16 and Mandelbaum et al. (2015):

S/N ≡

(
Npix∑
i=1

fm
i f

im
i /σ2

i

)

(
Npix∑
i=1

fm
i f

m
i /σ

2
i

) 1
2

. (4.1)

The indices i = (1, 2...Npix) run over all pixels in a stack of image cutouts at the location of
a galaxy detection. The model prediction and observed flux in pixel i are denoted fm

i and f im
i

respectively and σi is the RMS noise. This signal-to-noise measure is designed to favour maximal
agreement between the model and the image pixel fluxes. Note that if the best-fitting model fm is
identical for two different postage stamps, S/N will favour the image with the greater total flux.

A useful size measure is defined as
1https://bitbucket.org/joezuntz/im3shape-git
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Rgp/Rp ≡
P [Rg]

RPSF

, (4.2)

or the Full Width at Half Maximum (FWHM) of the galaxy after PSF convolution, normalised
to the PSF FWHM. The operation P maps the size of the pre-convolution galaxy Rg onto that
of the PSF convolved one, and typically does not have a simple analytic form. Single-number
size estimates are obtained from asymmetric multi-exposure data by circularising (azimuthally
averaging) the best-fitting profile for each galaxy and then computing the weighted quadrupole
moments of the resulting image.

4.2.2 Shear Measurement Bias

There are many ways bias can enter an ensemble shear estimate based on a population of galaxies.
Although the list is not exhaustive, a handful of mechanisms are particularly prevalent, and have
been extensively discussed in the literature.

• Noise Bias: On addition of pixel noise to an image, the best-fitting parameters of a galaxy
model will not respond linearly. This is as an estimator bias as much as a measurement bias,
and results in an asymmetric, skewed likelihood surface (Hirata & Seljak, 2003; Refregier
et al., 2012; Kacprzak et al., 2012; Miller et al., 2013). Any code which uses the point statis-
tics of the distribution (either mean or maximum likelihood) as a single-number estimates of
the ellipticity results in a bias. This is true even in the idealised case where the galaxy we
are fitting can be perfectly decribed by our analytic light profile. The bias is sensitive to the
noise levels and also the size and flux of the galaxy, and thus is specific to the survey and
galaxy sample in question. For likelihood-based estimates one solution would be to impose
a prior on the ellipticity distribution and propagate the full posterior. However, the results
can become dependent on the accuracy of that prior, and such codes require cautious testing
using simulations (Bernstein & Armstrong, 2014; Simon & Schneider, 2016)

• Model Bias: In reality galaxies are not analytic light profiles with clear symmetries. For
the purposes of model-fitting, however, we are constrained to use models with a finite set
of parameters. A model which does not allow sufficient flexibility to capture the range of
morphological features seen in the images will produce biased shape measurements (Lewis,
2009; Voigt & Bridle, 2010; Kacprzak et al., 2013).
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• Selection Bias: Even if we were to devise an ideal shape measurement algorithm, capable of
perfectly reconstructing the histogram of ellipticities in a certain population of galaxies, our
attempts to estimate the cosmological shear could still be biased. If any part of the process
of converting photometric survey images to galaxy shape catalogue prefers round objects
or those aligned in a particular direction, the result would be a net alignment that could be
mistaken as having cosmological origin. In practice such preferment commonly results from
imperfect correction of PSF asymmetries (eg Kaiser 2000; Bernstein & Jarvis 2002), and the
simple fact that many detection algorithms fail less frequently on rounder galaxies, and so the
detection sample will tend to underrepresent cases where the shear and intrinsic pre-lensing
shape are aligned (Hirata et al. 2004). It is such effects that make post facto quality cuts on
quantities such as signal-to-noise or size (both of which naturally correlate with ellipticity)
particularly delicate.

4.3 Toy Model Predictions

To develop a picture of how image plane neighbours affect shear estimates with IM3SHAPE, we
build a simplified toy model. Using GALSIM2 we generate a 48×48 pixel postage stamp containing
a single exponential disc profile convolved with a tiny spherically symmetric PSF (though we
confirm that our results are insensitive to the exact size of the PSF). One can then apply a small
shear along one coordinate axis prior to convolution and use IM3SHAPE to fit the resulting image.
In the absence of noise or model bias the turning point in the likelihood of the measured parameters
coincides exactly with the input values. The basic setup then has four adjustable parameters:
the flux and size of the galaxy plus two ellipticity components, denoted fc, rc, gtr1 and gtr2 . At
this stage we do not model miscentering error between the true galaxy centroid and the stamp
centre. Unless otherwise stated we fix these to the median values measured from the DES Y1
IM3SHAPE catalogue.

It is worth noting that neither this basic model nor the more complex simulations that follow
accurately model the fact that the cosmological shear of close neighbours will be correlated at some
level (due to the shared line of sight). Nor do we model correlations between the intrinsic shapes
of neighbours which are both close together in the image plane and at similar radial distances.
These spatial correlations will likely amplify the impact of blending, and are worthy of future
investigation. This is, however, likely a second-order effect of neighbours, and we postpone such

2https://github.com/GalSim-developers/GalSim
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study to a future date.

4.3.1 Single-Galaxy Effects

To explore the interaction in single neighbour-galaxy instances we next draw a second galaxy into
the postage stamp, convolved with the same nominal PSF. This adds four more model parameters:
neighbour size, flux, radial distance from the stamp centre and azimuthal rotation angle relative to
the x coordinate axis. We will call these rn, fn, dgn and θ. At this stage the neighbour has zero
ellipticity.

We show this setup at four neighbour positions in Figure 4.1. Under zero shear, the system has
perfect rotational symmetry, and the measured ellipticity magnitude g̃(θ|gtr1 = 0) is independent
of θ3. As a first exercise, we generate a circular central galaxy with a circular Gaussian neighbour,
which is gradually shifted outwards from the stamp centre. Following the usual convention for
galaxy-galaxy lensing, tangential shear is defined such thet it is negative when the major axis
of the measured shape is points radially towards the neighbour. The measured two-component
ellipticity shown by the solid and dot-dashed lines in Figure 4.2a.

The decline to zero at small separations is understandable, as there is no reason to expect
drawing one circular profile directly on top of another should induce spurious non-zero ellipticity.
In the regime of a few pixels, however, strong blending can increase the flux of the best-fitting
model.

Next, we repeat the calculation, now applying a moderate cross-component shear to the neigh-
bour (g2 = 0.1). The result is shown by the blue lines in Figure 4.2. Unsurprisingly the measured
tangential shear is unaffected by a true shear along an orthogonal axis. In cases where the objects
share a large portion of their half-light radii, we are fitting a strongly blended pair with a single
profile, and the neighbour/central distinction becomes difficult to define. The best-fitting ellipticity
recovered from the blended image is not a pure measurement of either galaxy’s shape; rather it is a
linear combination of the two. We repeat the zero-offset measurement using a range of neighbour
fluxes and find that the best-fitting ei follows roughly as a flux-weighted sum over the two galaxies
g̃i ≈ (fcg

tr
i,c + fng

tr
i,n)/(fn + fc).

3Although the zero-shear ellipticity is, of course, sensitive to the other model parameters. For complete rigour
we would include the other toy model parameters parameters on the right of the | and write the measured shape as
g̃(θ|gtr, dgn, fn, rn, fc, rc). For the sake of clarity we’ll omit the other parameters, under the assumption that they
have the fiducial values noted above, unless explicitly stated otherwise.
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Figure 4.1: Postage stamp snapshots of the basic two-object toy model described in Section 4.3.
The overlain ellipse shows the maximum likelihood fit to the image. The panels show three neigh-
bour positions in the range θ = [0, π/2] rad. The best fit ellipticity and half light radius are shown
above each image. In all cases the input values are e = (0, 0), r = 0.5.

4.3.2 Ensemble Biases

While useful for understanding what follows, the impact of neighbours on individual galaxy in-
stances is not particularly informative about the impact on cosmic shear measurements. Even
significant bias in the per-object shapes could average away over many galaxies with no resid-
ual impact on the recovered shear. More important is the collective response to neighbours. To
explore this we build on the toy model concept. To estimate the ensemble effect, we measure a
neighbour-central image repeatly at 70 positions on a ring of neighbour angles. Again, under zero
shear gtr = 0 the measured shape is constant in magnitude, and simply oscillates about 0 with
peaks of amplitude |g̃(θ|0, dgn)|. This sinusoidal variation is shown by the dotted lines in Figure
4.2b at two values of dgn (7 and 8 pixels). By averaging over a (large) number of neighbours
one is effectively marginalising over θ, which results in an unbiased measurement of the shear
〈g̃(θ|gtr = 0, dgn)〉θ = gtr = 0. A non-zero shear gtr 6= 0, however breaks the symmetry of the
system. A galaxy sheared along one axis will not respond to a neighbour in the same way irrespec-
tive of θ, which can result in a net bias. To show this we fix gtr = −0.05 and proceed as before.
The solid lines in Figure 4.2b show the periodicity in the measured shear at two dgn. The mean
value averaged over θ is shifted incrementally away from the input shear, shown by the horizontal
dot-dashed line. Specifically we should note that the peaks below gtr at π/2 and 3π/2 radians
are deeper and narrower than those above it. To understand how this arises, we refer the reader
to the cartoon diagram in Figure 4.3. The purple lines are iso-light contours in a strongly sheared
Sérsic disc profile (g1 = −0.3). Clearly rotating the neighbour from position A to C carries it from
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Figure 4.2: Top: Tangential shear measured using the numerical toy model described in Section
4.3.1 as a function of radial neighbour distance. The solid purple line shows the shape component
aligned with the central-neighbour separation vector and the dot-dashed line is measured along
axes rotated through 45◦. Note that the latter is smaller than 10−6 at all points on this scale. The
dashed and dotted black lines show the same ellipticity components when the neighbour is sheared
in the e2 direction by g2 = 0.1. Bottom: Best-fit galaxy ellipticity as a function of neighbour
position angle at fixed neighbour distance dgn from the toy model described in the text. The two
panels (left, right) show the same central-neighbour system (gtr = −0.05), but with different dgn (7
and 8 pixels) and biases m (shown above each panel). The solid line in each case is the recovered
galaxy shape at each θ, and the integrated mean along this range is shown by the horizontal dot-
dashed line. The dotted lines show the zero-shear shape (i.e. the ellipticity that would be measured
if the input shear were zero), but shifted downwards such that the mean is at −0.05. Finally, to
illustrate the asymmetry of the system we show the solid line flipped about y = gtr1 and shifted by
π/2 radians as a dashed curve.
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A

B
C

Figure 4.3: Cartoon diagram of
a neighbour-central system. The
purple contours show the lines of
constant flux in a Sérsic disc pro-
file with extreme negative elliptic-
ity (g1 = −0.3). The blue crosses
labelled A, B and C are points on
a ring of equal distance from the
centre of the profile. The blue
arrows show the local unit vector
along a tangent to the ring.

the relatively flat low wings of the central galaxy’s light profile closer to the core. Perturbing an ob-
ject about C by a small angle results in a much greater change in the local gradient,5fc(x, y) than
doing the same about A. All other parameters fixed, an incremental shift along the blue tangent
vector will have a larger impact at θ = 0 than at π/2, resulting in asymmetry in the width of the
positive and negative peaks in Figure 4.3. The depth of the peak can be explained qualititatively by
similar arguments. At C a neighbour of given flux is closer to the centre of the light distribution and
thus has a greater flux overlap with the central galaxy than at A. Naturally, then, one might expect
neighbour A to have less impact than C. Returning to Figure 4.2, one can see that the two effects
are in competition. Depending on the exact neighbour configuration, the simultaneous narrowing
and deepening the negative peaks can result in a bias in the neighbour-averaged ellipticity towards
large or small values.

The level of this effect will clearly correlate with the magnitude of the shear, and so induce a
multiplicative bias. To illustrate this point the above exercise is repeated with a range of different
input shears. The results for our fiducial setup are shown in in Figure 4.4. Each point on these axes
corresponds to a ring of neighbour positions for a given input shear. The equivalent measurements
without the neighbour are indistinguishable from the x axis. At small shears, the neighbour induced
bias g̃ − gtr is well aproximated as a linear in gtr (shown in the inset panel). We leave exploration
of the possible nonlinear response at large ellipticities for future investigations. Though the above
numerical exercise demonstrates that it is possible for significant multiplicative bias to arise as
a result of neighbours, it does not make a clear prediction of the magnitude or even the sign.
Indeed, our toy model is effectively marginalised over θ, but there is nothing to guarantee that
fixing the other neighbour parameters to the median measured values is representative of the real
level of neighbour bias in a survey like DES. Motivated by this observation we add a final layer
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Figure 4.4: Measured shear minus input shear plotted as a function of input shear. The purple
points show the recovered g̃1 from averaging over ring of 70 neighbour positions. The light purple
lines show the linear relation g̃ − gtr = mgtr at m = (−0.4,−0.45,−0.5). The dotted line shows
what would be measured using the same central profile in the absence of the neighbour, and is near
indistinguishable from the x axis line on all points within this range of gtr.

of complexity to the model, as follows. A single neighbour-central realisation is created as before,
defined by a unique set of model parameters. Now, however, the values of those parameters p =

(dgn, fn, rn, fc, rc) are drawn randomly from the DES data. As these quantities will, in reality,
be correlated we sample from the 5-dimensional joint distribution rather than each 1D histogram
individually. We then fit the model at 70 neighbour angles and two input shears g± = ±0.05

(a total of 140 measurements), and estimate the multiplicative bias as a 2-point finite-difference
derivative:

m+ 1 =
〈g̃(θ|g+)〉θ − 〈g̃(θ|g−)〉θ

g+ − g−
. (4.3)

This process is repeated to create 1.33 M unique toy model realisations. Binning by neighbour
distance one can then make a rough prediction for the level of neighbour-induced bias and the
angular scales over which it should act. The result is shown in Figure 4.5, where full results using
all model realisations are indicated by the dashed blue line. The majority of cases yield a negative
bias, particularly at low neighbour separation (referring back to Figure 4.3, the broadening of the
peak around position A dominates over the increased flux overlap at C). In the real data, of course,
we apply a quality based selection and überseg object masking (J16), both of which are neglected
here. One can, however, test the impact of selecting on fitted quantities that respond to neighbour
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bias. Imposing a flat prior on the centroid offset ∆r0 = (x2
0 + y2

0)
1
2 (i.e. discarding randomly

generated model realisations where the galaxy centroid is displaced from the stamp centre by more
than a fixed number of pixels) changes the shape of this curve significantly, as illustrated by the
thick purple line.

One can understand the difference between the results with and without the centroid cut as a
form of selection bias, whereby the cut preferentially removes toy model realisations in which the
neighbour is bright relative to the central galaxy. At any given dgn we are left with a relative over-
representation of galaxies with fn/fc � 1. Faint neighbours, which in reality tend to be compact
high redshift objects, have little impact when they sit on the outskirts of the central profile (A in
the cartoon picture in Figure 4.3; the regime which produces negative m). The same faint galaxy
has a stronger impact if it is rotated to a position closer to the centre of the central’s flux profile.
Thus one might expect a selection on ∆r0 to make the mean m in a particular bin less negative (or
even positive) by preferentially removing brighter galaxies.
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Figure 4.5: Multiplicative bias estimated using the Monte Carlo toy model described in the text.
For each neighbour realisation, defined by a particular distance, flux and size we compute the
average of the measured ellipticity components over 70 rotations on a ring of neighbour angles. To
estimate the bias we perform this averaging twice at two non-zero shears, g+ and g−, and compute
the finite-difference deriviative using equation 4.3. The dashed thin blue line shows the result
of using all measurements, while the bold purple line has a cut based on the offset between the
centroid position of the best-fitting model and the stamp centre.
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4.4 A More Realistic Simulation

In this section we provide a brief overview of the simulation pipeline. The process is the same
as that described in §5 of Z17, and we refer the reader to that work for more detail. The end
point of the pipeline is a cloned set of survey images with many of the observable characteristics
of a chosen set of parent images, but for which we know the input noise properties and galaxy
population pefectly. The simulated images inherit the pixel masking, PSF variation and noise
maps measured from the progenitor data. Each simulated galaxy is then inserted into a subset
of overlapping exposures and into the coadd at the position of a real detection in the DES Y1
data. Object detection is rerun on the new coadd images and galaxy cutouts and new segmentation
masks are extracted and stored in the MEDS format described by J16. The mock survey footprint
is shown in Figure 4.6. In the lower panels we show an example of a simulated coadd (left) and
the spatial variation in PSF orientation within the same image (right).

4.4.1 Parent Data

We use reduced images from Year One of the Dark Energy Survey (DES Y1) as input to the
simulations discussed in this thesis. The Dark Energy Survey is undertaking a five year programme
with the ultimate aim of observing∼ 5000 square degrees of the southern sky to∼ 24th magnitude
in five optical bands, grizY, covering 0.40 − 1.06 microns. The dataset is recorded using a 570
megapixel camera called DECam (Flaugher et al., 2015), which has a pixel size of 0.26 arcseconds.
In full it will consist of ∼ 10 interwoven sets of 90s exposures in the g, r, i and z bands and 45s in
Y.

The Y1 data were collected over August 2013 and February 2014, and cover a substantially
larger footprint than the preliminary Science Verification (SV) stage at 1500 square degrees, albeit
to a reduced depth. Details of the reduction and processing are presented in Z17. Our HOOPOE

simulations use a selection of the total 3000 0.75× 0.75 degree coadded patches known as “tiles”.

4.4.2 Input Galaxy Selection

For populating the mock survey images HOOPOE we use a sample of real galaxy profiles from
the HST COSMOS field, imaged at significantly lower noise and higher resolution than DES by
the Hubble Space Telescope Advanced Camera for Surveys (HST ACS) (Scoville et al., 2007). It
extends significantly deeper than the Y1 detection limit of Mr,lim = 24.1, extending to roughly
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Figure 4.6: Top: Cartesian projection of the simulated survey footprint. The axes shown here are
the right ascension and declination in units of degrees. Each pixel represents a simulated galaxy
coloured according to the mean number of exposures in that tile. The full simulation comprises
1824 0.75 × 0.75 degree tiles drawn randomly from the DES Y1 area. Bottom: Images of a
random tile selected from the HOOPOE area. The left panel (a) shows a square subregion of the
simulated image plane for coadd tile DES0246-4123 of approximately 9× 9 arcminutes. The right
hand panel (b) shows a PSF whisker plot covering the full 0.75×0.75 tile. The length (orientation)
of the lines represents the magnitude (position angle) of the spin-2 PSF model ellipticity at each
simulated galaxy position. Note that we plot only galaxies which pass IM3SHAPE quality cuts.
The circular patches in the right-hand panel are example of spatial masking inherited from the
DES GOLD catalogue, and correspond to the positions of bright stars in the parent data.
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27.9 mag in the SDSS r-band. A main sample for our DES Y1 simulations is defined by imposing
a cut at < 24.1 mag.

Since the DES images do not cut off abruptly at 24th magnitude, in reality they contain a
tail of fainter galaxies which contribute flux but may not be identifiable above the pixel noise.
To approximate the impact of these objects we simulate a population of sub-detection galaxies in
addition to the main sample. In brief we use the full histogram of COSMOS magnitudes to estimate
the number of faint galaxies within a given tile. The required profiles are selected randomly from
the faint end of the COSMOS distribution. Each undetected galaxy is paired with a detection, and
inserted at a random location within the overlapping bounds of the same (subset of) single-exposure
images. A more detailed description of this process can be found in Z17.

If these galaxies were present in the data they would enter the background flux calculation,
and thus the subtraction applied would change due to their presence. Since the simulation pipeline
produces images effectively in a post-background subtraction state this is not captured by con-
struction. To test this we rerun the SEXTRACTOR background calculation on a handful of tiles
drawn with and without the faint galaxies. The impact was found to be well approximated as a
uniform shift in the background correction. A flux correction equal to the pixel-averaged flux of
the subdetection galaxies over each image plane is, then, applied to postage stamps prior to shape
measurement.

In reality the overdensity of sub-threshold galaxies will be coupled to the density of detectable
objects, which is clearly not the case in our simulations. To gauge the impact of this we perform the
following test. Each tile is divided into a 6×6 grid, and the mean multiplicative bias is calculated in
each sub-patch. We bin sub-patches according to the ratio ffaint ≡ Nfaint/Ndet, or the total number
of faint galaxies relative to the number of detectable ones. The impact is significant, but not leading
order; excluding patches outside the range 0.9 < ffaint < 1.1 induces a shift of ∆m ∼ −0.005.

An independent noise realisation is generated for each exposure using the weight map from the
parent data. We reify the noise in each pixel by drawing from a Gaussian of corresponding width.
The coaddition process is not rerun, but rather we compute an independent noise field by drawing
the flux in each pixel from a zero-centred Gaussian of width determined by the measured variance
in that pixel.

4.4.3 Neighbour-Free Resimulations

For the purpose of untangling the impact of image plane neighbours we use the simulated HOOPOE im-
ages to create a new spin-off dataset. In a subset of a little over 500 tiles we store the (convolved)
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Figure 4.7: An example of an object in the main
DES Y1 calibration simulation and the neigh-
bour free resimulation. The upper panels show
the coadd pixel data for this object in the original
simulated images (left, labelled HOOPOE) and in
the neighbour-subtracted resimulation (right, la-
belled WAXWING). The lower panels are the seg-
mentation masks for the same galaxy. We choose
this object as an example as it has multiple neigh-
bours, both masked (upper left and centre left)
and unmasked (lower right).

input profile for each object and the noise-only cutout, taken from the same position in the image
plane prior to objects being drawn. By adding together these two components one can generate a
suite of spin-off MEDS files, which are equivalent to the results of a simpler neighbour-free sim-
ulation (e.g. Miller et al. 2013, J16). The pixel noise realisation, COSMOS selection and input
shears, however, are identical to the progenitor HOOPOE simulations.

We will call this process “resimulating”, and the basic concept is illustrated in Figure 4.7.
The 506-tile set of neighbour free data are named the WAXWING resimulations. Finally the (now
empty) segmentation masks corresponding to the subtracted neighbours are also removed. In sub-
sequent IM3SHAPE runs on these data we ignore the SEXTRACTOR flags obtained from the main
simulations.

4.5 Quantifying Neighbour Bias with HOOPOE

Equipped with qualitative predictions from Section 4.3, we now turn to a more complete simula-
tion. The mock survey was designed to capture as much of the complexity of shape measurements
on real photometric data as possible. We refer to Section 4.4 of this chapter for a short overview
and to §5 of Z17 for a more detailed discussion of the simulation pipeline and validation tests. The
simulated galaxy catalogue used in the following is identical to the one used to calibrate the DES
Y1 IM3SHAPE catalogue, including quality cuts and selection masks.
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4.5.1 Single-Galaxy Effects

The most straightforward way to assess the impact of neighbours on individual shape measure-
ments in our simulations is to rotate the measured shapes into a frame defined by the central-
neighbour separation vector. Whereas in the earlier toy model we had only one neighbour per
galaxy, we now have a crowded image plane containing many objects simultaneously. For sim-
plicity, in the earlier case we included no masking. For HOOPOE we wish to mimic the process
of shape measurement on real data as closely as possible. We generate new segmentation maps
by running SEXTRACTOR on the simulated images, and incorporate them into our shape measure-
ments using the überseg algorithm (J16). Each simulated galaxy is allocated a nearest neighbour
using a k-d tree matching algorithm constructed on the coadd pixel grid using every galaxy sim-
ulated at r-band magnitude Mr < 24.1. Note that the neighbours pairing includes all simulated
galaxies, not just those that pass quality cuts. The quantities dgn and θ are now redefined slightly
as nearest-neighbour distance and angle. We define the tangential shear of a galaxy relative to its
nearest neighbour using the standard convention,

e+ = − [e1 cos(θ) + e2 sin(θ)] , (4.4)

and the cross shear

e× = − [e2 cos(θ)− e1 sin(θ)] . (4.5)

Note that negative values of e+ imply a net tangential alignment of the measured shapes towards
neighbours. By analogy, we define e1,n and e2,n, which are the measured ellipticity components,
rotated into a reference frame defined by the major axis of the neighbour. Non-zero ei,n would indi-
cate leakage of the neighbour’s shape into the measurement, which might conceivably be induced
by inadequate deblending of very close neighbours or by extensive non-circular masking. We first
divide the main simulated catalogue into bins according to dgn, and measure the tangential shear
about nearest neighbours in each bin. The result is shown by the purple curve in Figure 4.8. Note
that the statistical uncertainty, if plotted on this scale, is within the width of the line in all bins. The
results here show qualitative agreement with the numerical predictions in Figure 4.2. As we found
earlier, the exact shape of this curve is sensitive to the properties of both the neighbour and the
central galaxy. Despite small differences, the range of variation is comfortably within the scale of
the postage stamp for the bulk of galaxies in DES Y1. Repeating the measurement, rotated into the
plane of the neighbour shape results in the dotted and dot-dash lines in this figure. As there are not
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Figure 4.8: Tangential shear around
image plane neighbours in the full
HOOPOE simulation. The purple
solid line shows the mean component
of the measured galaxy shapes radial
to the nearest image plane neighbour.
The component rotated by 45◦, which
we have no reason to expect should
be non-zero, is shown by the dot-
dashed line. The dotted and dashed
black lines are the measured elliptic-
ity components when rotated into a
coordinate frame defined by the ma-
jor axis of the neighbour. The inset
panel covers the same x range, with a
magnified y axis.

necessarily reliable ellipticity measurements for each neighbour, we instead use the sheared input
ellipticities. Both components of ei,n are seen to be negligible over all scales.

4.5.2 Neighbour Ensemble Biases

As we suggested in Section 4.3, the pertinent question for lensing cosmology is not whether the
single galaxy ellipticities are offset relative to the underlying truth, but whether we are able to
accurately recover an input shear by averaging over many galaxies. To explore this we again
divide the catalogue into bins according to neighbour distance, but we now fit for multiplicative
and additive bias in each bin. We show the measurement as the purple points in Figure 4.9, which
can be compared with the earlier numerical model prediction in Figure 4.5. The horizontal band on
these axes shows the 1σ meanmmeasured using all galaxies in the HOOPOE catalogue, and sits at
m ∼ −0.12. We note a steeper decline than in the bold line (without the centroid cut), more akin
to the case with the centroid cut (∆r0 < 1 arcsec). This is not surprising given that the INFO FLAG

quality selection includes exactly this cut. We do not report a local peak at ∼ 11 pixels, which
we saw in Figure 4.5. We suggested previously that effect was the result of positive m in galaxies
where the nearest neighbour is relatively faint and at middling distance. It is likely that many
of these objects manifest themselves as large changes in other quantities to which IM3SHAPE’s
INFO FLAG is sensitive such as ellipticity magnitude and fit likelihood, or are flagged by the SEX-
TRACTOR deblending cuts.
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Figure 4.9: Multiplicative bias
as a function of separation from
the nearest image plane neigh-
bour. The purple points show
the bias calculated in bins of
neighbour distance using the
main HOOPOE simulated shape
catalogue. The coloured bands
show the same dataset divided
into four equal-number bins ac-
cording to the r-band magni-
tude of the neighbour. As
shown in the legend, the me-
dian values in the four bins are
21.5, 23.0, 23.5 and 24.0. The
mean bias and its uncertainty
across all distance bins is indi-
cated by the horizontal band.

When divided into broad bins according to the r-band magnitude of the nearest neighbour
Mr,neigh (the coloured stripes in Figure 4.9) we find the surviving objects show relatively weak
dependence on neighbour brightness, except at the smallest neighbour distances, where bright
neighbours have a slightly stronger (negative) impact than faint ones.

We measure the additive bias components in the same bins, but find no systematic variation
with dgn above noise.

Finally, we show the analogous measurement in bins of galaxy magnitude in Figure 4.10. The
steep inflation of |m| at the faint end of this plot has been seen elsewhere (e.g. Zuntz et al. 2017;
Fenech Conti et al. 2016), and is easily understandable as the result of noise bias. We find that
splitting by neighbour magnitude does not reveal any obvious trend here.

4.5.3 Untangling the Knot of Neighbour Bias

A central plank of this analysis rests on a comparison of the main HOOPOE simulations with
the neighbour-free WAXWING resimulations described in Section 4.4.3. The simplest comparison
would be between multiplicative bias values, calculated using all galaxies in each catalogue after
cuts. These values are shown by the two upper-most lines (purple) in Figure 4.11. The difference
is an indicator of the net impact of neighbours through any mechanism, which we find to be ∆m ∼
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Figure 4.10: Multiplicative
bias as a function of r-band
magnitude. As in Figure
4.9 the four coloured bands
represent equal number bins of
neighbour magnitude. Purple
points show the full catalogue,
with no magnitude binning.
The mean bias and its uncer-
tainty are shown by the purple
horizontal band.

−0.05.
To untangle the various contributions to this shift, we construct a matched catalogue. Galax-

ies in the overlap between HOOPOE and WAXWING (12 M galaxies over 183 square degrees)
are matched by ID; quality cuts are calculated for each set of measurments (see Appendix E
from Z17). GOLD catalogue geometric masking and SEXTRACTOR deblending flags are included
for HOOPOE. Since the latter are irrelevant to WAXWING, we omit them from quality flags on
that dataset. For conciseness we will refer to the two measurements as “matched HOOPOE” and
“matched WAXWING”, and their cuts as “HOOPOE cuts” and “WAXWING cuts”. Since the images
are identical in all respects, but for the presence of neighbours, the statistical noise on the change

in measured quantities should be smaller than the face-value uncertainties.
The appropriate cuts are first applied to each catalogue, then the results are divided into equal

number signal-to-noise bins and fitted for the multiplicative bias in each. The result is shown by
the points in the upper left-hand part of Figure 4.12. The equivalent in bins of PSF-normalised size
is shown on the right. The difference between the blue and the purple points gives an indication
of the total effect of all neighbour-induced effects on m, indicated by the solid purple line in the
lower panel.

The generic shift attributed to “neighbour bias” is in reality a collection of distinct effects.
By comparing the matched catalogues we identify four main mechanisms: direct contamination,
selection bias, S/N bin shifting and neighbour dilution. The following paragraphs seek to explain
each of these in turn. For reference each of the components that we describe is shown by one of
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Figure 4.11: Graphical illustration of the measured multiplicative bias in the various scenarios con-
sidered in this chapter. The upper two lines show the mean m in the main DES Y1 HOOPOE sim-
ulations and a spin-off neighbour-free resimulation named WAXWING, as described in Section
4.4.3. The middle section (green) shows results using only galaxies which appear in both the
HOOPOE and WAXWING simulations. The matching process alone does not imply any quality-
based selection function. The final three lines in red are from a similar matching between a smaller
rerun of the simulation with and without sub-detection limit galaxies. See the text for details about
each of these cases.
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Figure 4.12: Top half of each panel Multiplicative bias as a function of signal-to-noise and size.
The purple dots show the measured bias using the main simulation and the blue diamonds show
the neighbour-free version. The result of applying both the HOOPOE and WAXWING selection
functions to the neighbour-free catalogue is indicated by blue dash-dot line. The downwards shift
relative to the blue diamonds is the result of selection effects only. In purple dotted we show the
results using this same galaxy selection but now with neighbours drawn, forcing each galaxy to
fall into the same bins as before. The purple dashed line then shows the impact of relaxing the
forced binning. Finally, the pink (dot-dot-dashed) line indicates “neighbour dilution” in the same
galaxy selection, by adding back any galaxies which shift by more than ∼ 20% in S/N or Rgp/Rp

between the two catalogues, with random shears. Bottom half of each panel The change in bias
due to the effects described above. The green (dashed) line shows the impact of selection effects
only (the difference between the blue points and the dashed line in the top panel). Purple dash-
dotted shows the direct impact of image plane neighbours on the measured shear (purple dotted
minus blue dash-dot, top). The impact of shifting between S/N (or Rgp/Rp) bins is shown by
the blue dotted (purple dashed minus purple dotted, top). The pink dot-dot-dashed line shows the
neighbour dilution described above and in the text below. The solid line illustrates the full effect
of neighbours, including all effects described.
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the lines in Figure 4.12. For a visual summary of the various tests designed to isolate them see
Figure 4.11.

Direct Flux Contamination

The most intuitive form of neighbour bias arises from the fact that, even after masking, neighbours
contribute some flux to the cutout image of a galaxy. We term the effect of overlapping light profiles
direct flux contamination. To gauge its impact we take the common sample of galaxies, which pass
cuts in both datasets. The comparison is complicated somewhat by binning in measured S/N or
Rgp/Rp; for this test, we divide both sets of galaxies using the WAXWING-derived quantities.
The resulting m measured using the HOOPOE galaxies is counterfactual, in the sense that we are
binning measurements made in the presence of neighbours by quantities derived from neighbour-
subtracted images. This exercise does, however, isolate the impact of the neighbour flux on the
measured ellipticity. The result is shown by the purple dotted and purple dot-dashed lines in the
upper and lower panels of Figure 4.12. The effect scales significantly with signal-to-noise and
size. Faint small galaxies are affected strongly by neighbour light, while larger brighter ones are
relatively immune.

Neighbour-Induced Selection Bias

We have noted already at the single-galaxy level that applying the HOOPOE selection mask to
WAXWING can induce a link between the RMS ellipticity and distance to the nearest neighbour.
To gauge the neighbour-induced selection effect, we take the WAXWING catalogue but now im-
pose, in addition to its own quality cuts, the selection function derived from the with-neighbour
HOOPOE dataset. The double masking removes an additional 0.5 M galaxies, which survive cuts
in WAXWING but would be cut from the HOOPOE catalogue. The resulting change in m is shown
by the dot-dash blue lines in the upper panels of Figure 4.12 (dashed green in the lower). The
multiplicative bias arising from this cut is less than one percent in all but the faintest and smallest
galaxies, where it can reach up to m ∼ −0.02.

Bin Shifting

The above two tests encapsulate the impact on the measured ellipticities, and the selection flags
from neighbour flux. An additional subtlety arises from the fact that the measured quantities used
to bin galaxies (S/N and Rgp/Rp) are themselves affected by the presence of neighbours. To test
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this we recalculate m using the same galaxy selection as in Section 4.5.3 (i.e. passing both sets of
cuts), but now binned by the appropriate measured S/N . For clarity, the bin edges are unchanged,
defined to contain equal numbers of WAXWING galaxies. The result is shown by the dashed lines
in Figure 4.12. The difference compared with the case using fixed binning is purely the result of
galaxies moving between bins. This shifting contributes multiplicative bias if one bins galaxies
by observed quantities such as S/N , as we do in order to calibrate IM3SHAPE’s shear estimates.
The amplitude of this is illustrated by the blue dotted line in the lower panels. Such neighbour-
induced shifting is noticable if we plot out the S/N of objects in HOOPOE against the S/N of the
same objects in WAXWING. Objects which are strongly shifted in S/N are more likely to scatter
upwards than downwards. A similar skew can be seen in the Rgp/Rp plane; when galaxies are
scattered in size they tend to be thrown further and more often upwards than downwards. Small
galaxies (which we know already are more strongly affected by noise bias) are shifted strongly
upwards by the presence of neighbour flux in the HOOPOE images. The result is a net negative
m added to the upper Rgp/Rp bins, and a simultaneous upwards shift in the lowest bins from
which galaxies are lost. In the case of galaxy size we see the effects of bin scatter and direct
neighbour bias almost negate each other, although the degree of cancellation is likely dependent
on the specifics of the measurement code and the dataset.

Neighbour Dilution

A final point can be gleaned from Figure 4.12: that applying the WAXWING cuts to HOOPOE in-
duces a shift in m. Naively one might expect the HOOPOE selection function, which includes
neighbours, to remove the same galaxies as the WAXWING selection, plus some extra strongly
blended galaxies. It is true that a sizeable number of galaxies are cut in the presence of neighbours,
but would otherwise not be. There is also, however, a smaller population that survive cuts because

they have image plane neighbours.
We can see this clearly from the fact that the purple points and the dashed purple lines Figure

4.12 are non-identical. We identify three separate (but partially overlapping) galaxy selections
in this figure: (a) galaxies passing both sets of cuts, (b) galaxies passing cuts in the absence of
neighbours, but cut by the HOOPOE selection and (c) galaxies which pass cuts in the presence of
neighbours, but cut by the WAXWING selection. We find that populations (b) and (c) have much
smaller mean neighbour separation than the full population (the histograms of dgn show a sharp
peak at under 10 pixels). In contrast, both the full catalogue and population (a) objects exhibit a
much broader distribution (d̄gn ∼ 24 pixels).
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Based on the toy model predictions in Section 4.3 we set out a working proposal: that popu-
lation (c), objects cut out only when neighbours are removed, are extreme blends dominated by
a superposed neighbour. We will assume these objects are boosted considerably in size, S/N or
both, such that what would otherwise be a small faint galaxy is now sufficiently bright to pass
quality cuts. In these cases the measured shape of a simulated galaxy might be expected to be
only weakly linked with the input ellipticity. To approximate this effect we take population (a)
HOOPOE galaxies, subject to both sets of cuts, and add back some of the population (c) galaxies.
Specifically, we include any objects shifted in S/N or Rgp/Rp by more than 20%. The true shears
associated with these galaxies are now randomised to eliminate any correlation with the measured
ellipticity. The result is shown as a pink dot-dot-dashed line in Figure 4.12. We can see that this ef-
fect, which we call neighbour dilution, to good approximation accounts for the residual difference
between the population (a) and (c) samples. Particularly in the upper size bins of the right hand
panel the differences are not eliminated entirely. This is thought to be the result of residual (al-
beit weakened) covariance between the measured shapes of strongly blended objects and the input
shears. Clearly the scenario in which a neighbour totally overrides the original shape of a galaxy
is extreme, and there will be an indeterminate number of moderate blends which are boosted suf-
ficiently to survive cuts but which retain some correlation with their original unblended shapes.
Such cases are, however, extremely difficult to model accurately with the resources available for
this investigation.

4.5.4 Isolating the Impact of Subdetection Galaxies

A small number of previous studies have attempted to quantify the impact of galaxies below, or
close to, the limiting magnitude of the survey. For example, Hoekstra et al. (2015) and Hoekstra
et al. (2016) suggest they can induce a non-trivial multiplicative bias, which is dependent on the
exact detection limit. They recommend using a shear calibration sample at least by 1.5 magnitudes
deeper than the survey in question (which ours does). Their findings, however, make exclusive use
of the moments-based KSB algorithm (see Kaiser 1995); such techniques are known to probe a
galaxy’s ellipticity at larger radii than other methods, which could in principle make them more
sensitive to nearby faint galaxies. It is thus a worthwhile exercise to to gauge their impact in our
case with IM3SHAPE.
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Impact on Multiplicative Bias

We first draw what conclusions we may by again comparing our HOOPOE simulations with the
neighbour-free WAXWING resimulations. The logic here is as follows. Since WAXWING postage
stamps consist of only a single profile added to Gaussian pixel noise, they are unaffected by neigh-
bours of any sort (faint or otherwise). We have seen that the impact of neighbours is strongly
localised, with the excess m converging within a nearest neighbour distance dgn of a dozen pixels
or so. Thus, selecting galaxies that are well separated from their nearest visible neighbour will
isolate the impact of the undetected ones.

A further cut is thus imposed on dgn < 20 pixels. Relative to the case with quality cuts only,
the global multiplicative bias now shifts from m ∼ −0.12 to m ∼ −0.065 (the first and second
lines in green on Figure 4.11). This measurement is in mild tension with the value measured from
WAXWING (again under its own cuts, with the selection on dgn). This difference, which amounts
to a negative shift in m of ∼ 0.01 is, we suggest, the net effect of the sub-detection galaxies. From
these numbers alone one cannot tell if this is a result of selection effects, flux contamination, bin
shifting or some combination thereof.

Interestingly we find that imposing both the HOOPOE and WAXWING selection functions in
addition to the cut on dgn brings m into agreement to well within the level of statistical precison
(compare the final and penultimate lines in green in Figure 4.11). That is, when restricted to
a subset of galaxies that pass quality cuts in both simulations the flux contributed by the faint
objects has little impact. Their main impact is rather that they allow a population of marginal
faint galaxies which would otherwise be flagged and removed by quality cuts to pass into the final
HOOPOE catalogue.

To test this idea further we rerun a subset of 100 random tiles from the simulated footprint,
without the final step of adding sub-detection galaxies. To minimise the statistical noise in this
comparison we enforce the same COSMOS profiles, shears and rotations as well as the per-pixel
noise realisation as before. SEXTRACTOR source detection is applied and the blending flags are
propagated into the postprocessing cuts.

The raw m values calculated from the rerun and the main HOOPOE simulations, matched to
the same tiles, are shown by the upper two red lines on Figure 4.11. The downward shift of
∼ 0.01 is consistent with the previous result based on the main simulation. This comparison
should encapsulate the full effect of the faint objects (since there are no other differences between
these datasets).

For each galaxy we next measure the distance to the nearest faint object dgf , the distribution of
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Figure 4.13: Histogram of radial distances between galaxies in our measured shape catalogues
(the full HOOPOE simulations) and the nearest object below the DES detection limit. The dotted
line includes all objects prior to quality cuts, while the solid line shows the impact of applying
IM3SHAPE’s INFO FLAG cuts (see J16). The dashed blue line shows the population of galaxies
which survive cuts only in the presence of the faint galaxies.

which is shown under various selections in Figure 4.13. Like in the comparison in Section 4.5.3,
there is a population of galaxies that survive cuts only in the simulation with the subdetection
objects, and these galaxies tend to be ones with extremely close faint neighbours. Interestingly
the inverse population surviving only when they are removed do not preferentially have small dgf .
This is intuitively understandable: a faint object might boost its neighbour’s apparent size or S/N
if it were centred within a few pixels. Otherwise it would act as a source of background noise,
which would reduce the quality of the fit.

Finally we find that if we apply both selection functions to the with-faint galaxies, the mea-
sured biases become roughly consistent. These findings, combined with the observations in the
previous section lead us to an interesting conclusion: the major effect of the faint galaxies in the
DES Y1 IM3SHAPE catalogue is to allow a population of small faint galaxies to pass quality cuts,
where otherwise they would have been removed. This is analogous to the neighbour dilution effect
described above, but is subdominant to the influence of visible neighbours.



Chapter 4. The Impact of Image Plane Neighbours on Shear Cosmology 142

Impact on Background Flux Subtraction

As a test of the robustness of this result we recompute our IM3SHAPE fits on the faint-free images,
with and without the correction for the shift in the background flux that would have been applied
if the sub-detection galaxies had been drawn. The mean per-tile correction is ∆f ∼ 0.05, against
typical noise fluctuations σn ∼ 6.5. Matching galaxies and examining the histograms of ∆S/N

and ∆Rgp/Rp reveals weak downwards scatter in both quantities (i.e. the flux subtraction alone
makes galaxies appear smaller and fainter). The magnitude of the shift is, however, tiny, peaking at
∼ −0.1 and −0.005 respectively. This is logical given the definition in equation 4.1. If the change
is small enough such that the best-fitting model is stable, then an incremental reduction in flux will
reduce the signal-to-noise of the measurement. Looking at the best-fit shapes, we find a small shift
towards high ellipticities, which can likewise be understood as a numerical effect; imposing a flat
positive field of zero ellipticity will dilute the measured shear, producing a bias towards round |e|.
The reverse logic applies with the flux correction, and subtracting a flat value from all pixels will
make galaxies appear slightly more elliptical. In practice we find a sharp peak at ∆e ∼ 0.001.

4.5.5 Suppressing Neighbour Bias

There is no universal definition for the shape-weighted effective number density commonly used
as proxy for cosmological constraining power in a shear catalogue. One which is particularly
useful in the context of weak lensing, and which has been adpoted in DES Y1 is the prescription
of Chang et al. (2013), which is designed to account for shape noise and fitting error (see equation
7.3 in Zuntz et al. 2017). A second useful definition is set out by Heymans et al. (2012) in terms
of the (see also Z17). We compute a neighbour distance dgn for every object in the simulation
which allows us to cut on this quantity. Removing any galaxy with a neighbour detected within a
radius of dgn = 20 pixels reduces the effective number density of sources using either definition
to about 70% of its initial value, from nH13

eff = 5.48 to nH13
eff = 3.68 arcmin−2 using Heymans et al.

(2012)’s definition. Using the prescription of Chang et al. (2013), the equivalent density drops
from nC13

eff = 3.18 prior to cuts and nC13
eff = 2.18 arcmin−2 afterwards. This cut is stringent, as we

have shown that beyond∼ 12 pixels the multiplicative bias becomes insensitive to further selection
on dgn. There are, however, a number of limitations in our analysis, including the fact that dgn is
defined using the true input positions, and indeed that we are using only the detected positions in
DES to draw our simulated Mr < 24.1 galaxies. We thus judge that a level of conservatism is
appropriate here. Relaxing the cut to dgn > 14 pixels leaves neff at 84% of its full value.
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4.6 Cosmological Implications

As we have shown in the previous sections, if ignored completely image plane neighbours can
induce negative calibration biases in IM3SHAPE of a few percent or more. The earlier part of the
investigation focused on when and how neighbour bias can arise, first in the context of single-
galaxies and then on ensemble shear estimates. We now turn to a more pressing question from the
general cosmologist’s perspective: how far should we be concerned about these effects in practice?

In the following paragraphs we present a set of numerical forecasts using a Markov Chain
Monte Carlo algorithm to sample trial cosmologies. Our basic methodology here follows previ-
ous MC forecasts (eg Joachimi & Bridle 2010; Krause et al. 2015, 2017). We construct mock
DES Y1 cosmic shear measurements using a matter power spectum derived from the Boltzmann
code CAMB4 with late-time modifications from HALOFIT. The cosmic shear likelihood surface is
sampled at trial cosmologies using COSMOSIS5. The final data used for the likelihood calculation
have the form of real-space ξ± correlations and are shown by the purple points in Figure 4.14.
For the photometric redshift distributions we use the measured estimates in four tomographic bins,
obtained from runs of the BPZ code on the Y1 IM3SHAPE catalogue. Note that for our purposes
it is unimportant if the n(z) used to construct the mock data are somewhat inaccurate; we sim-
ply wish to mimic the qualitative (non-analytic) shape and mean redshift in each bin. In all MC
chains which follow we maginalise over two nuisance parameters (an amplitude and a power-law
in redshift) for intrinsic alignments, photo-z bias and shear calibration bias. In total this gives 10
extra free parameters in addition to six for cosmology ( Ωm, Ωb, As, ns, h, Ωνh

2), which are also
allowed to vary. The analysis choices are identical to those used in the DES Y1 cosmic shear anal-
ysis of Troxel et al. (2017), and we refer the reader to that paper for details of the priors and scale
cuts. Finally, the following adopts shear-shear covariance matrices derived from the analytic halo
model calculations of Krause et al. (2017). We assume a fiducial ΛCDM cosmology σ8 = 0.81,
Ωm= 0.315, Ωb = 0.049, ns= 0.97, h = 0.688, τ = 0.08, with non-zero comoving neutrino
density Ωνh

2 = 0.00062.

4.6.1 Mean Multiplicative Bias

We first seek to quantify the bias that would be present a cosmic shear analysis in a survey like
DES, if we were to use a simple postage stamp simulation of the sort presented in J16 and Miller

4http://camb.info
5https://bitbucket.org/joezuntz/cosmosis
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Figure 4.14: Top: The observed two point correlation of multiplicative bias, as measured from
the main HOOPOE simulation set presented in this chapter. Sub-patches are used to compute m
in spatial patches of dimension 0.15 × 0.15 degrees and the correlation function calculated as
described in the text. The dashed vertical line shows the diagnoal scale of the sub-patches, below
which we do not attempt to directly measure spatial correlations. The shaded blue bands show
the minimum and maximum scales used in the DES Y1 cosmic shear analysis of Troxel et al.
(2017). Bottom: Residuals between the mock two point shear-shear data used in this chapter,
before and after different forms of bias have been applied. The upper and lower subpanels show
the ξ+ and ξ− correlations respectively, calculated using the redshift distributions of Hoyle et al.
(2017). The dotted black lines, which are flat on all sim but vary between panels, show the result
of calibrating our Y1 shear measurements with a simple postage stamp simulation without image
plane neighbours. The dashed lines illustrate the impact of ignoring scale-dependent selection
effects, which are not captured by our simulation-based calibration. The shaded blue regions of
each panel show the exlcuded scales for each particular tomographic bin pairing.
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et al. (2013). To this end we use the neighbour-free WAXWING dataset to construct an alternative
shear calibration. In Z17 we compared three methods for shear calibration using the HOOPOE sim-
ulations and found our results to be robust to the differences. We now use the fiducial (grid-based)
scheme to derive an alternative set of bias corrections from WAXWING. These are then applied to
the same galaxies in the matched HOOPOE simulation, and residual biases are measured in four
DES-like tomographic bins. The process is very similar to the diagnostic tests in §5 of Z17, and so
we defer to that work for details of the redshift bin assignment of simulated galaxies.

Using the neighbour-free simulation we under-correct the measurement bias by several percent
in each bin. The remeasured residual bias after calibration provides an estimate for the level of
systematic that would be present were we to calibrate DES Y1 using the simpler WAXWING sim-
ulations. In the four tomographic bins used in DES Y1 we find
(∆m(1),∆m(2),∆m(3),∆m(4)) = (−0.037,−0.044,−0.064,−0.073), and apply these biases to
our mock data. The resulting shift in the shear two-point correlations is shown by the black dotted
lines in the lower panel of Figure 4.14. Since the calibration scheme does not explicitly include
neighbour distances, but rather orders galaxies into cells of S/N and Rgp/Rp, this test does not
include any scale dependent neighbour effects. The calibration effectively marginalises out dgn,
and the residual biases are an average over the survey. For the moment we will assume this mean
shift in m is sufficient, and return to the question of scale dependence in the following section.

Our predicted cosmology constraints with weak lensing alone in DES Y1 are shown in Figure
4.15. In purple we show the results of the fiducial analysis, in which the shear calibration fully
captures all neighbour effects and leaves no residual multiplicative bias. The contours are, natu-
rally, centred on the input cosmology, marked in this figure by the black cross. The blue (solid)
contours then show the impact of residual neighbour biases per bin at the level described. As one
can see, even when marginalising over mi with an (erroneously) zero-centred Gaussian prior of
width σm = 0.035, our cosmology constraints are shifted enough to place the input cosmology
outside the 1σ confidence bounds. We reiterate here that this calculation highlights the bias that
would arise were we to naively apply a calibration of the sort used in DES-SV based on neighbour-
free simulations to the Y1 data. Since we are confident that the HOOPOE code captures the effects
of image plane neighbours correctly (at least to first order) this is a hypothetical scenario only and
not a prediction of actual bias in DES Y1.
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Figure 4.15: Expected cosmology constraints from DES Y1 cosmic shear only. The purple (solid)
contours show the results of calibrating using a simulation which fully encapsulates all biases in
the data, leaving no residual m in the final catalogue. In blue (dash-dotted) we show the result of
calibrating with an insufficiently realistic simulation, which leaves a residual bias between −0.03
and −0.08 in each of the redshift bins. For reference the input cosmology is marked with a black
cross.

4.6.2 Scale Dependence

It is not trivial that including an mean neighbour-induced component to m over the entire survey
will be sufficient to mitigate all forms of neighbour bias. The local mean m on a patch of sky
is sensitive to spatial fluctuations in source density, which could induce scale dependent bias on
arcminute scales. Clearly, when correlating galaxy pairs on small scales one can expect a larger
fraction in which the objects come from a similar image plane environment, and more often than
not that enviroment will be densely populated. Thus the true multiplicative bias should become
more negative on small scales.

Two subtly different effects emerge from this thought experiment. First, the multiplicative bias
of galaxies will be spatially correlated (i.e. a correlation involving two galaxy populations 〈mimj〉
is not just the product of the means m̄im̄j). Second, in the small θ bins one is selecting galaxies
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Figure 4.16: The same as Figure 4.15, but now showing the impact of residual scale dependent
selection bias. The two sets of confidence contours represent different assumptions about the
small scale extrapolation of the ξmm correlation, as outlined in the Section 4.6.2. In green (dashed)
we show a mildly optimistic case, using the linear fit shown in Figure 4.14. The pink dotted
contours show a (strongly pessimistic) power law extrapolation. The dark blue solid line makes
identical assumtions to the pink, but incorporates small-scale information, to a minimum separation
of θ+

min = 0.5 arcminutes in ξ+(θ) and θ−min = 4.2 arcminutes in ξ−(θ). As in Figure 4.15 the input
cosmology is shown by a black cross.

with close partners with which to correlate, and thus oversampling the dense parts of the image.
To gauge the level of these effects, we divide each simulated coadd tile into a grid of 25 square
sub-patches with dimension 0.15× 0.15 degrees. we fit for m using the galaxies in each sub-patch
and assign the resulting value to these objects. While this only allows a noisy measurement of
m, it should capture the spatial variations in number density to the level of a few percent. We
next measure the two-point correlation function of multiplicative bias values assigned in this way
using TREECORR6 , excluding galaxy pairs at angular separation smaller than the scale of the sub-
patches. We refer to this bias-bias autocorrelation as ξmm, which we show as a function of angular
scale in the upper panel of Figure 4.14. Analogously one could use the subpatches to construct

6http://rmjarvis.github.io/TreeCorr
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correlations between m and galaxy number density ξgm or density with density ξgg. The statistical
noise on these correlations is significantly lower than that on the individual subpatches by virtue
of the large simulation footprint. Note that in Figure 4.14 we subtract m̄2, measured from all
galaxies in the simulation, from the measured ξmm. If there were no θ dependence the correlation
〈mimj〉 should simply average to the square of the global mean in all scale bins. As one can see
from the circular points in this figure, scales larger than the diagonal size the sub-patches (shown
by the vertical dashed line) exhibit non-negligible excess ξmm. One obvious question is whether
this could be the result of finite binning error, which scatters galaxies in the same sub-patch into
different θ bins. To verify this is not the case we repeat the measurement as before, but halve the
parameter controlling binning error tolerance (“bin slop”) and obtain the same results.

To extend this measurement down to scales below the sub-patch we must make some as-
sumptions about the functional form of the mm correlation. We fit a power law, ∆ξmm(θ) ≡
ξmm(θ)− m̄2:

∆ξmm(θ) = βθ−α, (4.6)

which is shown by the dotted purple line in this figure. This provides a qualitiatively good fit to
the measured points, but as one can see implies a rather dramatic inflation on small scales.

In the limited range over which we have a nonzero measured correlation, however, a linear
function of θ (truncated at θ = 27 arcminutes) also provides a reasonable by-eye fit. The small-
scale extrapolation in this case is significantly milder. The 〈mδg〉 and 〈δgδg〉 measurements are
linear with θ to good approximation, and so we use linear fits to extrapolate them below the patch
size.

Assuming the bias per tomographic bin can be written as the sum of a redshift dependent
contribution (i.e. a scale invariant mean in each bin), and a scale dependent term, one can write the
correlation per bin as mimj = m̄im̄j + ∆ξmm(θ). A more complete derivation of this expression
can be found in Appendix C. The first part can be extracted from the DES Y1 calibration, and one
can fit for ∆ξmm(θ) as described above. A set of modified ξij± are thus computed. These appear in
the lower panels of Figure 4.14 as dashed lines. As can be seen, the scale cuts of Troxel et al. (2017)
(excluded scales are shaded in blue) are sufficiently stringent to remove almost all of the visible
scale dependence. Though reassuring for the immediate prospects of DES Y1, this will not trivially
be true for all future (or indeed ongoing) lensing surveys. It is thus important that the effects we
identify here are properly understood at a level beyond the resources of the current analysis. These
biased data are then passed through our likelihood pipeline to gauge the cosmological impact,
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which is shown in Figure 4.16. In the linear case (dashed green) there is no discernable bias
in the σ8 Ωm pair; even the much harsher power-law extrapolation (pink dotted) induces only
an incremental shift along the degeneracy direction. In both cases the input cosmology still sits
comfortably within the 1σ confidence contour.

Finally we test the impact of relaxing the stringency of our scale cuts. The minimum scales
used for ξij+ and ξij− are shifted downwards to 0.5 and 4.2 arcminutes respectively, irrespective of
bin pair, which are the cut-off values used in fiducial cosmic shear analysis of Hildebrandt et al.
(2016). This increases the size of our datavectors considerably. Incorporating smaller angular
scales will clearly improve the constraining power of the data to an extent. Primarily the effect is
to shorten the lensing degeneracy ellipse, cutting out much of the peripheral curvature, but it also
reduces the width in the S8 direction. These scales, however, contain biased information, which
induces tension between the small and large angular scales. With the strongest (power law) scale
dependence considered, the input cosmology is displaced moderately along the degeneracy curve,
though it remains within the 1σ confidence bound.

4.7 Conclusions

The Dark Energy Survey is the current state of the art in cosmological weak lensing. Multi-band
imaging down to 24th magnitude across 1500 square degrees of the southern sky has yielded
hitherto unparalleled late-time constaints on the basic parameters of the Universe (see Troxel et al.
2017 and DES Collaboration et al. 2017). This an exciting time for lensing cosmology and, of
course, requires galaxy shear measurements of exquisite accuracy.

In this chapter we have used one of two DES Y1 shear catalogues, and large-area simulations
based upon them, to quantify the impact of image plane neighbours. The present study is one of
a small handful on this important subject, and the first to approach it in the context of a realistic
simulated image pipeline and a cutting-edge model-based shape measurement algorithm.

In order to properly mitigate the influence of galaxy neighbours, and thus avoid drawing flawed
conclusions about cosmology from the data, it is important to first understand the mechanisms by
which they enter the shape measurement. Using a simple toy model of the galaxy-neighbour system
we have shown that shear bias can arise even when the distribution of neighbours is isotropic (i.e.
there is no preferred direction). This is the result of a small difference in the impact of the same
neighbour, when it is placed on or away from the axis of the shear. We have furthermore shown
that the resulting multiplicative shear bias m can be either positive or negative, depending on the
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model parameters. With slight modifications to the toy model, whereby we Monte Carlo sample
input parameters from the joint distribution of the equivalent properties measured in DES Y1, we
have shown that a mild negative m is dominant when marginalising over a realistic ensemble of
neighbours. This was seen to be strongly dependent on the distance of the neighbour, and to be
mitigated but not eliminated by basic cuts on the centroid position of the best-fitting model.

Using the DES Y1 HOOPOE simulations, which were also used to derive shear calibration cor-
rections for the Y1 IM3SHAPE catalogue of Jarvis et al. (2015), we have presented a detailed study
of the ensemble effects of galaxy neighbours. In this analysis we have identified four mechanisms
for neighbour bias, which we call flux contamination, selection effects, bin shifting and neighbour
diluation. All can be understood in intuitive terms, resulting from close-by or moderately close
neighbours. Our results from the full simulation are consistent with the toy model calculation.
Though we have shown strong dependence on distance to the nearest neighbour (and thus on num-
ber density) we found only weak sensitivity to neighbour brightness, when averaged across broad
bins of magnitude. In addition to this, cuts on the DES Y1 catalogue sufficient to null the impact
of the detectable neighbours would result in a degradation of over 20% in source number density.
one cannot recommend such measures for a code like IM3SHAPE, in part because the data con-
tains correlations between shear and number density. Unless the link is preserved in the calibration
simulations, such selection could conceivably induce additional bias towards low shear7.

Our investigation also assessed the impact of the faintest galaxies, which are not reliably de-
tected but nonetheless contribute flux to the survey images. Via two different routes, first using a
spin-off neighbour-free resimulation, and also using a subset of images simulated again with the
sub-detection galaxies missing, our findings suggested a net contribution to the multiplicative bias
budget of m ∼ −0.01.

Unlike most earlier works on shear measurement, we have propagated these findings to the
most meaningful metric for cosmic shear: bias on the inferred cosmological parameters. The
study we have presented here uses the DES Y1 cosmology pipeline, as well as non Gaussian shear
covariance matrices and real photometric redshift distributions to implement MCMC forecasts. In
the first case considered, the data included a (different) multiplicative bias in each redshift bin,
designed to approximate the residual m that would arise were we to calibrate DES Y1 with a
simple neighbour free simulation. Even marginalising over m with a prior of N (0, 0.0352) this
scenario was demonstrated to result in a shift in the favoured cosmology towards low clustering
amplitude of more than 1σ.

7Although the sister catalogue to Y1 IM3SHAPE uses a form of self-calibration, which should allow one to correct
for the additional selection bias.
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Finally, we have explored a second possible source of measurement bias arising from the link
between number density and neighbour bias. This enters two-point measurements as an additional
correlation between the multiplicative bias in galaxy pairs at small angular separation. In the
final section we have measured such a correlation from the HOOPOE mock images. With the
most pessimistic small-scale extrapolation, this was found to result in a shift in the best-fitting
cosmology of under 1σ in the negative S8 direction, which is not remedied by marginalising over
m. A less dramatic, though still considerable, increase in the correlation strength on small scales
was demonstrated to result in no discernable cosmological bias.

Both of these effects are of primary concern for the next generation of cosmological surveys.
By the end of their lifetime KiDS, DES and HSC are set to offer lensing-based cosmological
constraints comparable to the CMB. The first, dominant, effect can be remedied relatively easily
by calibrating our shear measurements with sufficiently complex image simulations. Indeed, the
most recent shear constraints of Hildebrandt et al. (2016), Köhlinger et al. (2017) and Troxel et al.
(2017) have done just that. Unfortunately, the correct treatment of scale dependent bias is not as
clear. Though further statements about the likely small scale dependence of the mm correlation
are beyond the scope of the present study, understanding this intricate topic will be crucial for
future surveys if we are to fully exploit the constraining power of the data. The massive simulation
efforts of LSST and Euclid, combined with advancement in neighbour mitigation using techniques
such as multi-object fitting will be invaluable in this task. With the enhanced understanding these
will provide and the exquisite data of the next generation surveys, the coming decade will be an
exciting time for cosmology.



Chapter 5

Constraining Redshift Systematics Using
Lensing & Galaxy Clustering

In this short chapter we present a set of numerical forecasts designed to explore the complementary
constraining power of cosmic shear and galaxy clustering measurements. The following has been
accepted for publication in MNRAS Letters as Samuroff et al. (2017b).

5.1 Introduction

Cosmic shear is potentially the most powerful tool available to cosmologists today. As an un-
biased probe of the mass distribution, it offers powerful constraints on the mean density of the
Universe and the clustering of dark matter. It is also expected to shed new light on the late-time
accelerated expansion of the Universe and thus measure the dark energy equation of state and test
General Relativity on the largest scales. A three decade programme aiming to extract unprece-
dented constraints on our cosmological model from cosmic shear is now midway to completion.
It began soon after the first detection in 2000 (Bacon et al., 2000; Van Waerbeke et al., 2000;
Wittman et al., 2000; Kaiser et al., 2000) using ∼10000 galaxies and will culminate in catalogues
of more than a billion galaxies by the end of the coming decade (Stage IV, Albrecht et al. 2006).
Logarithmically, we are halfway there, with ongoing analyses of the preliminary Stage III datasets
containing ∼10M galaxies (Dark Energy Survey Collaboration 2016; Hildebrandt et al. 2016, see
also Heymans et al. 2013; Jee et al. 2016). The increase in the number of galaxies with reliable
shape measurements has allowed tighter cosmology constraints, but also requires better control of
systematic biases. In this chapter we focus on a potential Achilles’ heel of galaxy imaging sur-
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Figure 5.1: Components of the fiducial datavector. Shown are angular power spectra of cosmic
shear (purple solid), galaxy clustering (red dotted) and the cross-correlations (green dot dashed).
Each panel corresponds to a unique redshift bin pairing. In the panels where it is not visible, the
δgδg spectrum is below the range shown. All values shown are positive, apart from C1,3

γδg
(upper

right), which becomes negative and is smaller than the lowest point on this scale at ` < 900.

veys for cosmology: the use of photometric redshifts (photo-z) to estimate distances to galaxies.
Tomographic cosmic shear analyses bring a number of benefits (Hu, 1999), but place stringent re-
quirements on our knowledge of galaxy redshift distributions. Amara & Réfrégier (2007); Abdalla
et al. (2008); Jouvel et al. (2009) present detailed studies of the spectroscopic follow-up needed for
Stage IV, while Ma et al. (2006); Huterer et al. (2006); Bernstein (2009) use numerical forecasts
to explore cosmological impact of photo-z biases. Many others (e.g. Bordoloi et al. 2012; Cunha
et al. 2014) present detailed studies of specific photo-z systematics, albeit with less focus on the
ultimate cosmology.

Tightening systematics requirements have sparked interest in spatial cross-correlations between
photometric and spectroscopic galaxies within the survey volume as a method for calibrating
photo-z (Newman, 2008; Ménard et al., 2013; de Putter et al., 2014; Choi et al., 2015). Given
the limited amount of spectroscopic information available, several authors have speculated about
calibrating redshift error from the imaging survey itself. Huterer et al. (2006) show that cosmic
shear alone affords a limited capacity for self-calibration. Schneider et al. (2006) and Sun et al.
(2015) investigated the photo-z calibration information available from Stage IV galaxy clustering,
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Figure 5.2: Redshift distributions considered in this chapter. The upper panels show the shear
n(z)s, taken from DES SV (Bonnett et al., 2015): SKYNET (solid purple; fiducial), SKYNET with a
0.05 bias (dashed green) and BPZ (dotted blue) without the shift of 0.05 in redshift used in Bonnett
et al. (2015). The lower panel displays the galaxy density catalogue, DES SV redMaGiC (Rozo
et al., 2016) in bins defined by Clampitt et al. (2016).

and Zhan (2006) explore the constraining power on w0 using a similar technique with cosmic shear
plus clustering constraints. Zhang et al. (2010) point out that shear-density cross-correlations (be-
tween shear and galaxy counts, also referred to as tangential shear or galaxy-galaxy lensing) can
help to constrain photo-z error when combined with galaxy clustering.

All the studies mentioned above make a crucial assumption, which is unlikely to be realised in
practice, that the galaxies used for cosmic shear have a systematics-correctable galaxy clustering
signal. In practice regions of the sky with better (worse) seeing conditions are likely to contain a
higher (lower) number density of galaxies usable for cosmic shear (e.g. see Appendix C of Choi
et al. 2015). A large spurious clustering signal will arise as a result, rendering standard galaxy
clustering analyses useless. Thus, in practice, there is usually a different galaxy sample selection
for the shear and clustering samples. This is widely accepted in galaxy-galaxy lensing studies
and was also the case in the first combined cosmic shear plus large scale structure analysis with
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Figure 5.3: Left: Forecast constraints on the matter density and clustering amplitude in ΛCDM
and Right: dark energy equation of state in wCDM for various assumptions about photo-z. For
reference Planck 2015 constraints (temperature + low frequency polarization; Planck Collaboration
2015a ) are shown in red (dot-dashed). The colours in each panel indicate three photo-z scenarios.
In green are the result of using the SKYNET n(z) in the theory calculation and fixing δz = 0.
we show this as an unrepresentative ideal case, where the photometric estimates provide a perfect
representation of the true galaxy distribution. Overlain are the same, but using SKYNET biased
downwards by 0.05 in redshift under the (erroneous) assumption of no bias (blue dotted) and
varying three δzi nuisance parameters marginalised with a Gaussian prior of width ∆δz = 0.1
(purple solid). The input cosmology is shown by the black cross.

real data (Nicola et al., 2016), and was considered for Stage IV in the forecasts of Krause &
Eifler (2016). Though one has twice as many redshift distributions to understand as in a shear-
only analysis, this offers an opportunity: we can choose a galaxy clustering sample with well
controlled photo-z, which in turn helps to calibrate the redshift distribution of the weak lensing
sample. In this chapter we explore the potential for simultaneously constraining photo-z error
and cosmology using cosmic shear, galaxy clustering and shear-density cross-correlations. Unlike
previous studies we consider a scenario in which the redshift distribution of the shear catalogue
and galaxy clustering catalogues differ significantly. We assume the clustering sample is highly
homogeneous and dominated by luminous red galaxies, which yield high quality photo-z.

This chapter is structured as follows. Section 5.2 outlines the analysis with a description of the
simulated data vectors, redshift distributions and the photo-z uncertainties considered. In Section
5.3 we investigate the power of these data to internally constrain photo-z biases. Finally a series of
robustness tests are presented to explore the limits of this effect. The following calculations assume
a fiducial flat ΛCDM cosmology with σ8 = 0.82, Ωm = 0.32, h = 0.67, w0 = −1, Ωb = 0.049.
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5.2 Methodology & Assumptions

We follow a method similar to Joachimi & Bridle (2010) (see also Duncan et al. 2014 for a similar
analysis) to implement a forecast of the three weak lensing plus large-scale structure two-point
functions: cosmic shear, galaxy clustering and shear-density cross-correlations. We carry out an
MCMC forecast by simulating a datavector and covariance at a fiducial cosmology, then fitting a
series of trial cosmologies and computing the likelihood of each. The fiducial datavector Figure
5.2 contains three types of correlation, each with 25 logarithmically spaced top hat bins over 10 <

` < 3000. We use COSMOSIS (Zuntz et al., 2015) to MCMC sample parameter space and compute
matter power spectra using CAMB (Lewis et al., 2000) with nonlinear corrections from Takahashi
et al. (2012).

The fiducial analysis assumes a galaxy catalogue typical of a preliminary Stage III survey.
We use the galaxy number density of the Dark Energy Survey Science Verification (DES SV;
6.8 arcmin−2 Jarvis et al. 2015), with σε = 0.2 and an area of 1500 sq. degrees. This gives
37M galaxies, which is a little larger than or comparable to CFHTLenS and the KiDS, DES and
HSC preliminary analyses. We use the SKYNET n(z) presented in Bonnett et al. (2015), as used
in the DES SV shear analysis, and marginalise over multiplicative shear bias with a Gaussian
prior (∆m = 0.02) (see also Jarvis et al., 2015; Fenech Conti et al., 2016; Jee et al., 2016). For
conservatism we model intrinsic alignments using the nonlinear alignment model (Bridle & King,
2007) with an additional power law in redshift (e.g. Joachimi et al. 2011; Dark Energy Survey
Collaboration 2016), and unlike previous analyses allow the amplitude and power law index to
differ for GI and II. This gives four IA parameters.

To model a realistic galaxy clustering catalogue the n(z) of the DES SV redMaGiC luminous
red galaxy catalogue (Rozo et al., 2016; Clampitt et al., 2016) are adopted. A linear galaxy bias
is applied in each bin and marginalised with a wide flat prior. To avoid the nonlinear bias regime
we impose conservative scale cuts to the clustering sample and discard information below a scale
determined by rescaling the prescription of Rassat et al. (2008). We tune this rescaling approxi-
mately match the smallest scales found by Kwan et al. (2017) to be unaffected nonlinear bias. This
leads to a factor of three increase over the Rassat et al. (2008) cuts, giving `max = (91, 203, 432)

for each bin respectively.
Redshift distribution error is parameterized by δzi, which describes a uniform linear translation,

ñi(z) = ni(z + δzi). (5.1)
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For the galaxy clustering sample we marginalise over δzj with a Gaussian prior of standard devi-
ation ∆δzj = 0.01. The photo-z for the shear catalogue are somewhat lower in quality due to the
number and type of objects required for shear measurement and for the fiducial analysis we apply
a conservative Gaussian prior (∆δzi = 0.1). In addition to the nuisance parameters described
above we vary 5 cosmological parameters with no external priors. The fiducial analysis then has
21 degrees of freedom,
p = (σ8,Ωm, h,Ωb, ns, AGI, AII, ηGI, ηII,m

i, δzi, bjg, δz
j).

5.3 Simultaneous Constraints on Cosmology and Photometric
Redshift Bias

Figure 5.3a shows constraints on the matter density Ωm and clustering amplitude σ8 for various
assumptions about the shear photo-z uncertainties. The green dashed lines are from the fiducial
analysis assuming the shear redshift distributions are known precisely (∆δzi = 0). We investi-
gate the effect of using an incorrect redshift distribution in the simulation, expanding on a similar
technique developed in Bonnett et al. (2015). A bias of 0.05 in redshift is applied to n(z) in the
simulated data vector, a value inspired by the calibration applied to BPZ in Bonnett et al. (2015) to
match simulations, but we assume the redshift distributions are known perfectly. The result (blue
dotted, Figure 5.3a) is now incompatible with the true cosmology at greater than 95% confidence.
Finally, we allow freedom in the value of the photo-z biases δzi, marginalising with the fiducial
prior (∆δzi = 0.1). The purple solid contours are shifted back close to the true input cosmol-
ogy, despite the erroneous redshift distributions. The width of the purple contours is not greatly
degraded relative to the case where the distributions are perfectly known (green dashed and blue
dotted): we find an increase in error on S8 of 40%. For Figure 5.3b we carry out the same calcu-
lation as in Figure 5.3a, but additionally vary the dark energy equation of state w0. Qualitatively
similar results are obtained.

In Figure 5.4 we investigate in more detail how the prior width ∆δzi on the redshift distri-
bution bias δzi affects the uncertainty on S8. The results from cosmic shear alone (blue) can be
contrasted with those from the combination of cosmic shear, galaxy clustering and shear-density
cross-correlations (purple). We show results using our fiducial systematics assumptions (purple)
and using less conservative assumptions (no multiplicative shear or IA uncertainty; green). We see
that cosmic shear alone cannot self-calibrate photo-z uncertainties, whereas the combination with
galaxy clustering and shear-density correlations weakens the sensitivity of the constraint to prior
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width, for both fiducial and optimistic systematics. S8 is significantly biased (δS8) at all values of
∆δzi for cosmic shear (dotted lines) and is biased very little by ∆δzi = 0.1 for the combination of
datasets (dot-dashed).

Figure 5.5 gives some insight into how the self-calibration works, using the biased redshift
distribution (SKYNET −0.05) as an illustration. The blue (dot-dash) contours show the degeneracy
between cosmology and photo-z uncertainties from cosmic shear alone. The contours are closed
because we have applied a conservative prior on photo-z uncertainties (∆δzi = 0.1). In the absence
of additional information the cosmology constraints from cosmic shear will be biased because
the prior on δzi is centered on zero whereas the truth is at δzi = 0.05. The galaxy clustering
and shear-density cross-correlations constrain a different degenerate combination of cosmology
and redshift bias (pink dotted). Thus, when these three two-point functions are combined, they
produce the purple (solid) contours, which are now centered close to the true cosmology and offer
much tighter constraints on cosmology and photo-z uncertainties than either cosmic shear alone or
galaxy clustering plus shear-density correlations alone. In physical terms, Figure 5.5 demonstrates
how a tight constraint on the clustering redshift distributions constrains the lensing sample. Since
we are correlating each of our biased lensing kernels with well known n(z)s in multiple clustering
bins, the combination of the γδg and δgδg correlations contain enough information to constrain the
angular diameter distance to each lensing bin (and thus δz). The γγ correlations are then freed to
further constrain cosmology.

We investigate the robustness of these results to perturbing the fiducial assumptions and calcu-
late the degradation

D ≡ σS8(∆δz = 0.1)/σS8(∆δz = 0)− 1 (5.2)

of 40% for the fiducial analysis. We characterise stochastic bias in the relation between mass and
light with a scale-independent parameter per redshift bin rjg ≡ Cij

gG/C
ij
GG (see e.g. Dekel & Lahav

1999; Joachimi & Bridle 2010). We find that the three extra free parameters, |rjg| < 6, make little
difference (D = 45%), but increase σS8(0) by 6% relative to the fiducial case. We next marginalise
over an additional photo-z uncertainty parameter per bin, which stretches the redshift distributions
ñi(z) = ni(z+Siz[z− zp]), where zp is the peak in bin i. The cosmology constraint is weakened at
all δz, which reduces the relative degradation slightly (D = 28%). A similar reduction (D = 24%)
occurs if `max is increased by a factor of 3. We also rerun our analysis using a wide prior on the
shear measurement bias (∆m = 0.05) and find D = 16%, due to a ∼ 72% degradation in the error
on S8, independent of ∆δzi. The biggest impact arises when we use a conservative value for the
prior on the photo-z uncertainties of the density sample (∆δzj = 0.05), which gives a factor of
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two degradation (D = 103%), with σS8(0.1) and σS8(0) increased by 75% and 6% respectively
relative to fiducial. In all instances considered, we find no significant residual bias δS8 when δzi

are marginalised.

Figure 5.4: Uncertainty σS8 on S8 ≡ σ8(Ωm/0.31)0.5 for different prior widths ∆δz. Blue
circles show cosmic shear alone and purple diamonds indicate shear, galaxy clustering and cross-
correlations. The green triangles also show the latter combination, but assuming intrinsic align-
ments and multiplicative shear calibration are known perfectly. In the first two cases we also show
the bias δS8 induced by marginalising with an erroneously zero centred prior of width ∆δz (dotted
and dot-dashed).

To test the self-calibration result in a situation where the true redshift distribution differs from
the assumed n(z) by more than a simple bias we take the DES SV redshift distributions from an
alternative code (BPZ). Of the SV codes BPZ was the most discrepant with our fiducial choice
(SKYNET). To provide a relatively stringent test we choose not to apply a 0.05 calibration used
in DES SV. Figure 5.6 shows the result. By construction the green contours in Figure 5.6 and
5.3 are identical and use the fiducial n(z) in the simulation and the fit. The blue contours use the
qualitatively different BPZ n(z) in the simulation, but assume perfect photo-z (δz = 0, ∆δzi = 0)
in the fit. Unlike in Figure 5.3, marginalising over photo-z bias (∆δzi = 0.1) no longer trivially
moves the contours (solid purple) onto the input cosmology (cross). This suggests a uniform bias
in redshift may not always sufficiently account for differences between the true and estimated
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Figure 5.5: Degeneracies between photo-z bias in the uppermost redshift bin (δz3) and cosmology
(S8) for cosmic shear alone (blue dash-dot), galaxy clustering and shear-density cross-correlations
(pink dotted) and the combination (purple solid). The input parameters are shown by the black
cross.

distributions, depending on the survey specifications. Finally, we repeat the fiducial BPZ analysis
twice, once fixing IA parameters and once additionally varying Sz, but find no qualitative change
in the residual bias. In the case of BPZ the truth is within the 68% confidence contour, but a more
detailed investigation is necessary to account for the possible range of redshift errors.

5.4 Conclusion

We have investigated the potential for current galaxy imaging surveys to self-calibrate photo-z dis-
tribution uncertainties, for the first time considering the case in which the shear sample is different
from the galaxy clustering sample and has substantial calibration uncertainties. The focus was
on a preliminary Stage III dataset with ∼ 40M galaxies, in which the galaxy clustering sample
has well-understood photo-z (∆δzj = 0.01). The combination of cosmic shear, galaxy clustering
and shear-density cross-correlations was found to be significantly more robust to errors and un-
certainties in the redshift distribution than cosmic shear alone. We showed that the uncertainty on
S8 ≡ σ8(Ωm/0.31)0.5 is increased by only 40% on marginalising over three free independent bias



Chapter 5. Constraining Redshift Systematics Using Lensing & Galaxy Clustering 161

Figure 5.6: As Figure 5.3 but now using a more realistic realisation of the discrepancy between the
estimated and true galaxy redshift distributions. Here we use the ni(z) from an alternative photo-z
code (BPZ) in the simulated data vector and the ni(z) of the fiducial photo-z code (SKYNET) in
the fit.

parameters with prior ∆δzi = 0.1, relative to the case ∆δzi = 0. This contrasts with more than a
factor of two degradation for cosmic shear alone. We illustrated that this is because cosmic shear
constrains a different degenerate combination of cosmology and photo-z calibration parameters to
clustering and shear-density cross-correlations. We have shown that the combination of all three
two-point functions can correct even a substantial bias (of 0.05) in the n(z) to accurately recover
the input cosmology. This result is robust to a basic stochastic bias parameter and strengthened
by less conservative scale cuts in the galaxy clustering analysis. We note two crucial differences
between our results and established methods: (a) the current work do not rely on spectroscopic
data, allowing a self-contained analysis of a single photometric survey and (b) the result is not
contingent on having well matched samples in redshift coverage, allowing use of a (realistically)
shallower clustering catalogue. The self-calibration result is weakened if redshift bias in the clus-
tering sample is poorly controlled (∆δzj = 0.05). Using an alternative n(z) estimate (BPZ) We
have demonstrated that this result may change if the deviation of the n(z) from the truth is not
fully captured by a uniform translation. By inspection of the distributions, we can see that the
most prominent qualitative differences arise from secondary peaks or outliers. Unfortunately, such
errors vary between photo-z methods and cannot be characterised analytically for a generic imple-
mentation. In practice the validity of our findings should be verified for specific realisations of the
photo-z error. We note, however, that the uncalibrated BPZ results fail basic photo-z requirements,
even for Stage III surveys. They should thus be considered as an extreme case and not a realistic
prediction of photo-z performance for Stage IV.



Chapter 5. Constraining Redshift Systematics Using Lensing & Galaxy Clustering 162

This investigation advances on most previous numerical forecasts in implementing MCMC
sampling rather than Fisher analyses and assumes a low-density clustering sample with relatively
well known redshifts. We do, however, assume Gaussian covariance matrices, which tend to under-
estimate the uncertainties for cosmic shear and could thus make our forecast constraining power
over-optimistic (although). Investigation of non-Gaussian covariances is beyond the scope of this
analysis. We also assume the Limber approximation holds on the scales used and ignore redshift-
space distortions. The results suggest that self-calibration may be a practical solution for current
cosmological surveys, assuming reliable photo-z can be obtained for the galaxy clustering cata-
logue if the weak lensing redshift distributions cannot be easily calibrated via a different route.



Chapter 6

Colour Space Divisions and Intrinsic
Alignments in the Dark Energy Survey

In this final chapter we now turn to another of the major challenges facing modern high-precision
cosmology. The following presents a set of interim results from an ongoing investigation. The work
is based around the DES Y1 dataset, and focuses on the impact of intrinsic alignments between
galaxies on cosmic shear. We present new constraints on cosmology and IA parameters derived
from the DES Y1 dataset. These results, we stress, are preliminary and have not yet been submitted
for internal collaboration review. At the time of writing the shear catalogues used in this analysis
are blinded. As an additional level of blinding, we remove the scale labels from any cosmologically
sensitive axes in the following chapter.

6.1 Theory & Background

This section sets the context to the results presented in this chapter. Since they were first theorised
as a contaminant to cosmic shear, there have been a number of attempts to measure the IA signal in
real data. We provide a brief overview of previous published observational studies on the subject.
The final paragraphs then set out the theoretical models for IA used in this analysis.

6.1.1 Observational Constraints on Intrinsic Alignments

Attempts to constrain IA in measurements of cosmic shear broadly fall into two categories. The
first are direct constraints. These typically use galaxies at low to intermediate redshift, and often
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Redshift z p(z) 

Observer z=0 

A 
B 

C 

Figure 6.1: Graphical illustration of a toy model
for a red/blue intrinsic alignment split. Galaxy
C is a background object at high redshift, and
is lensed by a foreground clump of dark matter
(shown in purple). Objects physically close to the
dark matter clump interact with it directly; ellip-
tical red galaxies (such as B) tend to reside within
massive clusters, and their interactions with their
host halo are dominated by gravity. They tend to
align radially towards the centre of mass, induc-
ing an anticorrelation with the lensed background
galaxy. Blue galaxies, on the other hand, tend to
be supported by rotation rather than pressure, and
will thus become aligned with the spin axis of the
halo. This tends to create much milder distortions
in the tangential direction.

impose colour cuts to isolate well-measured red galaxies and assume some fixed known cosmology.
Correlation statistics used in these measurements are explicitly designed to maximise the IA signal
(e.g. Faltenbacher et al. 2009).

The second class of IA measurements are implicit, or simultaneous constraints. Generally
they use statistics designed to be sensitive to cosmic shear such as ξ±, and use faint high-redshift
galaxies in which the cosmological signal is strongest. These studies include IA parameters along-
side various others, including cosmology, in a set of free parameters with which the data are fit.
Whether or not they acknowledge as much, all cosmic shear studies in which IA are marginalised
rather than suppressed in some other way fall into this category (Heymans et al., 2013; Dark En-
ergy Survey Collaboration, 2016; Jee et al., 2016; Hildebrandt et al., 2016; Köhlinger et al., 2017).
The assumptions about IA have differed slightly between these studies, but they have all essentially
assumed the same basic model (the nonlinear alignment model), sometimes with additional scaling
with redshift or luminosity.

There is some direct evidence for differences in the IA contamination, depending on the na-
ture of the galaxy sample. Broadly there are two paradigms: early-type ellipticals, which tend to
be redder and structurally pressure dominated, and late type spirals, which tend to be bluer and
rotation dominated. A simplified illustrative diagram of IA in these two populations is shown in
Figure 6.1. The former are thought to align through tidal interactions with the background large
scale structure of the Universe. If a dark matter halo sits in a local gradient in the gravitational
field, it will be sheared along that gradient. Naturally, the visible light-emitting matter will trace
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the halo. Spatially neighbouring galaxies will, then, become aligned since they sit in the same
background tidal field. If the distortion is small, the induced ellipticity can be assumed to be linear
in the gravitational potential.

The first observational constraints on intrinsic alignments in red galaxies were published mid-
way through the first decade of the Twenty First Century. The Sloan Digital Sky Survey was a
major resource for such studies, as it afforded relatively high signal-to-noise correlation measure-
ments, and high-quality spectroscopic overlap (see e.g. Mandelbaum et al. 2006; Hirata et al. 2007;
Okumura et al. 2009; Joachimi et al. 2011; Li et al. 2013; Singh et al. 2015). The highest maximum
redshift reached by the red galaxy catalogues constructed from SDSS data extend to z ∼ 0.6. They
found relatively strong IA signals, but no statistically significant detection of redshift dependence.

The picture for late-time galaxies is very different. These objects form galactic discs which,
depending on the orientation, may have some apparent ellipticity. The inclination of the disc is
dictated by its angular momentum. The mechanism by which that angular momentum is induced
and may become correlated between galaxies, however, is not immediately apparent. One common
picture is that galaxy spin is generated by tidal torquing. That is, the background gravitational field
exerts a moment on a halo in its early stages of development. At the point where a galactic disc
is eventually formed, after collapse and then cooling, the stellar disc takes on the ellipticity of its
host halo.

Measurements of large scale correlations of the apparent (projected) ellipticities of blue galax-
ies are generally relatively weak. Hirata et al. (2007) used a blue sample from SDSS, but could
impose only upper limits on the IA signal at z ∼ 0.1. Beyond SDSS, there have been notable
examples of measurements using spectroscopic galaxies from the WiggleZ survey. Mandelbaum
et al. (2011) used these data to attempt an IA detection in blue (starburst) galaxies at z ∼ 0.6, but
likewise set upper limits rather than a definite constraint.

6.1.2 Theory Predictions

Shear Two-Point Functions

The cosmological analysis in this chapter uses real-space angular correlation functions in four
tomographic bins. The measurements map onto the angular power spectrum of shear via Hankel
transforms:

ξij±(θ) =
1

2π

∫
`J0,4(`θ)Cij

γ (`)d` (6.1)
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where the indices ij indicate a pair of tomographic bins, and J0 and J4 are Bessel functions. The
angular spectrum Cγ is related to the dark matter power spectrum under the Limber approximation
as,

Cij
γ =

∫ χhor

0

1

S2
K(χ)

gi(χ)gj(χ)Pδ

(
k =

`

SK(χ)
, z

)
dχ. (6.2)

As in the introductory chapters, SK is the transverse angular diameter distance, χhor is the comov-
ing horizon distance, and the lensing kernel in each bin is given by

gi(χ) =
3

2

H2
0 Ωm

c2

SK(χ)

a(χ)

∫ χhor

χ

ni(χ′)
SK(χ′ − χ)

SK(χ′)
dχ′ (6.3)

The redshift distributions n(z) are assumed to be normalised over the depth of the survey, and de-
fined such that n(z)dz = n(χ)dχ. As in many previous studies, we do not transform the measured
correlations into angular spectra. Likelihoods for trial cosmologies are calculated by generating
theory angular spectra, which are convolved with the Bessel kernels, resampled at the appropriate
angular scales, and then compared with the measurements of ξij± .

Although previous studies have explored the benefits of using different estimators, we choose
not to pursue this subject here. Though useful for identifying and removing B-modes (e.g. van
Uitert et al. 2017), recent results have shown no benefit to cosmological constraining power from
alternative statistics such as Complete Orthogonal Sets of E-/B-mode Integrals (COSEBIs; Schnei-
der et al. 2010) or band powers (e.g. Dark Energy Survey Collaboration 2016; Köhlinger et al.
2017).

To extract cosmological parameters from the data, we used the EMCEE Markov Chain Monte
Carlo package released with COSMOSIS. The dark matter power spectrum is estimated at each
cosmology using CAMB, with late-time corrections generated by HALOFIT. We do not explicitly
model baryonic effects or scale dependent IA, but as noted in the next section our choice of scale
cuts is relatively conservative and is expected to remove the régime in which such effects are
significant.

Modelling Intrinsic Alignments

Even highly accurate galaxy shape correlations are not a pure measurement of the cosmic shear
spectrum. Specifically the correlations between the intrinsic (pre-shear) shapes contribute an un-
known additive terms of the form

Cij
ε (`) = Cij

GG(`) + Cij
II (`) + Cij

GI(`). (6.4)
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The “GI” term represents correlations induced by foreground matter overdensities, which lenses
background galaxies and influences the unlensed orientation of galaxies physically close to them
(see Figure 6.1). The “II” contribution, which tends to be subdominant and opposite in sign to GI,
represents direct local interactions between nearby galaxies. Note that the cosmological compo-
nent CGG is synonymous with Cγ . We will adopt the former notation for the rest of this chapter
for consistency with the IA literature.

Commonly the power spectra of these correlations, defined analogously to Pδ(k), are written
as

PGI(k, z) = F (z)Pδ(k, z), (6.5)

and

PII(k, z) = F 2(z)Pδ(k, z). (6.6)

The most common approach is to assume a single universal intrinsic alignment model governed
by a handful of parameters. Owing to its good performance in matching data and simulations,
a model known as the nonlinear alignment model (Bridle & King, 2007) has become particularly
popular. This is an empirical modification to the linear alignment model of Hirata & Seljak (2004),
whereby the linear matter power spectrum is replaced by the nonlinear spectrum. The result is

F (z) = −AIAC1
3H2

0 Ωm

8πG
D−1(z)

(
1 + z

1 + z0

)η
. (6.7)

The dimensionless amplitude AIA is an unknown scaling parameter governing the strength of the
IA contamination for a particular sample of galaxies, and is generally left as a free parameter to
be constrained. As before G is the gravitational constant and D(z) is the linear growth factor.
The normalisation constant C1 is typically fixed at a value obtained from the SuperCOSMOS Sky
Survey by Brown et al. (2002) ofC1 = 5×10−14M−1

∗ h−2 Mpc3. The redshift evolution is governed
by a power law index η, which has been measured in low redshift LRG samples (Joachimi et al.,
2011). The denominator 1 + z0 sets a pivot redshift, for which we assume z0 = 0.62 whenever
equation 6.7 is used in this chapter.

In this chapter we introduce a slight generalisation to this formalism. Let us start with the
statement that the shear of a galaxy i is the sum of its intrinsic and cosmological parts γi = γiG +γiI .
Correlating galaxy pairs gives the expression,
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〈γγ∗〉 = 〈γGγ
∗
G〉+ 〈γIγ

∗
G〉+ 〈γGγ

∗
I 〉+ 〈γIγ

∗
I 〉 . (6.8)

Let us now assume that the galaxies used in the correlation are drawn from two populations R and
B, with the former accounting for a fraction fR of the random draws. We will say, for the sake of
argument, that galaxies from both populations exhibit intrinsic shape correlations, but that those
correlations may be arbitrarily different in their strength and redshift dependence. In this case one
finds,

PII(k) = 〈γIγ
∗
I 〉

= f 2
R

〈
γI,Rγ

∗
I,R

〉
+ (1− fR)2

〈
γI,Bγ

∗
I,B

〉
+ 2fR(1− fR)

〈
γI,Rγ

∗
I,B

〉

= f 2
R(z)PRR

II (k, z) + (1− fR(z))2PBB
II (k, z) + 2fR(z)(1− fR(z))PRB

II (k, z).

(6.9)

A similar exercise for GI gives

PGI(k) = 〈γGγ
∗
I 〉 = fR(z)PR

GI(k, z) + (1− fR(z))PB
GI(k, z), (6.10)

with 〈γaγb〉 denoting averaging galaxy pairs drawn from populations a and b. Note that only one
index is specified here, since the shear signal by foreground matter is the same, irrespective of what
sort of galaxy is being lensed. We may have a mixed population of galaxies governed by different
IA models. In this toy model, however, one can construct effective GI and II spectra relevant for
the mixed sample as a linear combination of auto- and cross-spectra for the two sub-samples.

The Limber projections of these spectra in bins ij are simply expressed in the form

Cij
II (`) =

∫
1

S2
K(χ)

ni(χ)nj(χ)PII

(
k =

`

SK(χ)
, χ

)
dχ (6.11)

and

Cij
GI(`) =

∫
1

S2
K(χ)

gi(χ)nj(χ)PGI

(
k =

`

SK(χ)
, χ

)
dχ, (6.12)

where the composite power spectra used in the intergrals are given by equations 6.9 and 6.10. Note
that the form of the blend fraction fR as a function of redshift must be modelled appropriately for
the galaxies in each tomographic bin.
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6.2 Data

In this section we define the galaxy samples used in this chapter. We define disjoint samples
from the DES Y1 WL catalogue, intended to isolate morphological differences relevant to IA. The
following paragraphs discuss the practical details of the split, including how we manage selection
effects.

6.2.1 Year One of The Dark Energy Survey

The Dark Energy Survey is a rich and extremely powerful dataset for exploring this subject. We
have already considered at some length the survey characteristics and shear calibration process,
and refer the reader to Z17, Troxel et al. (2017), and Chapter 3 of this thesis for details. Where
the earlier parts of this thesis focused on one of two shear catalogues, IM3SHAPE, this section
will make use of the other, METACALIBRATION. This decision was partly due to the larger number
density afforded by this catalogue, but primarily because the method of per-galaxy shear correction
allows more flexibility for dividing the data. Though it does not give us complete free reign, the
response correction can accommodate any cut based on a quantity which has been remeasured on
a set of sheared copies of the data (see Sheldon & Huff 2017 and Section 6.2.3 below).

6.2.2 Definitions of Red & Blue Galaxies

There are a number of terms used in the literature to class galaxies, which are broadly analogous
but non-identical. This chapter makes use of three, which are summarised in Table 6.1. Though
these names are often used somewhat interchangably in the literature, in the following analysis the
terms “early-type”, “red”, “bulge” etc have distinct meanings, as set out below.

A common metric is spectral class. Template-based photo-z codes such as BPZ work by red-
shifting a library of spectral templates, and each galaxy is associated with one of these templates
(or some interpolated combination). Each redshift estimate, then, comes with an explicit galaxy
type estimate, defined by the best-fitting template TBPZ. This quantity has been used in previous
studies to divide galaxies expected to have different systematics (Simon et al., 2013; Heymans
et al., 2013). We follow those papers and define a boundary at TBPZ = 1 to separate “early-type”
and “late-type” galaxies.

Another metric is photometric colour, defined by differences in magnitude in different optical
bands. One could, for example, define red and blue galaxies according to some value in r − z.
The 2D histograms of galaxies in colour magnitude space is bimodal, as is shown for the DES
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Figure 6.2: The 2D colour-magnitude distribution of galaxies in the DES Y1 METACALIBRA-
TION shear catalogue. The two panels show photometric colour as defined by difference between
g and z, and r and z band magnitudes respectively. The colours show the distributions of early-
and late-type galaxies. Note that the red contours account for ∼ 20% of galaxies in DES Y1.

Split Defined By Division
Early/Late Spectral Type TBPZ < 1 / TBPZ > 1
Red/Blue r − z Colour equation 6.13

Bulge/Disc Sérsic Fit Likelihood n = 1 / n = 4

Table 6.1: Definitions of red and blue galaxies used in this chapter. Though roughly equivalent,
these three catalogue splits define different subsets of DES Y1.

METACALIBRATION catalogue in Figure 6.2. The red and blue distributions show early-type and
late-type populations, as defined above. Perhaps unsurprisingly, the g − z band difference shows
the clearest separation. Since we do not have shape measurements on the g-band images, we cannot
define cuts on the METACALIBRATION catalogue using g − z. In the following we use a boundary
in the r − z plane (right) to define red and blue galaxies. Specifically, we find a line

(r − z) = arz × r + brz, (6.13)

with arz = 0.115 and brz = −1.327 approximates the division seen in the right-hand panel of
Figure 6.2.

The third definition we consider is specific to IM3SHAPE, and cannot be implemented in META-
CALIBRATION. Since IM3SHAPE performs simultaneous fits to bulge and disc Sérsic profiles, we
have a crude morphology measure for each galaxy based on the relative likelihoods of the fits.
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Figure 6.3: Distributions of photometric colour, defined as ratios of galaxy fluxes in the g, r and
z optical bands fg, fr and fz. The blue and red shaded curves show early- and late-type galaxies
alone. The dashed purple line indicates the full sample, without morphological splits. For ease of
comparison, the histograms are not re-normalised in these panels.
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Figure 6.4: MOF r-band magnitude distributions of the galaxy samples defined in this chapter.
The dashed purple line is defined by the METACALIBRATION selection flag only, and corresponds
to the dark red histogram in Figure 3 of Z17.
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Sample Ngal zmed r̄ g − z r − z
All Galaxies (METACALIBRATION) 34.8 M 0.55 22.0 1.64 0.75

Early 6.8 M 0.65 22.1 2.67 1.28
Late 26.8 M 0.53 21.7 1.35 0.62
Red 5.4 M 0.81 22.3 2.93 1.52
Blue 29.4 M 0.51 22.0 1.42 0.62

All Galaxies (IM3SHAPE) 21.9 M 0.69 22.5 1.52 0.69
Bulge 4.0 M 0.69 22.8 1.64 0.76
Disc 17.9 M 0.84 22.4 1.50 0.68

Table 6.2: Observational characteristics of the sub-populations defined in this Table 6.1. The upper
and lower sections relates to subsets of the two catalogues, METACALIBRATION and IM3SHAPE.
Note that these statistics are weighted appropriately for each shape code, using the mean galaxy
response R = (R11 +R22)/2 and the mean multiplicative bias 1 +m respectively.

These two populations are calibrated independently, and so one can split on this quantity without
inducing selection bias. Clearly the IM3SHAPE bulge/disc categorisation is somewhat degenerate
with redshift, and so we do not expect this to match up precisely to more sophisticated measures
of galaxy morphology.

For any given definition we can define a quantity called the “red fraction”, f jR(z), which varies
as a function of redshift for a population of galaxies j. If we had perfect knowledge of the redshift
of each galaxy we could simply sort the catalogue into fine bins and count the number of red
galaxies in each redshift slice. In practice we instead have redshift distributions, quantifying the
uncertainty in our photometric redshift estimates. We thus define the red fraction as:

f jR(z) =
p(z, R)

p(z)
=

(
N j
R

N j
R +N j

B

)(
p(z|R)

p(z|R) + p(z|B)

)
, (6.14)

where N j
c is the number of galaxies in population j observed to be of colour c, and p(z|c) is the

conditional probability of a galaxy lying at redshift z, given its colour. That is, the red fraction in
this definition is the probability of a random galaxy from the catalogue being red and at redshift z,
divided by the chance of a random galaxy of any colour being at z.

The estimated redshift distributions of early- and late-type galaxies in four tomographic bins,
and the derived red fraction are shown in Figure 6.5.
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Figure 6.5: The measured redshift distributions of the galaxy samples described in this Chapter
in the four tomographic bins defined by Troxel et al. (2017). The left-hand panels show our fidu-
cial subsets of the DES Y1 dataset, split according to best-fitting template type TBPZ. The solid
curves show estimates derived from the photometric redshift code BPZ. The dashed lines are the
histograms of redshift estimates for a reweighted COSMOS sample, based on the 30-band pho-
tometry available to that survey. The right panel shows the red fraction, as defined by equation
6.14 in each of the tomographic bins shown.

6.2.3 Shape Measurements

For this work we use two different shear catalogues in DES Y1. Conventionally, shape mea-
surements rely on large suites of image simulations to calibrate measurement biases. We provide
a detailed discussion of the processes involved in constructing and testing such a calibration in
Chapter 3. As we point out in that paper, additional selection can very easily induce mutiplica-
tive shear bias. Propagating the same cuts to the simulation and recalibrating is a time-consuming
undertaking.

Our fiducial choice for this analysis, however, is the second shape catalogue. These measure-
ments use a technique known as METACALIBRATION, the basis of which is to derive the calibra-
tion from the data itself using counterfactual copies of each galaxy image with additional shear
applied. The algorithm remeasures the shear for each galaxy and computes a quantity known as
the response:

Rγ i,j =
e+
i − e−i
∆γj

, (6.15)

where e+ and e− are the measured values of the ellipticity obtained from images sheared by +γ
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and −γ, and ∆γ = 2γ. The galaxy response must be included whenever a shape-derived statistic
is calculated. We refer the reader to Sheldon & Huff (2017); Huff & Mandelbaum (2017) for a full
explanation of the algorithm and to Z17 for details of the implementation used in DES Y1, and a
recipe for applying response corrections.

It is also possibe to correct for selection bias using a similar calculation. To do this we must
measure the response of the mean ellipticity to the cut. Imagine for example, we wish to make a
cut on galaxy type TBPZ. Since TBPZ is not independent of ellipticity, the raw cut will induce shear
selection bias. We must, then, estimate TBPZ three times per galaxy: once in the original images,
and in each set of counterfactual sheared images. If we choose to keep or exclude galaxies based
on a measured quantity that changes in the sheared images, the cut will preferentially remove either
round or elliptical galaxies. A mean response 〈RS〉 contributed by a selection alone is defined as
the change in ellipticity

〈RS〉i,j ≈
〈ei〉S+ − 〈ei〉S−

∆γj
, (6.16)

where 〈e〉S± denotes the mean ellipticty measured from the unsheared images, after cuts on the
sheared quantity T S±BPZ. The full response for the mean shear is then given by the sum of the shear
and selection parts,

〈R〉 = 〈Rγ〉+ 〈RS〉. (6.17)

This must be recalculated each time galaxies are split in any way, including for tomographic bin-
ning.

6.2.4 Photometric Redshifts

We derive estimates for the redshift distribution of our samples using the BPZ code. The per-galaxy
PDFs are generated by the DES Redshift Working Group. They have been tested against simula-
tions, against a limited spectrocopic sample, and against alternative redshift algorithms (Hoyle
et al., 2017). For each sample used in this chapter the PDFs are re-stacked in tomographic bins.

In addition to shear selection bias, splitting on TBPZ risks rendering the n(z) estimates inac-
curate. In DES Y1 we have a Monte Carlo sample and the mean of the full redshift PDF of each
galaxy. It is thus relatively easy to recompute the redshift distribution for arbitrary subsample of
galaxies; this is simply a matter of re-binning the galaxies by mean redshift and taking the his-
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togram of the MC samples in each bin. We show the measured n(z) obtained by the BPZ code for
TBPZ < 1 and TBPZ > 1 galaxies in Figure 6.5.

The raw n(z), however, are known to be systematically biased. The main shear selection
defined by Z17 has been subjected to a rigorous set of tests designed to constrain this redshift
bias. This information is incorporated into cosmic shear analyses via (non-zero centred) priors on
redshift nuisance parameters. Unfortunately, one cannot guarantee that these priors will be robust
to arbitrary division of the data. If we propose to use any subset of the catalogue for tomographic
shear measurements, it is necessary to re-derive appropriate photo-z priors.

To do this we use galaxies from the partially overlapping COSMOS field. The low-noise 30-
band photometry from HST provides high-quality point redshift estimates for these galaxies. In
the following we will take these as “true” redshifts. In principle we can test for bias for a particular
sample by comparing the distribution of the COSMOS redshifts to our ensemble estimates for the
same galaxies in the DES images. Selecting the galaxies in the COSMOS overlap, however, can
itself induce selection effects, since the COSMOS galaxies are somewhat unrepresentative of DES
in magnitude, colour and size. The COSMOS catalogue is thus resampled such that the resulting
sample matches the DES Y1 data. The process is described in more detail by Hoyle et al. (2017),
and results in a set of 200,000 DES galaxies matched to COSMOS counterparts with similar flux
in four bands griz and size.

We divide these galaxies into four tomographic bins according to mean redshift, as estimated
from a re-run of BPZ on the artificially noisy COSMOS fluxes. In each bin we compute a weighted
mean

〈z〉(i) =

∑N
(i)
gal

j wjz
C
j

∑N
(i)
gal

j wj

, (6.18)

where zC
j is the COSMOS redshift estimate for galaxy j, wj ≡ (R1,j+R2,j)/2 is its mean response,

which serves here as a weight on the shape measurement, and the sum runs over all galaxies placed
in redshift bin i. The offset between the mean COSMOS redshift and the equivalent weighted mean
using the BPZ MC samples provides a constraint the level of systematic bias in the latter. We derive
δz in this way for our early, late and full samples, as defined by TBPZ. The result is shown in Table
6.3.

These values set the central values of the redshift priors. In order to decide on an appropriate
prior width we must consider a number of sources of uncertainty in this measurements. We subject
the reweighted COSMOS dataset described to a series of tests designed to constrain systematic
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Selection δz(1) δz(2) δz(3) δz(4)

All Galaxies −0.006± 0.018 −0.014± 0.018 0.018± 0.017 −0.018± 0.018
Late-Type −0.003± 0.020 −0.007± 0.023 0.0297± 0.020 −0.010± 0.023
Early-Type −0.022± 0.020 −0.040± 0.012 −0.008± 0.012 −0.044± 0.014

Table 6.3: Priors on the redshift error derived from a matched sample of COSMOS field galaxies
described in the text.

uncertainties in a way analogous to the exercise in Section 3.5.5. This includes redshift error
contributions for statistical uncertainty, cosmic variance, and the limited matching process using
flux and size only. The resulting prior widths in each sample are also shown in Table 6.3.
In the following we adopt fiducial Gaussian priors for each sample centred according to Table 6.3
and with widths given by the above calculation.

6.2.5 Two-Point Correlations

The Y1 shear catalogues are used to construct two-point correlation functions of cosmic shear. Our
method and choice of statistics and binning follows Troxel et al. (2017). In brief, we use the public
code TREECORR to measure ξ+ and ξ− in 20 log-spaced bins in angular scale. Galaxy ellipticities
are rotated, weighted and averaged in each bin according to equation 3.8.

To avoid the effects of theoretical uncertainties on small scales, we impose a lower-level angu-
lar scale cut in each bin. These bounds are relatively stringent compared with contemporary shear
analyses, and are set out in more detail in Troxel et al. (2017). An upper cut of θ < 250 arcminutes
is imposed on all bins to remove scales on which additive shear biases become dominant. The cor-
relation is corrected with an overall selection response, as prescribed by Sheldon & Huff (2017)
and Z17.

These measurements have passed a raft of null tests, and show no indication of significant B-
modes. We measure the two-point correlations separately in the full catalogue, and also in our
fiducial early-type and late-type samples. The results are shown in Figure 6.6.

6.2.6 Covariance Matrix

The covariance matrix of the two-point data is estimated using the COSMOLIKE software package
(Krause & Eifler, 2016). This code has been tested against log-normal simulations which include
the DES survey mask (Krause et al., 2017), and against N-body simulations (MacCrann et al.,
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Figure 6.6: Measured two-point shear correlation functions from the DES Y1 shape catalogue in
four tomographic bins. The red circles show correlations between early-type galaxies, and blue
crosses are the equivalent late-type correlations. The errorbars are obtained from the covariance
matrix described in Section 6.2.6. In each panel the solid line shows a theory prediction of the
relevant ξ± with all parameters (cosmological and nuisance) fixed at their best-fitting values from
the full Y1 catalogue.
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2017) for a DES Y1-like configuration and is seen to perform favourably. For computational rea-
sons, given the relatively large number of different samples discussed, we choose to use Gaussian
covariance matrices in this chapter. The COSMOLIKE code has the capacity for more advanced
halo model estimates, which we intend to incorporate into this analysis in future.

Like almost all previous studies of cosmic shear our convariance matrix does not include the
impact of intrinsic alignments. In a similar analysis based on CFHTLenS, Heymans et al. (2013)
justify this in two ways. First, the galaxies used in cosmological weak lensing measurement are
typically not dominated by the low redshift red population where IAs are known to be strong.
Indeed, most simultaneous constraints using the full catalogues of contemporary shear surveys
have found AIA ∼ 0 − 1. The impact on the covariance for the full sample is thus expected to be
small. Second, extracting redder galaxies for IA measurements leaves ∼ 20% or less of the full
catalogue. In such a small sample the covariance is likely dominated by shot noise.

Since DES Y1 is significantly larger and slightly shallower than CFHTLenS, we seek to verify
these assumptions. To test this we use a fast analytic code to generate Gaussian covariances for the
shear-shear angular power spectrum Cγγ in DES Y1-like tomographic bins. The IA power spectra
are modelled using the NLA model with a range of amplitudes. The results are shown in Figure
6.7.

Unsurprisingly (since the dominant GI term will tend to supress power in the cosmic shear
signal) on most scales ignoring IA in the covariance matrix leads one to overestimate the uncer-
tainties. This is particularly true in the autocorrelation of the lower redshift bins. The negative
sign on the largest scales (small `) indicates that we may be underestimating our errorbars here.
In all but the most extreme IA scenarios, however, the impact is comfortably under half of the 1σ

contour.

6.3 Results

In this section we set out the main results of this investigation. The following paragraphs describe
the fiducial analysis, in which we impose simultaneous constraints in IA and cosmology using
different populations of galaxies in DES. We then explore the dependence of the IA contamination
on redshift and the observed magnitude of the galaxies, a poorly understood topic at any level, and
test the robustness of our results to various forms of error.
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Figure 6.7: A comparison of cosmic shear covariance as a function of angular scale, as calculated
with and without intrinsic alignments. In each case a covariance matrix of was computed for the
shear-shear angular angular power spectrum, assuming Gaussian density fluctuations. The redshift
distributions and number density in each of four tomographic bins and the total survey area were
taken directly from the early-type DES Y1 sample presented in the main body of this work. Left:
Fractional change in the inverse of the diagonal elements of the

〈
Cii
γ C

ii
γ

〉
covariance matrix when

intrinsic alignments are omitted from the calculation. The four lines show different amplitudes of
the IA power spectrum, as modelled using the NLA model. Right: Raw (unnormalised) values of
the same inverted covariance elements in scenarios with the IA amplitudes shown.
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6.3.1 Simultaneous Constraints

The fiducial analysis in this chapter includes no external information beyond the Y1 shear cata-
logues. We consider three samples: (a) the full undivided catalogue, (b) late-type galaxies (TBPZ >

1) which account for roughly 80% of the total 35M, and (c) early-type galaxies (TBPZ < 1), which
make up the other ∼ 20%. Monte Carlo chains are run independently to generate a likelihood of
cosmological and nuisance parameters for each of these datasets.

Figure 6.8: Joint constraints on cosmology and intrinsic alignment parameters from sub-
populations of the DES Y1 fiducial shear catalogue. Note that the shape catalogues are blinded at
the time of writing. The two sets of filled contours are defined by a split according to best-fitting
SED (TBPZ < 1 and TBPZ > 1) to isolate early- and late-type galaxies. The purple dotted contours
show the equivalent constraints from the full catalogue. Each population is modelled indepen-
dently using a version of the NLA IA model with a free amplitude AIA and redshift power law
index η.

We use a Gaussian prior on residual shear bias of width σm = 0.025 in each tomographic bin,
as recommended in Z17. The prior width here is dominated by blending, which we do not expect
to depend on galaxy type (at least to first order). We thus do not alter the m prior between subsets
of the catalogue. Selection responses are, however, recalculated as described earlier.

The same tomographic binning is used, and single-galaxy redshift PDFs are restacked for each
new sample. As the redshift distribution changes significantly under different selections (see Figure
6.5), we rerun the tests using the resampled COSMOS catalogue described in Section 6.2.4 to
generate a new set of priors on the photo-z bias parameters.

Intrinsic alignments are modelled using the NLA model (equation 6.7) with a single amplitude
and redshift index.
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Sample AIA η

All Galaxies 1.48+0.48
−0.47 2.42+1.13

−1.62

Early-Type 2.60+0.92
−1.04 −0.22+1.59

−1.77

Late-Type 0.97+0.52
−0.46 1.73+1.52

−2.29

Early-Type, COSMOS n(z) 2.36+0.86
−0.79 0.03+1.53

−1.62

Late-Type, COSMOS n(z) 0.93+0.53
−0.42 2.11+1.32

−2.40

Early-Type, Refined 1.19+1.15
−1.71 −0.94+2.56

−1.88

All Galaxies, η = 0 1.04+0.34
−0.43 0.00 (Fixed)

Table 6.4: Best-fitting Nonlinear Alignment Model parameters from subsets of DES Y1. The
parameter value given in each case is the mean value of the marginalised posterior distribution.
The errorbars indicate the upper and lower 68% confidence bounds relative to the mean. The upper
section present the results from our fiducial split samples, and the lower part show a number of
robustness tests described in the text. but entries below the line

In each chain we vary six cosmological parameters, a shear and a photo-z bias parameter
per tomographic bin, and two IA parameters. This gives a total of 16 free parameters: p =

(Ωm, As, ns,Ωb, h,Ωνh
2,m(i), δz(i), AIA, η).

The results are shown in Figure 6.8, and summarised in Table 6.4. The best fitting cosmolog-
ical parameters from the analyses on the two disjoint datasets (early- and late-type galaxies) are
consistent with each other within the 1σ confidence bounds. Given that these are separate sets
of galaxies with uncorrelated shape noise (albeit drawn from the same cosmological volume) one
would not expect the mean values to coincide exactly. In the IA parameters, where we prima facie

would expect to see a difference there is indeed a more prominent disagreement. The early-type
sample favours a stronger amplitude, and a much weaker redshift evolution. Though the power of
shear alone in coarse tomographic bins to constrain the latter is notably limited, we see a noticable
separation and different degeneracy with AIA in the right-hand panel of Figure 6.8. The likelihood
of this parameter is also notably non-Gaussian. We quote the mean of the distribution and the
upper and lower 68% confidence bounds for reference in Table 6.4, but note that in this case the
one-point statistics are a somewhat reductive way of assessing the constraint.

6.3.2 Redshift and Magnitude Dependence

In general IA are poorly understood. To marginalise their impact on shear we rely on empirical
models, without solid physical basis or tight constraints on a dataset representative of the galaxy
catalogues used in modern shear cosmology. An example of this is the dependence of the IA
spectra on redshift and luminosity. If such dependence is modelled at all it is commonly with
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Figure 6.9: Intrinisic alignment amplitude constrained from selected bin combinations of the Y1
catalogue. Each point shows the constraint using only two-point measurements that include a
particular foreground bin. The dashed green and dotted purple lines show linear and power law fits
to these points.

somewhat arbitrary power laws (see, for example, equation 8 from Hildebrandt et al. 2016, and Jee
et al. 2016). It is also, however, true that our ability to explore this subject is limited by the data.
Most importantly, we lack the high-quality spectroscopic information that have made the SDSS
data, for example, such a rich source of IA-based investigations.

As a simple first exercise we consider the fiducial dataset (all galaxies), and look for internal
tensions between redshift bins. To do this we rerun our earlier likelihood calculations, but using
only a subset of redshift bin pairings. We do this four times, each time using only ξij± with a
particular foreground bin. Cosmology and all nuisance parameters are fixed at the best-fitting
values from the fiducial run on DES Y1, and AIA is allowed to vary between ±16. The result
is shown in Figure 6.9, as a function of redshift. The right-hand panel shows the 1D likelihood
distributions for the four bins. Naturally, the upper bin provides the weakest constraint, since we
are using only autocorrelation i = j = 4. To test the robustness of the upwards trend seen in this
figure, we repeat the process using the best-fitting Planck cosmology rather than that favoured by
the DES data, which are non-identical. The result is shown by the shaded curves in the right-hand
panel.

A natural question that arises from this exercise is the validity of fixing nuisance parameters.
Particularly in the case of photometric redshift error, the DES data constrains these weakly; one
finds that the shape of the posteriors on these parameters are prior-dominated. It is also true that
the IA amplitude can be strongly degenerate with redshift error. Both of these statements make
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Figure 6.10: Intrinisic alignment amplitude constraints in four redshift bins using the DES Y1
METACALIBRATION catalogue. The purple solid lines show the full catalogue, with early- and late-
type split samples shown by the dotted and dashed lines respectively. Note that these analyses were
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Figure 6.11: The same as Figure 6.10, but additionally split by magnitude. The two panels show
constraints from late-type (left, blue) and early-type (right, red/pink) samples.
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the fixed δz a major source of doubt in the redshift dependence seen in Figure 6.9. We thus carry
out the following exercise. We rerun the fiducial chains, again with cosmology fixed, but allowing
the four δz parameters to vary. The IA spectrum is predicted using the NLA model, but in each
bin we rescale the IA contributions with an independent free amplitude A(i)

IA. The result is shown
in Figure 6.10 for the full sample (purple) and the split early and late-type samples (red and blue).
Interestingly, though the early-type galaxies dominate the IA contribution at low redshift, the IA
amplitude actually decline slightly in the upper two bins. Conversely, we see a monotonic increase
in AIA in the late-type sample. Although not conclusive, the tests in Section 6.3.3 indicate that this
is not simply due to increased leakage of early-type galaxies into the late-type sample as we move
to higher redshift.

Finally, we repeat the above likelihood calculation, but now additionally splitting the early-
and late-type samples about the median observed r-band magnitude. Ideally we would use k-
corrected rest frame luminosities, since the apparent brightness of a galaxy is sensitive to its in-
trinsic magnitude, but also its redshift within each broad tomographic bin. At the time of writing,
such information is not available within DES. The results are shown in Figure 6.11.

Note that we do not show the results for the brightest early-type galaxies in the upper redshift
bin, and the faintest in the lower bin. In these chains the likelihood is strongly bimodal, with
divergent positive and negative AIA. This is thought to be because of the poor sampling of galaxies
in these bins. The n(z) estimates are visibly very noisy, and the COSMOS-derived priors on
redshift error are extremely wide. We do not consider the bimodal results here to be physically
meaningful.

6.3.3 Colour Leakage & Redshift Error

Though the results of the tests described above show some differences between early- and late-
type samples, there are a number of possible systematics entering the measurement. Firstly, we
do not know the redshift distributions of our samples perfectly. If we wish only to constrain
cosmological parameters and we can assume minimal IA contamination, then the mean redshift in
each tomographic bin is the most salient form of redshift uncertainty we need to marginalise over
(Amara & Réfrégier, 2007). This is not necessarily true if we wish to accurately disentangle the
IA signal (including an implicit self-calibration analogous to the method described in the previous
chapter). The IA spectra are much more sensitive to the shape of the redshift distribution. To test
the impact of inaccuracies in the shape of the estimates of the redshift distributions from BPZ we
rerun the two split chains (early and late-type galaxies). Instead of using the fiducial photometric
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redshifts provided by Hoyle et al. (2017), however, we use the histograms of COSMOS redshifts
shown by the dashed lines in the left-hand panel of Figure 6.5. Clearly these are noisy estimates,
and will not perfectly represent the distribution of galaxies in DES Y1. They do, however, provide
an alternative estimate with equivalent mean redshift in each bin; any difference in our results after
switching to the COSMOS n(z) will imply a potential uncertainty in our results. We show the
constraints from this exercise as the filled contours in Figure 6.12.

Figure 6.12: Joint constraints on cosmology and IA parameters from DES Y1. The filled (pink and
dark blue) contours are the same as in Figure 6.8, but using the reweighted histogram of 30-band
COSMOS redshifts described in Section 6.2.4 in place of the photometric estimates from BPZ.
The qualitative match to the earlier results demonstrate the sensitivity of our results to error in
the shape of the redshift distributions. The open contours show the results using stringent cuts on
TBPZ, beyond those used in the fiducial analysis, and are presented as a test of galaxy type leakage,
as described in the text.

The amplitude of the intrinsic alignment power spectra is also potentially strongly degenerate
with another sort of redshift uncertainty: error in the mean redshift in each tomographic bin. To
test this we widen our redshift priors to account for (a) correlations in error between bins and
(b) disagreement with alternative constraints on the n(z) from another group within DES, derived
from galaxy clustering measurements. This leaves the Gaussian priors on δz with widths between
∆δz ∼ 0.02 and ∆δz ∼ 0.05. We rerun our chains with these widened priors. This exercise
moderately weakens our constraints, but does not significantly shift the means of the posterior
distributions.

Finally we assess the level of error in our measurement due to leakage between our two galaxy
type bins. We are dividing galaxies into early-type and late-type samples based on a single mea-
sured parameter TBPZ. Due to the limited quality of the DES photometry, however, TBPZ will
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Figure 6.13: Galaxy type leakage in our early-type (left) and late-type (right) samples. We quantify
the leakage as the total lensing weight of galaxies included in the sample as defined by the DES
TBPZ measurements, but which would have removed by the equivalent cut on the “true” HST
TBPZvalues. The four coloured (dashed) lines show the results in the four tomographic bins used
in this chapter, and shown in Figure 6.5. The solid black line shows the type leakage for the full
sample, without tomographic binning.

be noisy and potentially biased. To quantify the level of misclassification we use a set of photo-z
measurements obtained by running BPZ on the reweighted COSMOS galaxies described in Section
6.2.4, using the original HST fluxes as input. Since the noise in the HST fluxes is much smaller
than that in DES, we take this as a reference “true” measurement of TBPZ for each galaxy. That is,
the value it should have been assigned, if DES had access to photometry at the quality of HST. We
then define our sample (early or late) using a cut on the measured DES TBPZ, and in each tomo-
graphic bin we calculate the number of galaxies which are erroneously included (i.e. the objects
that should have been removed by the type cut, according to the HST TBPZ). We show the total
lensing weight of these misclassified galaxies as a function of the cut used to define the sample in
Figure 6.13. The two panels show early-type and late-type galaxies as a function of the maximum
and minimum TBPZ cut.

Although in most cases, the misclassifications account for less than 10% of the lensing weight,
in the lowest redshift bin, we find a potentially much larger cross-type contamination. To assess the
level at which this enters our results, we define new “refined” samples with more stringent cuts on
TBPZ. For the refined early-type sample we shift the upper TBPZ cut to TBPZ < 0.5, and for the new
late sample we impose TBPZ > 1.5. We rerun our joint contraints using these adjusted samples,
which are shown by the unfilled (red dashed and blue dot-dashed) contours in Figure 6.12. Note
that for each of these new samples we recompute the n(z), redshift priors, two-point functions and
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Figure 6.14: Constraints on cosmology and IA parameters from the unsplit Y1 METACALIBRA-
TION shape catalogue. The dark purple contours show the result using our fiducial IA model,
which assumes the NLA IA power spectra with a free amplitude AIA and a redshift power law
index η. The lighter dashed constraints assume the same, but with η fixed at zero.

covariances, and then run independent Monte Carlo chains with the 16 free parameters used in the
fiducial calculation.

6.3.4 Intrinsic Alignment Models

Though previous numerical studies have found significant biases from failing to account for IA
in shear-based analyses (Kirk et al., 2012; Krause et al., 2015), the exact impact depends on the
nature of the true signal, and how inaccurately one models it. We have found using numerical
forecasts, that modelling a mixed population with different IA signals does not necessarily bias
one’s cosmological constaints. We construct an analytic Y1-like shear datavector using equations
6.9 and 6.10, with the measured red-fractions. We consider two cases, where the blue galaxies have
(a) no alignments, or (b) GI and II power spectra given by equation 6.7 with non-zero amplitude,
which is different from that of the red galaxies. In both these cases it is possible to model the total
IA contamination using a single model and recover the input cosmology without significant bias.
The inferred AIA becomes an effective amplitude, approximately equal to the weighted average of
the red and blue IA amplitudes. We cannot, however, guarantee this will be the case if the blue
galaxies have IA power spectra that are both non-zero and significantly different from the NLA
prediction.

To explore this, we rerun our fiducial cosmology chain on the full dataset (without type splits),
but now without marginalising over the redshift power law. As has commonly be assumed in
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previous studies, we assume η = 0.1 The result of this exercise is shown in Figure 6.14. Switching
between these models does not induce significant shift in the favoured cosmology, although we
report a marginally lower value of AIA.

6.4 Discussion & Comparison with Previous Results

This work sits alongside a number of simultaneous constraints analyses carried out within the large
lensing surveys.

Though useful for understanding the nature of the IA contaminant in cosmic shear measure-
ments, Heymans et al. (2013) are the only previous authors to attempt a direct red/blue split of the
type we present here. That work was based on the the CFHTLenS dataset, which is has a slightly
deeper magnitude limit than DES, and used a finer binning in redshift (six bins to our four), albeit
over only 154 square degrees. They defined early/late-type galaxies in the same way as in this
analysis, and about the same boundary2. A major result of their analysis was that, when com-
bined with WMAP, they found a mildly negative AIA (although statistically consistent with zero).
Their split samples showed a clear separation, with a best-fitting amplitude of ∼ 5 for early-type
galaxies, and a measurement consistent with no alignments in late-types. They speculated in that
work that the negative result could be the result of simultaneously fitting the GI and II spectra with
a single amplitude. Subsequent discussion has gradually converged on the idea that it was more
likely an artefact of redshift error, an idea reinforced by the findings of Choi et al. (2016). A com-
prehensive re-analysis of CFHTLenS by Joudaki et al. (2017) found a stronger preference towards
negative values (AIA = −3.6 ± 1.6). Later analysis of the KiDS dataset by Hildebrandt et al.
(2016), found a value of around unity, marginalising also over a redshift index η. Interestingly,
they tested their results using a series of alternative photo-z methods, and found certain cases that
could push AIA below zero. Most recently, van Uitert et al. (2017) report positive AIA, again at
approximately 1.0 using a similar but independent set of two-point measurements in Fourier space.
They found similar results using both cosmic shear alone, and when combining shear, clustering
and galaxy-galaxy lensing.

It is clear that these results are somewhat variable. The IA contamination is dependent on the
shape measurement technique and on the galaxy sample in question. Moreover, as pointed out by
van Uitert et al. (2017), the IA parameters can become less physical “nuisance” parameters when

1Although we have found already that the DES Y1 data favours η 6= 0 at ∼ 1σ
2Note that the quoted division in their analysis is TBPZ = 2.0, whereas ours is at 1.0. This is purely a difference in

indexing notation, and we can confirm that the two are equivalent.
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implemented in a high dimensional analysis, as they can very easily absorb other systematics such
as photometric redshift error. That said, it is still useful (and, indeed, possible) to understand the
IA signal in its pure astrophysical sense. If we do not attempt to do this, it is difficult to answer
basic questions about whether our nuisance parameterisation is sufficiently flexible, and whether
our assumptions are in fact resulting in a cosmolgical bias. It is also true that imposing informative
priors on the IA contamination could potentially curtail what could become a major limiting source
of systematic uncertainty.

Perhaps the most directly comparable previous result is that from the DES Science Verification
(DES SV) data. Though narrower (comparable to CFHTLenS) and deeper, the measurements
presented in Becker et al. (2016) and analysed in Dark Energy Survey Collaboration (2016) share
many features of the Y1 analysis presented in this chapter. The basic shape measurement code
is essentially the same (NGMIX, although the calibration method is new), and our current dataset
is a superset of the area presented there. Interestingly, their fiducial analysis, which marginalised
over η, found a bimodal AIA posterior with peaks at ∼ ±1 to 2. This was seen to disappear when
using only the basic NLA model with no redhshift dependence. Unlike in our case, where the
cosmolgical result is relatively robust to inclusion of η, they found that allowing this parameter
to vary significantly degraded their constraint on S8. This was largely a result of the extended
bimodal feature in the S8 − AIA plane, which is now gone (compare their Figure 8 with Figure
6.14 above).

It has been suggested elsewhere that removing red galaxies could be an effective and relatively
inexpensive way to null the IA contamination in future surveys. We confirm the result of Krause
et al. (2015) that the quality of the cosmic shear result is relatively robust to the cut on galaxy
type (since it leaves around 80% of galaxies, and preferentially removes objects at lower redshift,
which provide relatively little cosmological information). Unfortunately our result suggests that
the IA contamination in these remaining galaxies is neither negligible, nor unchanging with red-
shift. Indeed, our preliminary results suggest a worsening of the blue IA contamination in the
upper redshift bins. Neither do our findings suggest that this is purely the result of type leakage.
Though this clearly depends on how we choose to divide our galaxy set, the overall implication is
that it would be inadvisable to rely on selecting by galaxy type as a means to null the IA signal in
cosmological analyses.

Finally, is worth mentioning here that the ability to meaningfully constrain intrinsic alignments
is strongly dependent on (accurate) redshift tomography. We have found that widening our photo-z
priors to the extent that they are essentially uninformative can easily lead to unphysical bimodal-
ities in the IA likelihood surfaces. Our slightly finer binning (4 bins to the 3 in SV) is likely to
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have contributed a small improvement in the constraints presented here. As Dark Energy Survey
Collaboration (2016) have shown (see also Jee et al. 2013 and Kilbinger et al. 2013) the benefit is
dramatic from just a small number of redshift bins relative to the non-tomographic case.

6.5 Conclusion

In this chapter we have presented a new set of joint constraints on cosmology and intrinsic align-
ments, using the largest late-time lensing dataset to date. We have used a shear catalogue of 35
million galaxies over 1500 square degrees with median redshift 0.59, and corrected for selection
effects in both the shape measurements and redshift distributions. We have found that splitting by
galaxy type, as defined by a best fitting SED template TBPZ, yields populations with significantly
different IA properties (both amplitude and redshift dependence). Using a more flexible model
with a free amplitude per redshift bin, we have found a monotonic increase in IA strength with
redshift. Though the early-type signal is relatively stable between bins, our late-type (blue) sample
exhibits a more significant dependence. It is difficult to interpret this in terms of competing II and
GI contributions, and this topic is clearly of interest for future analyses.

We have tested our results for sensitivity to the details of the photometric redshift distribution,
and found that they are robust to reasonable changes in the priors on redshift error and the shape
of the distributions. Though we have found potentially significant galaxy type leakage between
samples in the lowest redshift bin, rerunning our analysis with more stingent cuts on TBPZ does
provide evidence for significant bias in our findings. A future step in this analysis will repeat the
likelihood MCMC calculation using the full parameter space, but excluding the lowest bin where
the contamination is much stronger.

Finally, we have tested the impact of switching between IA models, in a limited case of NLA
with and without a redshift power law. Unlike in the analysis of (Dark Energy Survey Collabora-
tion, 2016) on the DES SV lensing dataset, we have found no dramatic degradation in the quality
of our shear constraints due to the inclusion of the redshift parameter.

As stated in the introdution to this chapter, the analysis presented here is ongoing. We intend
to include a number of extensions in the near future. First, we will test the impact of including
non-Gaussian analytic halo model covariance matrices. Limited computational resources have
prevented us from doing this for the various sub-samples presented here. Second, we will repeat
the calculations in Section 6.3.4 using a more physically motivated IA treatment for blue galaxies,
that includes the different mechanisms that are thought to operate (e.g. tidal torquing, see Blazek
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et al. 2015), to look for signs of bias. It will also be interesting to implement an IA treatment akin
to that in the previous chapter, where we split the GI and II amplitudes and fit them separately.
Although we found no shift in cosmology when we removed the redshift dependence from our
IA model, the test we presented does not extend beyond the NLA model. It is conceivable that
the GI and II spectra for blue galaxies could both have a significant non-zero amplitude and a
differ in shape from the NLA prediction. The level of possible cosmological bias due inadequate
modelling of such a combination is not currently known. Third, we will explore the alternatives to
TBPZ set out at the start of this chapter. As we said, there are a number of alternatives quantities
one could use to split the DES catalogue that could be accommodated within our framework for
selection effects. It is conceivable that, for example, a colour-magnitude-based cut, or TBPZ in
combination with such a cut could provide a more effective means for isolating a sample with
small or null intrinsic alignments. This information could clearly have practical implications for
future studies. Finally, we will consider combining our results with other measurements derived
from the DES data. The combination of galaxy-galaxy lensing and galaxy clustering, for example,
could potentially significantly enhance our ability to constrain intrinsic alignments.

As datasets get deeper and other systematic uncertainties are gradually reduced, IAs could very
easily become a limiting factor in future cosmological analysis. Whereas baryonic efects can be
mitigated by scale cuts, intrinsic alignments operate on all scales where shear is also significant.
Improving our understanding of this systematic will thus be crucial if we are to fully exploit the
cosmological information of the datasets that will shortly become available to the lensing commu-
nity.



Chapter 7

Conclusions

This chapter provides a synoptic overview of the ideas presented in this thesis, and seeks to set
them within the context of the wider field. We start with a brief overview of the prospects for the
immediate future, and the challenges we must address. The following paragraphs consider each of
the analyses presented in this thesis. We discuss the scope and the limitations of the various strands
of work. The final intention, beyond providing a summary, is to explore the possible avenues for
future investigation and identify the most promising extensions in each area.

7.1 Remarks About the Current Work

The aim of this manuscript was to set out a practical example of how a large late-time galaxy
lensing survey can be used to place constraints on cosmology. We do not claim our implementation
to be perfect, nor that it does not depend on a large number of collaborators with expertise far
beyond our own. Rather we sought to present a demonstration of principle, detailing how the task
was approached within DES. This thesis aimed to demonstrate that cosmic shear measurement is
subject to a range of biases of comparable level, none of which can be safely ignored. But, equally
important, we showed that it is possible to successfully address these biases to place accurate
constraints on cosmology, even at the statistical precision allowed by the largest lensing datasets
that exist today.

In Chapter 3 we outlined the process used to construct shape catalogues and, ultimately, the
weak lensing correlation functions. The text focused on one of the two science-ready catalogues
in Year One of the Dark Energy Survey. Though they take very different approaches to the shear
measurement problem, the two catalogues (IM3SHAPE and METACALIBRATION) are derived from
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the same set of galaxies, and give consistent results in all analyses that have used them so far (Prat
et al., 2017; Troxel et al., 2017; Chang et al., 2017; DES Collaboration et al., 2017). The first, and
in some regards the simplest, step is conducting fits to the individual galaxies. For this we used
a two-stage fit, which assigns each galaxy a best-fitting Sérsic light profile with a radial index of
either n = 0 (exponential disc-like) or n = 4 (de Vaucouleurs bulge-like). Fits such as this are
near-ubiquitous in the field of lensing cosmology. Though inevitably a simplified representation of
real galaxy morphologies, it has been shown elsewhere that the bias that results is predictable and
almost entirely dependent on the size of the galaxy and the signal-to-noise (S/N ) of the measure-
ment (Voigt & Bridle, 2010; Kacprzak et al., 2012). We then introduced the HOOPOE simulations,
a set of real-sky mock images tailored to the DES Y1 dataset. We described how HOOPOE was
used to constrain the level of bias in the DES Y1 IM3SHAPE catalogue, and how per-galaxy shear
corrections were derived from ensemble measurements on the simulation. It is important to note
that this analysis is one of the most advanced attempts at shear calibration to date, in the detail in-
cluded in the simulations, the level of redundancy in the methodology, and the rigour of the process
which led to the suggested prior on residual bias. Alongside the (equally rigorous) treatment of the
METACALIBRATION catalogue (also detailed in Zuntz et al. 2017) and its nearest contemporary,
based on weak lensing measurements from the Kilo Degree Survey (Fenech Conti et al., 2016), it
will set a benchmark for treatment of shear estimation bias in future cosmic shear datasets. This
analysis discovered a residual multiplictative bias of around m = 0.01 after calibration and realis-
tic tomographic binning of the simulated galaxies. Our findings suggest a form of redshift selection
bias, due to the evolution in galaxy morphology with redshift. Though not the dominant form of
systematic uncertainty in the Y1 IM3SHAPE calibration, this could represent a fundamental chal-
lenge for future parametrised simulation-based calibrations, considering the stringent requirements
of the upcoming Stage IV surveys. The history of shear estimation, however, has been a story of
continuous and conscious improvement and there are reasons to be optimistic about continued
feasibility of the simulation-based method.

The focus in Chapter 4 then turned to a more specific form of measurement bias: the impact of
image plane neighbours on shear cosmology. This is a question that, until recently, has commonly
been ignored in shear-based cosmology analyses. Using a simplified toy model of two neighbour-
ing galaxies we showed how neighbours can leave a residual imprint on ensemble shear estimates,
even in the absence of a preferred direction to their spatial distribution. We found that the resulting
shear bias could be either positive or negative, depending on the configuration of the neighbours.
The investigation was then extended to use the HOOPOE simulations, which accurately represent
the level of blending in DES Y1, at least at first order. Comparing direct bias measurements with
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a second suite of neighbour-free simulations under different selection functions, we identified four
mechanisms by which neighbours influence shear measurents. In combination, and measured in
tomographic bins, we found the net impact could lead to artificially low shear estimates at a level
of 3% to 9%. Furthermore, we found that the inclusion of galaxies that are too faint to be detected,
but which nonetheless appear real survey images, impacts the derived shear calibration at the level
of approximately one percent.

The final part of the analysis in Chapter 4 then sought to propagate the effect of neighbours
into cosmological parameter space. A number of earlier studies on the impact of various effects
on the constraining power and accuracy of cosmic shear have relied on an assumption of Gaussian
parameter likelihoods. Though the Fisher formalism is convenient for its computational speed,
it has been argued that full simulated likelihood analyses are necessary to capture the complexi-
ties of high-dimensional parameter analyses in modern cosmology (Joachimi et al., 2011; Krause
et al., 2015, 2017). We thus followed the latter approach for our analyses. With the cosmological
framework set up for analysing the real DES Y1 data we constructed analytic shear datavectors
with different forms of bias. The aim was to model the level of contamination that our study of
the HOOPOE simulations suggested would be present if we had failed to include neighbours in
the DES Y1 IM3SHAPE calibration. With the covariances calculated for the Y1 shear cosmology
analysis, we found a net bias of ∼ 1.5σ towards low values of the best-constrained cosmological
parameter combination S8.

The position information in the HOOPOE simulations also provides a way to test for additional
forms of bias that would be present in the data, but will not be captured in parameterised bias
fits. Our analysis identified a potential effect due to spatial correlations in the neighbour-induced
biases. We developed an analytic method for propagating measurements of these correlations into
a real space two point shear data. The magnitude of these effects, however, was seen to be small:
even at significantly less stringent scale cuts than planned for DES Y1, we found no discernable
bias in cosmology beyond the current level of statistical uncertainty.

There has been significant attention in recent years towards the complementary measurements
possible within a photometric galaxy like DES. Particularly useful are the analogues to pure cos-
mic shear correlations using galaxy density. Cosmology with galaxy clustering alone is limited
by gaps in our understanding of galaxy bias. The combination of lensing, clustering and galaxy-
galaxy lensing, however offers significant promise for internally calibrating common observable
systematics in both sets of measurements. Put simply, galaxy clustering constrains galaxy bias,
which frees galaxy-galaxy lensing to constrain redshift error and intrinsic alignments, which in
turn frees the shear-shear correlations to contrain cosmology. In Chapter 5 we explored this con-
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cept using analytic data designed to mimic DES Y1. We identified a valuable complementarity
in the parameter degeneracies in cosmic shear and the combination of galaxy-galaxy lensing and
clustering. Provided sufficiently accurate redshift information in the sample used for clustering
measurements, we found that one could effectively self-calibrate redshift inaccuracies in the lens-
ing galaxies. Without significant degradation in the quality of the constraints, this allows one to
accurately recover the correct cosmology even in the presence of moderate redshift errors. In a
similar analysis using cosmic shear alone, we showed that internal calibration of this sort is not
possible. Such techniques are highly valuable, and emerge naturally from a combined analysis
that includes these datavectors simultaneously. Clearly complementary to external calibration of
systematics like redshift error and measurement bias using simulations or additional data, they are
an important reason to include such additional data in future cosmology analyses.

In the final chapter of this thesis, we turned to another major systematic in lensing cosmol-
ogy. The term Intrinsic Alignments (IAs) describes a set of complex astrophysical processes by
which the pre-lensing shapes of galaxies can become spatially aligned. Commonly recognised as
a lensing systematic, they have already been shown to induce significant offsets in cosmology if
ignored (Kirk et al., 2012). Whereas the earlier chapters made use of simulations and analytic
two point data, this analysis used the real DES Y1 data. The chapter detailed the route from
shear catalogues to eventually extracting cosmology constraints from the lensing data, which we
presented in blinded form. It provided a practical demonstration of how one can correct shear
calibration selection and redshift biases in DES Y1, using corrections derived from the META-
CALIBRATION algorithm and a reweighted sample of galaxies from the HST COSMOS survey.
There is physical motivation for the idea that red and blue galaxies have different levels of intrinsic
alignment contamination. By fitting a common IA model separately to early-type and late-type
sub-samples of the DES Y1 data, we detected a statistically significant difference in IA strength.
Our analysis suggested a non-zero IA amplitude in late-type galaxies, though at the time of writ-
ing we have not conclusively ruled out cross-sample contamination or photometric redshift error
induced by the split as the cause of this signal. Whatever the cause, our findings case doubt on
the viability of galaxy type cuts as a means to cleanly eliminate IAs as a contaminant in lensing
cosmology. Finally, we repeated our analysis using a slightly simpler model, which does not allow
for redshift evolution in the IA amplitude. There was no resulting shift in the derived cosmology,
and unlike in the SV analysis no dramatic change in the strength of the constraint.
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7.2 Prospects for the Future

In these final paragraphs we will consider the future and how the findings presented in this thesis
might be marshalled to the benefit of the next generation of lensing cosmology analyses.

7.2.1 Shear Estimation

At the time of writing DES has entered its fifth year of data collection. Though a raft of science
analyses of the DES Y1 dataset are still awaiting publication, a complete set of Y3 images have
been taken, have undergone photometric processing and are available to the collaboration. As
of the start of 2017 METACALIBRATION has been successfully run on Y3, and IM3SHAPE fitting
is ongoing. There is clearly an imperative to digest the lessons of Y1 quickly. In the Y1 data
METACALIBRATION appears to have yielded high-accuracy shear estimates. A deblending tech-
nique known as multi-object fitting, which was trialled in Y1, also looks promising, both as an
alternative route for neighbour mitigation and as more robust method for extracting single-galaxy
fluxes.

A question remains, however, as to how we approach the challenge in the case of IM3SHAPE in
Y3 and beyond. These challenges are important for DES, but they are also generic to the con-
ventional simulation-derived calibration techniques implemented by virtually all previous shear
cosmology analyses. One significant lesson from the analyses of DES SV and Y1 is that redun-
dancy is important, and having two alternative shear catalogues has been highly useful in verifying
the robustness in each stage of analysis. In many ways the lessons are plain. One significant form
of calibration uncertainty came from a choice made for computational reasons in constructing the
HOOPOE simulations (i.e. the decision to retain the original cutout size for each galaxy). Though
too late for the Y1 catalogues, the issue was resolved at the code level in late 2016. Likewise,
the exercise outlined in Appendix B of this thesis identified problematic HST profiles, which can
be readily omitted from future simulations. These two improvements alone would have reduced
our non-tomographic prior to σm = 0.02. Though sufficient for the current surveys, this level of
systematic calibration uncertainty will almost certainly become cause for concern in future. Our
assumptions about uncertainty in the neighbour treatment were conservative. The development
of a multi-object fitting algorithm for IM3SHAPE may prove costly in terms of already non-trivial
computing time, but would be scientifically very useful in this regard. It is troubling that the per-
sistent redshift-dependent bias of around 1% we found in Y1, if understood correctly, could be an
inherent limitation in the most commonly implemented methodology for shear calibration. The
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COSMOS dataset used in our simulations and the low-noise deep supernova fields within DES of-
fer the necessary resources for constraining this effect. For the duration of DES, the 1% overhead
will fall within tolerance, and not be the limiting factor in our cosmology analyses. Understand-
ing the effect, however, will be important if we are to acheive the accuracy in simulation-based
calibration methods required for the lensing datsets of LSST and Euclid.

7.2.2 The Intrinsic Alignment of Galaxies

Though evidence does not point towards inadequacies in our modelling of intrinsic alignments
currently being a limiting factor in cosmic shear analyses this is not guaranteed to hold true in-
definitely. Fundamentally, however, we can and should be more ambitious in our treatment of
this systematic. In essence an overlapping large-scale astrophysical signal, IA correlations do not
present an insurmountable challenge in terms of detailed understanding. On a practical level, de-
vising appropriate parameters and imposing informative priors on them will place IAs on a footing
with shear calibration as an understood and controlled systematic.

We have made a small step along the path to that understanding in the final chapter of this
thesis. Our preliminary results suggest a statistically significant, if relatively small, IA signal in
late-type galaxies. This is not inherently a concern if it can be adequately modelled, although the
most commonly used model for IAs (the nonlinear aligment model) was built around observations
of a quite different population of late-type red galaxies. The degeneracy with photo-z error is also
a question which must be rigorously tested. Before we can claim to fully understand these results,
there are essential follow-up tests that should (and will) be carried out. Repeating our analyses
with explicit separation of GI and II amplitudes in the IA model will be one way to deconstruct the
mechanisms behind our results. For eliminating the impact of possible photo-z error (as we have
seen) and raw constraining power, combining with galaxy-galaxy lensing and galaxy clustering
correlations would also be both very feasible and scientifically useful.

A more ambitious and slightly longer term project with a similar aim will soon begin now
the DES Y1 analyses are being laid to rest. A cross-collaboration project, of which the author
is a member, between DES and eBOSS (SDSS-IV) will allow us to undertake a data-driven study
aiming for a direct detection of intrinsic alignments in blue galaxies. There are current upper limits
on fainter blue populations (Mandelbaum et al., 2011), though these are limited to relatively low
redshifts, where cosmic shear is weak. The DES-eBOSS project will extend significantly deeper,
utilising emission line galaxies (ELGs) for their high-quality redshifts. Such measurements are
unprecedented, and would represent a step forwards in our modelling of IA contamination in shear
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cosmology, since this sample is far more typical of the galaxies that dominate in cosmic shear
measurements. It would also be a valuable opportunity to explore putative redshift and luminosity
dependence in the IA contamination.

7.2.3 Self-Calibration & Multi-Probe Cosmology

Although in some ways simplified, the analysis in Chapter 5 lays the ground for future studies.
Indeed, the implicit self-calibration described has already been demonstrated in KiDS (van Uitert
et al., 2017), and DES (DES Collaboration et al., 2017), in the presence of all the complexities of
real data. The ultimate, if still somewhat distant aim is a fully integrated late-time multiprobe anal-
ysis incorporating supernova, baryon acoustic oscillations (BAO), redshift space distortions and
optical cluster counts. The benefits in terms of constraining power and internal robustness against
systematics would be enormous. Nonetheless, there is a significant challenge ahead, which will
start with an analytic forecasting framework of the sort described in this thesis. The methodology
of simulated likelihood analyses will be vital in understanding our data, its parameter degenera-
cies, and which of a host of new systematics are of concern for our eventual inferences about the
properties of the Cosmos.

Before ending, we should finally turn our thoughts towards the higher-level future of lensing in
the coming years. As we have sought to show in this thesis, weak lensing is more than just another
“potentially powerful” probe. It can be, and indeed has been, used to place truly competative con-
straints on the properties of the late-time Universe with existing tools. True, it has its subtleties,
but one would be hard pushed to name a cosmological probe that does not, given the precision
cosmologists have come to expect. Nor have we yet reached the statistical floor imposed by cos-
mic variance; wider, deeper datasets will bring significant gains in precision. There are inherent
systematics, but all are understood relatively well at the theory level. A glance through the history
of lensing provides ample reason to be optimistic our ability, as a community, to develop novel
ways to mitigate such effects.

The natural question, then, for lensing cosmology might be is this it? From one perspective,
if years of collaborative effort amount to nothing more than an incremental tightening of some
already Gaussian parameter contours about the standard values, perhaps we would be well advised
to apply our efforts elsewhere. This is a view that has been voiced by professional cosmologists.
No doubt variants of this question have been echoed by funding agencies across the world. There
is, however, a more optimistic and perhaps more nuanced case to be made here. The mode of
scientific practice evolves, as our understanding of the world changes. If the Twentieth Century
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was a time of model building, we have perhaps reached a time of model breaking. As a community
we have spent decades developing a framework for thinking about the Universe, and building a
picture of what we should see. In ΛCDM we have a remarkably successful predictive theory and
the means to test it, but it is a finite one; this is arguably how science works: a theory is conceived,
disseminated and finally tested until we find a regime where it is insufficient. Almost certainly, our
picture of the Universe is imperfect. It is the cosmologist’s job now to find its edges.
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Harnois-Déraps J., et al., 2017, preprint, (arXiv:1703.03383)

Harrison I., Camera S., Zuntz J., Brown M. L., 2016, MNRAS, 463, 3674

Harvey D., Kneib J. P., Jauzac M., 2016, MNRAS, 458, 660

Herbonnet R., Buddendiek A., Kuijken K., 2017, A&A, 599, A73

Heymans C., et al., 2006, MNRAS, 368, 1323

Heymans C., et al., 2012, MNRAS, 427, 146

Heymans C., et al., 2013, MNRAS, 432, 2433

Hildebrandt H., et al., 2016, MNRAS, 463, 635

Hinshaw G., et al., 2013, ApJS, 208, 19

Hirata C., Seljak U., 2003, MNRAS, 343, 459

Hirata C. M., Seljak U., 2004, PRD, 70, 063526

Hirata C. M., Mandelbaum R., Seljak U., Guzik J., Padmanabhan N., Blake C., Brinkmann J.,
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L., Harnois-Déraps J., Hildebrandt H., Köhlinger F., Kuijken K., Viola M., 2017, preprint,
(arXiv:1702.05301)

Kirk D., Rassat A., Host O., Bridle S., 2012, MNRAS, 424, 1647

Kirk D., Laszlo I., Bridle S., Bean R., 2013, MNRAS, 430, 197

Kirk D., Lahav O., Bridle S., Jouvel S., Abdalla F. B., Frieman J. A., 2015, MNRAS, 451, 4424

Kirk D., et al., 2016, MNRAS, 459, 21

Kirkman D., Tytler D., Suzuki N., O’Meara J. M., Lubin D., 2003, ApJS, 149, 1

Kitching T., et al., 2010, preprint, (arXiv:1009.0779)

Kitching T. D., et al., 2012, MNRAS, 423, 3163

Kitching T. D., Alsing J., Heavens A. F., Jimenez R., McEwen J. D., Verde L., 2016a, preprint,
(arXiv:1611.04954)

Kitching T. D., Verde L., Heavens A. F., Jimenez R., 2016b, MNRAS, 459, 971
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Appendix A

Simulating Galaxies Below the Survey
Detection Limit

In this appendix we seek to justify the flux correction applied in the earlier chapters to the sim-
ulated HOOPOE images. The decision to subtract a uniform flux contribution across each tile is
designed to account for the impact of galaxies below the detection threshold on the background
sky subtraction that occurs during image reduction in the real data. It was devised using simulation
based tests, which we will describe here.

To accurately capture the blending and noise properties of the parent images, it is important to
include a population below the nominal detection limit of the survey Mr,lim. Each time the simu-
lations described in Chapter 3 define an input sample of nominally detectable COSMOS galaxies
for a particular tile, we also construct a cache of faint objects below the survey detection limit. The
number of subdetection objects to simulate is decided by constructing a smooth function p(Mr)

by cubic spline interpolation of the histogram of magnitudes in the relevant DES band in the full
COSMOS catalogue. We then integrate p(Mr) above and below the magnitude limit. The number
of faint objects is then related to the detected sample size as:

Nfaint =
ffaint

(1− ffaint)
×Ndet, (A.1)

where ffaint ≡
∫∞
Mlim

p(M)dM is the fraction of the weight of the normalised magnitude distribu-
tion p(Mr) above the nominal DES detection limit, andM is the aperture magnitude in the relevant
band. These objects are then allocated random sky positions (α, δ) within the coadd bounds, and
drawn into the single-epoch images at the corresponding pixel coordinates.

The HOOPOE code simulates the image plane without background sky flux. The result is a
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Gaussian noise field plus nominally detectable COSMOS profiles in each of the positions a galaxy
was detected by SEXTRACTOR in the parent coadd. This is assumed to represent the real image
plane, after background sky subtraction has been carried out. The additional step of drawing a
random scatter of sub-detection galaxies, however, will leave a non-zero background flux in the
images. To accurately represent the data we must, then, correct the images somehow to account
for the fact that the background subtraction would have included these objects were they there in
the real data.

In practice, the sky subtraction algorithm performs the follows calculations. The image is
first broken down into square sub-regions of ∼ 100× 100 pixels and those pixels flagged by SEX-
TRACTOR as associated with a detected object are removed. The rest of the pixels are then flattened
and the histogram of the pixel vector is calculated. The background algorithm applies an iterative
clipping process until that distribution converges to ±3σ about its median. If the width σ varies by
> 20% during this process the field is considered crowded. In this case the mode is estimated and
this value is taken as a single-number background level within this region. In the case that the field
is not deemed to be crowded, the arithmetic mean is used. SEXTRACTOR then interpolates these
sub-regions across the image plane to produce a smooth background flux map.

The question is, then, are the subdetection galaxies in HOOPOE sufficiently faint and low in
density to avoid triggering the mode calculation? If so we can describe the impact of the faint
galaxies as a flat shift in the mean of the sky flux. Our aim here is to decide whether this is, in fact,
the case. If this were true then a simple uniform correction sufficient to mimic the impact of the
faint objects on the background subtraction.

We test this by simulating a single tile from the simulation, with and without the faint galaxies.
All other properties, including the noise realisations in the coadd and input single-epoch images
and the input sample of detectable COSMOS profiles are kept fixed. Visual inspection of the coadd
images supports, on a qualitative level at least, the notion that the main impact of faint galaxies is
to modulate the background noise levels. We show a random 75× 75 pixel window taken from the
simulated coadd images in Figure A.1 below.

We next rerun the SEXTRACTOR background alogorithm to produce a new sky map for each
simulation version, using the configuration parameters chosen by the DES Data Management di-
vision for use on the real Y1 data. We can see here that the spatial pattern of the sky flux across
the image plane is maintained. However, the maps are visibly different, being brighter in the case
with the faint objects. We show the background maps in each case, and the spatial pattern of the
residuals in Figure A.2.

The next question is, can we correct for this difference with a uniform shift in the background
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(a) (b)

(c)

Figure A.1: Top: A sub-patch from two simulated instances of a coadd tile from DES, created
with (right) and without (left) randomly place subdetection objects. All other properties of the
two images are identical. Bottom: A map of pixel flux residuals (image with faint minus image
without faint) for the same sub-patch.
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(a) (b)

(c) (d)

Figure A.2: The impact of sub-detection galaxies on background flux subtraction. The upper two
panels show the sky-level background map estimated by running SEXTRACTOR on the simulated
coadds. The residual between these two maps is shown in the lower left. The lower right-hand
panel shows the result of imposing a uniform downwards shift on the background map that includes
faint objects as described in equation A.2.
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flux? If the main impact of adding galaxies below the detection limit is simply to shift the mean of
the calculated sky flux (and thus increase the per-pixel value subtracted by DESDM), then we can
apply a uniform correction to the images. To test this we plot out the histograms of the sky flux
computed by SEXTRACTOR, shown by the solid blue and dot-dash purple lines in Figure A. We
next apply a simple additive correction to each pixel in the background map that includes the faint
galaxies:

∆f faint =

Nfaint∑

j

f faint
j /Npix, (A.2)

where the sum j = (0, 1...Nfaint) runs over the subdetection objects, f faint
j is the total flux con-

tribution of faint galaxy j, and Npix is the total number of pixels in the coadd image. That is,
we correct all pixels in the sky map by a flat value equal to the arithmetic mean of the flux from
these galaxies. We show the corrected sky map in panel (d) of Figure A.2 and the histogram of
pixel fluxes in Figure A (the solid purple line). As we can see, this does not perfectly reproduce
the impact of faint galaxies, particularly in the negative tail of the distributions. A more accurate
correction may be possible. As a leading-order correction to account for this effect, however, we
judge this simple treatment to be sufficient.

Based on these results we apply a correction prior to the flux in pixel i in the simulation prior
to shape measurement:

f̃i = fi −∆f faint. (A.3)

The same additive correction ∆f faint is applied to each pixel. Given that
∑Nfaint

j f faint
j is small

relative to the total flux of the image, in practice we expect this correction to have relatively little
impact. We test this quantitavely at the level of galaxy shape estimates in Chapter 4, and verify it
is the case.
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Figure A.3: Histogram of sky map pixel fluxes. The solid blue line is the result of running the
SEXTRACTOR background algorithm on an image with no subdetection galaxies. The purple
dash-dotted line shows the impact of a background of faint galaxies. The solid purple is the same,
but shifted by the mean flux contribution of the faint objects over the image plane.



Appendix B

Quality Checking COSMOS Images Using
the DES Scientific Community

In this appendix we describe a web-based exercise set up to provide a means to quality control the
IM3SHAPE calibration simulations described in Chapters 3 and 4. It was noted post-production
that the simulated images contained a small number of artefacts, originating from defects in the
input COSMOS profiles. These included deblending failures, and objects with diffuse light profiles
truncated at the edges of the postage stamp. Two such objects are shown in Figure B.1. To assess
the level to which these objects affect shape measurements on the simulations we initiated a small-
scale crowdsourcing project within the scientific community of the Dark Energy Survey. Our
specific aim here was to compile a list of COSMOS galaxies in our input catalogues that are
qualitatively “bad”, and so should be excluded from our simulations.

The exercise was set up as follows. Each deconvolved COSMOS galaxy was reconvolved with
a small nominal PSF and rendered into a postage stamp image at HST pixel resolution with no
additional noise. The images were compiled in random order, and via a simple web interface1,
users were assigned batches of ∼ 100 images. Galaxies were assigned to the categories show in
Table B.1.
To test the impact of the aberrant COSMOS profiles on the IM3SHAPE calibrations we fit for
multiplicative and additive bias in the HOOPOE dataset three times with different selection criteria:
(a) IM3SHAPE quality cuts only; (b) removing any objects classed as “bad” for any reason; and
(c) the same as (b), but additionally cutting any galaxies that fall within a circular aperture of 100
pixels around each flagged COSMOS profile. The results, in four DES Y1-like tomographic bins,

1https://www.slac.stanford.edu/∼dgruen/cosmos eyeball
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Figure B.1: Examples of profiles flagged as “bad” by the COSMOS classification exercise de-
scribed in the text. The two galaxies shown here were classed as artefact (left) and box too small
(right). For a breakdown of the number in each category see Table B.1.

Category COSMOS Galaxies COSMOS Profiles
Profiles in HOOPOE in HOOPOE

Total 87624 17.97 M 27612
Good 76707 16.93 M 25878
Box Too Small 3743 0.16 M 424
Artefact 1024 0.35 M 410
Two Galaxies 542 0.40 M 375
Galaxy Missing 4212 0.08 M 354
Off Centre 915 0.05 M 171
Other 481 0.10 M 127

Table B.1: The number of input galaxies in the Y1 DES image simulations presented in Chapter
3 falling under each category in the profile inspection exercise described. The first three columns
show (left to right) the total number of COSMOS galaxies in each category from the full source
catalogue from which the simulation draws profiles; the number of simulated galaxies affected; and
the corresponding number of COSMOS profiles (note that the second and third columns are not
identical since each COSMOS profile is drawn into multiple positions). The final column shows
the change in mean multiplicative bias when galaxies in each category are removed.
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are shown in Figures B.2.
The straightforward cut (b) induces a shift ∆m that is comfortably within the level of statistical

error of the fit. The second test suggests the corrupted profile may induce a small neighbour
bias on surrounding profiles, which manifests as a modulation in m. It is worth pointing out
that some of the categories listed in Table B.1 may be benign. Off-centred galaxies and those
with neighbours, for example, should not cause a problem, since we re-run SEXTRACTOR object
detection and deblending on the simulations. Our final cut on the simulation rejects instances of
COSMOS profiles categorised under “artefact”, “box too small”, or “galaxy missing”. We test that
additionally cutting the other categories does not induce a statisitically significant change in bias.
Based on the results in Figure B.2, we also incorporate a Gaussian component of width σm = 0.005

in the residual m prior for used in DES Y1 lensing analyses based on IM3SHAPE.
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Figure B.2: The change in multiplicative and additive bias before and after removal of bad COS-
MOS profiles using the categorisation exercise described in the text. In the right-hand panel we
show the two components c1 and c2 respectively as filled and open points. In each case the purple
points show the impact of removing the affected COSMOS profiles. The blue points show the
results when also cutting out galaxies within a circle of radius 100 pixels around each of them.



Appendix C

Derivation of a Two-Point Modifier for
Scale Dependent Bias

In the following we set out a brief derivation of the analytic modifications to account for scale-
dependent neighbour effects the shear-shear two-point correlations used in the earlier section. We
do not claim that this is a precise calculation of the sort that could be used to derive a robust
calibration. Rather it is an order of magnitude estimate to allow us to assess the approximate size
of the cosmological bias these effects could induce in the data.

First, with complete generality it is possible to write the i component of the measured shear at
angular position θ as

γobs
i (θ) = [1 +mi(θ)] γi(θ), (C.1)

where γi is the underlying true shear, which is sensitive to cosmology only. Extending this to the
level of a two-point correlation between two populations α and β this implies:

ξobs,αβ
i (θ) ≡

〈
γobs,α
i (θ′)γobs,β

i (θ′ + θ)
〉
θ

=
〈

[1 +mα
i (θ′)][1 +mβ

i (θ′ + θ)]γ̃αi (θ′)γ̃βi (θ′ + θ)
〉
θ
.

(C.2)

Note that the observed shear used in a particular bin correlation is now weighted by the overdensity
of galaxies in the image, in addition to the calibration bias, such that
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γ̃αi (θ) ≡
[
1 + δαg (θ)

]
× γαi (θ). (C.3)

Expanding each of the terms one finds:

ξobs,αβ
i (θ) =

〈
γαi (θ′)γβi (θ′ + θ)

〉
θ

+
〈
mα
i (θ′)γαi (θ′)γβi (θ′ + θ)

〉
θ

+
〈
mβ
i (θ′ + θ)γαi (θ′)γβi (θ′ + θ)

〉
θ

+
〈
δαg (θ′)γαi (θ′)γβi (θ′ + θ)

〉
θ

+
〈
δβg (θ′ + θ)γαi (θ′)γβi (θ′ + θ)

〉
θ

+
〈
mα
i (θ′)mβ

i (θ′ + θ)γαi (θ′)γβi (θ′ + θ)
〉
θ

+
〈
δαg (θ′)δβg (θ′ + θ)γαi (θ′)γβi (θ′ + θ)

〉
θ
.

(C.4)

The terms contributing to the measured two-point shear correlation, then, is sensitive to both spatial
correlations between the m in different galaxies and to the correlations with the source density.
Note that we have chosen to neglect a higher-order (six-point) term. In reality there will also be
a connection between galaxy density and shear, but we will follow the convention and assume the
contribution is small enough to be neglected. In simple terms, an excess in the 〈mm〉 term above
the produce of the mean m values indpendently could arise because galaxy pairs separated on
small scales tend to come from similar image plane environments. In contrast the density weighted
correlations 〈δgm〉 would be zero, but for a simple observation; selecting a random galaxy with
a suitable correlation pair at a distance θ is not the same as unconditionally selecting a random
galaxy. In the small scale bins we will over-sample the dense regions, where m tends to be larger
(see Section 4.6.2).

The angular brackets here indicate averaging over all galaxy pairs separated by θ. If we can
assume the bias is independent of the underlying cosmology the above expression simplifies sig-
nificantly:
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ξobs,αβ
i (θ) = (1 + m̄α

i + m̄β
i +

〈
mα
i (θ′)mβ

i (θ′ + θ)
〉
θ

+
〈
δαg (θ′)mβ

i (θ′ + θ)
〉
θ

+
〈
mα
i (θ′)δβg (θ′ + θ)

〉
θ

+
〈
δαg (θ′)δβg (θ′ + θ)

〉
θ
)× ξαβi (θ|p), (C.5)

with ξαβi being the true correlation function of cosmological shears 〈γiγi〉, which is contingent on
the underlying cosmological parameters p. It can be shown that

ξ+(θ) ≡ 〈γ+(θ′)γ+(θ′ + θ)〉θ ± 〈γ×(θ′)γ×(θ′ + θ)〉θ
= 〈γ1(θ′)γ1(θ′ + θ)〉θ ± 〈γ2(θ′)γ2(θ′ + θ)〉θ

= ξ1(θ) + ξ2(θ), (C.6)

and so one can use equation C.5 to construct the observed ξ± correlation functions

ξobs,αβ
± (θ) =

(
1 + m̄α + m̄β +

〈
mα(θ′)mβ(θ′ + θ)

〉
θ

+
〈
δαg (θ′)mβ(θ′ + θ)

〉
θ

+
〈
mα(θ′)δβg (θ′ + θ)

〉
θ

+
〈
δαg (θ′)δβg (θ′ + θ)

〉
θ

)
ξαβ± (θ|p). (C.7)

The i subscript has been discarded here under the assumption that m1 and m2 are approximately
equal for a given set of galaxies.

Next, let’s say imagine that we have a measured datavector. Our measurements are biased,
but we will assume it is possible to devise a correction that recovers the true cosmological signal
precisely. Our observed datavector is then just,

ξobs,αβ
± (θ) = Υtr,αβξαβ± (θ|p), (C.8)

which follows trivially from equation C.7. Since we do not trivially know Υtr,αβ ab initio (this is
why we need simulations!) we can only construct a best-estimate approximation. By applying a
correction factor to the raw measurements we construct a best-estimate datavector:
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ξBE,αβ
± (θ) =

1

ΥBE,αβ
ξobs,αβ
± (θ) =

Υtr,αβ

ΥBE,αβ
ξαβ± (θ|p). (C.9)

Of course, if our best correction is perfect then the ratio goes to unity, and we recover the under-
lying cosmology. Since we apply corrections to the single-galaxy shears we will assume ΥBE,αβ

includes the 〈δgδg〉 term, but neglects the correlations involving m. We then can write:

ΥBE,αβ =
(

1 + m̄α + m̄β + m̄αm̄β +
〈
δαg (θ′)δβg (θ′ + θ)

〉
θ

)
. (C.10)

We can measure the mean bias in each bin that would be obtained from the calibration directly. As
we show in Z17, using the full DES-Y1 HOOPOE catalogues, these biases are ∼ −0.08 to −0.20.

Finally, assume that although m clearly varies between redhshift bins, the strength of the cor-
relation does not. That is, the bias-bias term is the product of the mean values of m in each redshift
bin. plus a scale dependent shift (which doesn’t). One then has:

〈
mα(θ′)mβ(θ′ + θ)

〉
θ

= m̄αm̄β + ∆ξmm(θ). (C.11)

The additive part can be measured directly from the simulation using sub-patches, as described
earlier. The density-density correlation can be obtained in the same way. This, then, leaves only
the m × δg cross-correlation. This should vanish in the case of zero correlation, but it also seems
reasonable to assume that the magnitude should be proportional to the mean bias m̄α in a particular
bin. This allows the scale dependent (non-tomographic) cross correlation measured from HOOPOE

to be rescaled appropriately for each bin pair:

〈
δα(θ′)mβ(θ′ + θ)

〉
θ

=

(
m̄β

m̄

)
ξgm(θ), (C.12)

where m̄ is the global multiplicative bias and ξgm(θ) ≡ 〈mδg〉, each measured using all simulated
galaxies.

With the above equations in hand, along with our fiducial calibration and three measured cor-
relations, one can derive a scale dependent modification to shear-shear two-point correlation data
using equation C.8.
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