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Improved LPC-Based Fronthaul Compression with
High Rate Adaptation Resolution

Leonardo Ramalho, Igor Freire, Chenguang Lu, Miguel Berg and Aldebaro Klautau

Abstract—This paper presents a fronthaul signal compression
scheme based on linear prediction coding (LPC) adapted to
orthogonal frequency division multiplexing (OFDM) signals. The
proposed method is capable of providing fine tuning of the
compression factor, which is an alternative to legacy compression
methods that tune the compression factor by changing the
discrete number of bits of the quantizer and, consequently, are
only able to do so with coarse resolution.

Index Terms—LTE signal compression, C-RAN, fronthaul,
OFDM , LPC, Huffman.

I. INTRODUCTION

RADIO access networks (RAN) are evolving to meet the
increasing data transport and flexibility demands. An

attractive architecture is the centralized RAN (C-RAN), where
centralized baseband units (BBUs) communicate to remote
radio units (RRUs) over the fronthaul (FH). This FH transport,
however, is currently challenged by a limitation of the current
protocol, i.e. based on CPRI [1], in which in-phase (I) and
quadrature (Q) samples are transported between BBUs and
RRUs. This leads to FH rates growing rapidly with the air-
interface’s bandwidth and number of antennas [2].

There are two main alternatives to alleviate such FH rates:
different functional split options [2] and fronthaul signal com-
pression (FSC). This work focuses on the latter, as it requires
minimum changes in the existing BBU and RRU design. There
are currently a variety of FSC schemes exploiting different
techniques such as resampling [3], vector quantization [4],
linear predictive coding (LPC) [5] and many others. Most of
them are lossy and partially rely on the use of re-quantization,
hereafter called quantization.

The main limitation of such methods that is addressed by
the present work is their coarse compression factor resolution.
This can be a problem when considering future FH interfaces
supporting multipoint-to-multipoint operation over packetized
networks, rather than dedicated FH links between BBUs and
RRUs, for example, as specified in eCPRI [1]. In this case,
since the FH network will rely on statistical multiplexing,
the specific deployments in which FH traffic is allowed to
coexist with others variable-rate traffics will be subject to
eventual network congestions. In such scenario, a rate adaptive
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FH network can reconfigure the FSC modules to adapt the
FH rates and avoid service disruption. Then, for improved
performance in the adaptation, the FSC scheme would ideally
allow fine tuning of the compression factor.

A finely-tunable FSC scheme can also provide improved
flexibility in terms of the number of RRUs served over the FH.
For example, if the FH capacity is Rmax and the uncompressed
stream of LTE IQ samples of each RRU requires a rate of
RF , the compression factor F applied for all k RRU streams
must be F ≥ kRF

Rmax
. Then, to serve an additional RRU, the

compression factor adopted by all RRUs could be increased
by no much more than ∆F = RF

Rmax
, if the resolution allows.

Nonetheless, current FSC methods more commonly vary the
compression factor by changing the number bQ of quantization
bits. For example, a combination of resampling and vector
quantization (VQ) is adopted in [4], which reports compression
factors of 5.5, 4.5 and 3.8 for downlink (DL) LTE signals
when bQ is varied between 5, 6 and 7 bits/sample, achieving
error vector magnitudes (EVMs) of approximately 4.2%, 2.1%
and 1%, respectively. Meanwhile, [3] uses resampling, block
scaling and quantization and, for the same range of bQ, varies
its compression factor over 3.9, 3.4 and 2.9 with EVMs of
4.6%, 2.3% and 1.15%, respectively. In both cases, only coarse
changes of the compression factor and distortion are achieved.

To overcome this limitation, we propose an FSC scheme
that allows adjustments to the compression factor by changing
not only bQ, but also a loading factor γ, which is a contin-
uous variable. The new FSC scheme derives from an earlier
work [5] and is based on a combination of LPC adapted to
orthogonal frequency division multiplexing (OFDM), being
further improved here with adjustable scaling. It will be shown
that the scaling creates a mechanism to achieve finer resolution
in the adjustments to the compression factor and distortion.

II. PROPOSED METHOD

The proposed method is based on the scheme of [5], which
encodes real (si) and imaginary (sq) baseband components
independently. This work assumes the RRU is capable of
extracting the symbol timing synchronism and the cyclic prefix
(CP) can be conveniently removed. The I or Q samples of the
non-prefixed time-domain OFDM are denoted as x[n], where
0 ≤ n ≤ N − 1 and N is the adopted FFT length. Subse-
quently, these samples are encoded using LPC and Huffman
and the result sent over the FH. Lastly, at the decompression
unit, all operations are reversed. The process is then repeated
for each OFDM symbol. Fig. 1 shows the proposed FSC
scheme, which inserts adjustable gains into the scheme of [5]
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Fig. 1. Proposed method based on the OFDM-adapted LPC including the
adjustable scaling of prediction error.

with the goal of introducing an additional parameter other than
bQ for controlling the rate and distortion of the FSC scheme.

As proposed in [5], the P initial samples of each OFDM
symbol x[n] are sent uncompressed over the FH (switches
of Fig. 1 in position 1). This allows the decoder to initialize
the P taps of the predictor A(z) (see [5]) before starting the
compression and, by doing so, avoid increased prediction er-
rors at the OFDM symbol boundaries. In the end, the effective
average compression factor becomes F = b(N+NCP)

bP+L(N−P ) , where
b is the number of bits used to represent the uncompressed I
or Q components, NCP is the CP length in samples and L is
the average number of bits per Huffman codeword.

The adjustable scaling stages are placed before and after the
uniform scalar quantizer Q. First, the scaled prediction error
(es[n] = g[n]e[n]) is quantized, so that it is represented by
a quantized value ês[n] and a binary index I[n]. Next, the
quantizer output (ês[n]) is multiplied by 1/g[n], which yields
the rescaled and quantized version of the prediction error ê[n].

After quantization, the index I[n] is Huffman encoded to
a variable-length codeword Î[n] that is ultimately transmitted
over the FH. The resulting average number of bits per Huffman
codeword can be expressed as L =

∑
i LiP (eis), where Li is

the length of the i-th codeword in the Huffman dictionary,
P (eis) is the probability of es[n] being represented by the i-th
quantizer level and i = 1, . . . , 2bQ . The proposed adjustable
gain, then, provides a way to give fine changes in this average
codeword length, as explained in the sequel.

In the proposed scheme, the Huffman dictionary is fixed
(set during a training stage) and so are the lengths Li, but
the adjustable gain can change the distribution P (eis) and ulti-
mately the average rate L. Since the gain g[n] is a continuous
variable, P (eis) can be changed in fine steps and consequently
L too. Of course, there is an optimum Huffman dictionary
that would give the lowest L for the scaled distribution, but
here the sub-optimal fixed dictionary is preferred in order to
avoid re-training during runtime and, consequently, simplify
the implementation.

In addition to the flexible rate L achieved by the method,
the proposed adjustable scaling also allows the control of the

distortion levels resulting from the quantization process. The
following sub-sections clarify how this is accomplished.

A. Analysis of the Quantization and Clipping Noise

The distortion introduced by the quantization process can be
decomposed into two main effects [6]: (granular) quantization
noise nq[n] and clipping noise nc[n]. Hence, at the transmitter
side, the prediction error after the scaling of g[n] and the
quantization can be modeled as: ês[n] = es[n]+nq[n]+nc[n].
The overall quantization, then, introduces a distortion whose
variance (σ2

d) can be modeled as the sum of the variance of
both components [7], namely σ2

d = σ2
q + σ2

c , where subscript
q refers to quantization (granular) and c to clipping noise.

Based on Fig. 1 and the model of ês[n] given above, the
recovered prediction error after re-quantization and rescaling
by 1/g[n] at the decoder side can be expressed as:

ê[n] =
ês[n]

g[n]
= e[n] +

nq[n] + nc[n]

g[n]︸ ︷︷ ︸
rescaled distortion

. (1)

This reveals that the adjustable gain g[n] has the ability to
influence the impact of the quantization distortion. In fact,
this strategy is of central importance in the proposed method.
Nevertheless, it should be noted that the nc[n] component
itself is directly proportional to g[n], since clippings are more
likely to occur when the quantizer’s input is scaled up. Thus,
(1) should not lead to the conclusion that higher values of
g[n] yield lower overall distortion levels. Instead, it should be
interpreted that there is a trade-off between quantization and
clipping noise that is controlled by g[n].

A useful metric to evaluate the referred trade-off is the
loading factor [6], defined as γ = V/σes, where V is the
maximum quantizer’s output amplitude and σes is the root
mean square (RMS) of the quantizer’s input signal (es[n]).
For the scheme of Fig. 1, this is equivalent to:

γ =
V

σeg[n]
, (2)

where σe is the RMS value of the original prediction error
e[n]. Since V is fixed in the method (set during training) and
σe is approximately constant within an OFDM symbol, γ is
varied solely by g[n] and vice-versa.

In particular, since the value of γ is increased by de-
creasing g[n] and the latter scales the prediction error that
is input to the quantizer, high values of γ tend to reduce
the occurrence of clipping noise. This can also be derived
following that the variance of the clipping noise nc is given
by [7]: σ2

c = 2V 2
[(

1 + 1
γ2

)
Q(γ)− 1

γ
√
2π
e−

γ2

2

]
, where

Q(u) = (1/
√

2π)
∫∞
u

exp(−v2/2)dv is the Q-function.
In contrast, γ has no effect on the quantization noise

power, given the latter depends solely on the quantization step
(∆ ≈ V/2bQ−1), i. e., the quantization noise power is given
by σ2

q = ∆2/12 [6], [7]. Ultimately, the quantization noise
power and clipping noise power, when expressed as a function
of γ, consist respectively of a constant and a monotonically
decreasing curve. Nevertheless, after the rescaling that follows
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the quantizer, the quantization noise power becomes monoton-
ically increasing with γ (or decreasing with g[n]), as the 1/g[n]
factor in (1) indicates. Meanwhile, the clipping noise power
remains monotonically decreasing with γ, since the decrease
of the clipping noise power σ2

c is faster than the increase in
quantization noise power as g[n] is reduced (γ is increased)
in (1). For reference, Fig. 2 shows numerical results of σ2

q ,
σ2
c , σ2

d and their rescaled versions varying with γ. The curves
were obtained with the block diagram in Fig. 1, where e[n]
follows a standard Gaussian distribution N (0, 1), γ is changed
with g[n] as in (2), the quantizer has bQ = 7 bits and V = 5.

As illustrated in Fig. 2, when γ is low (g[n] is high) the
clipping noise dominates among the two distortion compo-
nents and determines most of the total rescaled distortion.
Meanwhile, as γ is increased, the clipping noise decreases and
the increasing rescaled quantization noise tends to dominate.
Naturally, there is a crossing point in the total rescaled dis-
tortion curve where the prevailing noise component switches
(γ ≈ 3.9 in Fig. 2). Furthermore, there is also a point
associated with the minimum total distortion. The minimum
rescaled distortion in the case of Fig. 2, at γ = 3.6, is
roughly 3 dB lower than the minimum total distortion before
rescaling. Finally, and more importantly, note from Fig. 2 that
the overall distortion can be adjusted in fine steps with γ,
which is advantageous in comparison to the coarse adjustments
achieved with bQ, known to be of approximately 6 dB/bit [6].

B. Proposed Adjustable Scaling Scheme and Training Phase

Based on (2), the proposed scheme adopts:

g[n] =
V

σ̂e[n]γ
, (3)

where γ is a target loading factor and σ̂e[n] =(∑Ng
m=1 ê[n−m]2/Ng

)1/2
is the estimated standard devia-

tion of the predictor error, based on the last Ng samples of
ê[n]. Hence, the gain g[n] changes for each new ê[n]. Since
a backward adaptation is adopted for g[n], the encoder and
decoder can both use the past ê[n] samples to find the same
g[n], without exchanging side-information.

During run-time, when it becomes desirable to change γ to
tune the compression factor, a new target γ can be sent to both
the encoder and decoder and they both can find g[n] from (3).
The forward adaptation of γ needs to be done at most once
per OFDM symbol such that its overhead is small.

The history of ê[n] samples are reset at the end of every
OFDM symbol to overcome an eventual abrupt change in
power between adjacent symbols, and to avoid eventual error
propagation among OFDM symbols. Thus, the first Ng values
of g[n] are forced to unit at both encoder and decoder sides
in the beginning of each OFDM symbol.

In the proposed method, the predictor coefficients a =
−[a1, . . . , aP ], quantization levels ei (correspondingly V ) and
Huffman codewords are all found during the training phase
that can be done in initialization or, for simplicity, even off-
line. After this phase, these parameters are kept constant.

Assuming off-line training, the adopted training signal is a
distortionless sequence, i.e. one that has not passed through a
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Fig. 2. Quantization and clipping noise power levels evaluated over varying γ
before and after the rescaling gain, using the block diagram in Fig. 1.

channel. First, the predictor design is conducted as proposed
in [5], where the predictor coefficients are calculated according
to the Levinson-Durbin algorithm [6] and the autocorrelation
function of the training signal. Then, the open loop prediction
errors are computed by eo[m] = x[m]−

∑P
i=1 aix[m− i], so

that the quantizer’s dynamic range [−V, V ] can be determined
using V = maxm/∈C |eo[m]|, where C is the set of samples that
correspond to the P initial samples of each OFDM symbol.
These initial samples are skipped to avoid prediction errors
with relatively high amplitude that can occur in the OFDM
symbol borders, as detailed in [5]. The value of V is chosen
to avoid quantizer clipping during the initial estimation of
σ̂e, given high clipping noise would otherwise lead to poor
initial estimation of σ̂e [6]. Thirdly, once the predictor and
quantizer are ready, the probability distribution at the output of
the quantizer is found by applying the training signal into the
closed-loop LPC of Fig. 1 and, finally, the Huffman codewords
are computed. During this process, the gain is kept at g[n] = 1.

Regarding the computational cost, there are three main op-
erations that dominate the added complexity in relation to [5]:
the divisions in (1) and (3), and the square root used to esti-
mate σ̂e[n]. The operations inside the square root can consume
less resources than the mentioned three operations because the
summation Ee[n] =

∑Ng
m=1 ê[n−m]2 can be found iteratively

with Ee[n] = ê[n− 1]2 +Ee[n− 1]− ê[n−Ng − 1]2, and the
division Ee[n]/Ng can be implemented with arithmetic shifts
by choosing Ng as a power of 2.

III. SIMULATION RESULTS

The proposed method was simulated with DL LTE sig-
nals and the performance was evaluated in terms of com-
pression factor (F ), EVM and compression signal-to-noise
ratio (SNR). The latter measures how much distortion the
FSC method adds to the signal and it is calculated as
SNR = E

[
x2
]
/E
[
(x− x̂)2

]
, where x is the compressor

input and x̂ is the decompressor output, as illustrated in Fig. 1.
The simulations evaluate the compression and decompres-

sion of 100 DL 20 MHz LTE frames that uses 64-QAM. More
specifically, the signal follows the fixed reference channel
R.9 FDD defined in [8, Annex A]. The configurations of the



4

encoder and decoder are P = 5, Ng = 32, b = 15 bits, and
bQ was varied from 5 to 8 bits.

At first, Fig. 3 aims to illustrate how the loading factor γ
regulates the trade-off between quantization and clipping noise
and consequently, how it impacts the SNR (left vertical axis).
Note that all SNR curves have an optimal point, which comes
from the best combination between clipping and quantization
noise. Secondly, Fig. 3 shows how the compression factor
(right vertical axis) varies with the loading factor, more specif-
ically that F increases with γ. This happens because, from (3),
a higher γ leads to lower g[n] values (for σ̂e and V fixed), so
that the scaled prediction error is diminished and more likely
quantized to levels near zero. These levels, in turn, have a
higher probability of occurrence under a Gaussian distribution,
so that their corresponding Huffman codewords are shorter
(recall the Huffman dictionary is designed during training and
kept fixed). The opposite happens for lower γ values: namely
the scaled prediction error becomes more often quantized to
levels that are distant from zero, which are associated to longer
Huffman codewords, so that the compression factor decreases.

Furthermore, in Fig. 3 the relevant values of γ are the ones
to the right of the SNR peaks, where the compression factor
can be increased and traded by corresponding reductions in
compression SNR. In Fig. 3, these regions correspond to γ ≥
3.3, 3.7, 4.1 and 4.3 for bQ= 5, 6, 7, and 8, respectively. In
contrast, the values of γ to the left of the SNR peaks are not
interesting for rate adaptation as they result in lower SNR and
lower compression. Lastly, Fig. 3 reinforces that only coarse
adjustments of SNR and F are achieved by altering bQ. For
instance, with γ = 5, the SNR changes about 6 dB per bit in
bQ. In contrast, the proposed method allows fine adjustments
in the SNR and F by changing γ with the resolution of interest.

As mentioned, the main advantage of the new method is the
improved resolution. By changing bQ, previous methods [3]–
[5] allow only coarse resolution, as indicated by their discrete
and relatively dispersed markers in Fig. 4. In contrast, the
curves corresponding to the proposed method indicate its finer
resolution. The curves with colored dots show results obtained
with the proposed method for bQ = 5, . . . , 8 bits, where γ was
varied from 2.6 to 10, in steps of 0.2. The actual performance
of the new method corresponds to the smooth black dashed
curve, which is the minimum EVM achieved for a given F ,
for relevant values of γ as explained in the previous paragraph.
Note that some of the results of the proposed method in Fig. 4
are dispersed, but these regions at the left of the curves are
not used, given they present a higher EVM and lower F .

Besides the compression resolution itself, the proposed
method also presents competitive performance with others
methods, as shown in Fig. 4. For instance, the proposed
method has better performance than the method shown in [3],
i. e., the new method achieves a lower EVM for the same
compression factor, especially for F > 3. When compared
to the method in [5] with P = 5, the proposed method has
almost identical performance, except for F = 5.27, where the
previous method achieves a lower EVM. Finally, as expected
due to the VQ, the method shown in [4] outperforms the
proposed method with respect to rate-distortion, but at a higher
computational cost in the encoding stage.
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IV. CONCLUSION

This paper proposed the introduction of adjustable gains into
the LPC-based FSC scheme previously presented in [5]. The
new mechanism combines adjustable gains to a fixed quantizer
and a fixed Huffman dictionary. The proposed method allows
fine regulations between the achievable compression factor
and the corresponding compression SNR or EVM. Ultimately,
the proposed FSC method could be used in FH networks to
adapt the compression and distortion to specific values, in
accordance to the FH capacity.
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