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Abstract

The equations of spherical trigonometry are derived via three dimensional
rotation matrices. These include the spherical law of sines, the spherical law of
cosines and the second spherical law of cosines. Versions of these with appropri-
ate symbols and aliases are also provided for those typically used in the practice
of celestial navigation. In these derivations, surface angles, e.g., azimuth and
longitude difference, are unrestricted, and not limited to 180 degrees.
Additional rotation matrices and derivations are considered which yield

further equations of spherical trigonometry. Also addressed are derivations of
"Ogura’s Method " and "Ageton’s Method", which methods are used to create
short-method tables for celestial navigation.
It is this author’s opinion that in any book or paper concerned with three-

dimensional geometry, visualization is paramount; consequently, an abundance
of figures, carefully drawn, is provided for the reader to better visualize the
positions, orientations and angles of the various lines related to the three-
dimensional object. 44 pages, 4MB. RicLAO.
Orcid Identifier: https://orcid.org/0000-0003-2575-7803.

1 Celestial Navigation

Consider a model of the earth with a Cartesian coordinate system and an embedded
spherical coordinate system. The origin of coordinates is at the center of the earth
and the x-axis points through the meridian of Greenwich (England). This spherical
coordinate system is referred to as the celestial equator system of coordinates, also
know as the equinoctial system. Initially, all angles are measured in standard math-
ematical format; for example, the (longitude) angles have positive values measured
toward the east from the x-axis.
Initially in this paper we will measure all angles in this standard mathematical

format, that is, in the sense that a right-hand screw would turn were it to advance
from the south pole to the north pole. In the Nautical Almanac most angles are
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tabulated westerly, in keeping with the direction of apparent travel of the sun over a
point on the surface of the earth.
We will be using two sets of symbols for angles (aliases of one to the other), one

of which is frequently used in the practice of celestial navigation. In this paper, for
economy of space in figures, the symbol P will often be employed instead of GP
to represent the geographical position of an observed celestial body. Likewise, the
symbol M will be used to represent the position of the observer, e.g., the assumed
position AP or dead reckon position DR. The reader should note that in works of
other authors the symbol M oftentimes represents the GP instead of the position of
the observer.

Spherical Coordinate Angle Symbols and Aliases
γ = φB = co-altitude of the celestial body P.
∆ = φA = co-declination of the celestial body P.
Λ = θA = east longitude of the celestial body P.
A = θB = co-azimuth of the celestial body P relative to observer M.
φ = (no alias) co-latitude of the observer M.
λ = θ = east longitude of the observer M.
l = ∆θ (or ∆λ) = Λ− λ, difference in east longitudes.

The celestial equator system of coordinates.
Angles θA = Λ , θ = λ and ∆θ are measured in customary mathematical format ;

that is, they are positive when measured in an easterly direction and expressed as
east longitudes. For westerly longitudes, λ is negative.
The symbol λ will also be used to generically represent an easterly longitude of

any other point specified on the celestial sphere in the text and understood in the
context of that text.
Longitude can also be measured in customary navigational format ; that is, positive

when measured in a westerly direction.
I call the rotational motion of the earth boreal motion, which usage I adopted

from Skilling1. As Skilling notes, the word boreal is derived from the rotation of the
earth and signifies a northerly direction compared to the rotation of the earth. An
analogous "right-hand screw", corresponding to this motion, would be driven along
the polar axis from the South pole up through the North pole.

1Skilling, Hugh Hildreth, Fundamentals of Electric Waves, 2nd edition, 1948, page 87, reprinted
by Robert E. Krieger Publishing Company, Inc., 1974. ISBN 0-88275-180-8
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Figure 1: the Celestial Equator System of Coordinates.

where α = Right Ascension (RA) of P
φA = ∆ = Co-declination of P
θA = Λ = + α

and the symbol (the "ram’s horns") is known as the first point of Aries.
Remember that the ”right hand screw rotates to the EAST”. is the longitude

of this point, the first point of Aries or the vernal (spring) equinox, measured easterly
in the equatorial plane from the Greenwich meridian.

Now consider the horizon system of coordinates.
R? is the distance from the center of the earth to the observed celestial body P .

Suppose that Robs is the distance from the observer M on the surface of the earth
to the same celestial body. Since these distances are extremely large compared to
the radius of the earth, for computation purposes we may regard these two distances
as equal to one another. Furthermore, we may regard spherical coordinate angles
of the celestial body as equal to one another whether measured from the center of
the earth or from the observer’s position on the surface. Let R be the radius of the
earth, considered constant in this paper. The geographical position GP of a celestial
body is the the point on the earth’s surface directly below the celestial body, that is,
the point of intersection with the earth’s surface of a line through the body and the
center of the earth.
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Figure 2: The Horizon System of Coordinates.

In the practice of celestial navigation, angles are usually measured in degrees,
minutes and seconds of arc rather than in radians. We shall adhere to that convention.
Furthermore, since the apparent motion of the sun in the sky relative to an observer
on the surface of the earth is westward, navigational angles are usually measured
westward.

The Greenwich Hour Angle GHA(P ) = 360◦ − Λ (1)

For example, GHA� is the longitude of the sun measured westerly. The symbol
λW will also be used to generically represent a westerly longitude of any other point
specified on the celestial sphere in the text and understood in the context of that
text.

Whether we are expressing all longitudes in the easterly direction (standard
mathematical angle format) or some in the westerly direction (navigational format),
the longitude of the observer M is the same in both systems.

λ = λE and λW = −λ; λW = −λE.
λ > 0 , Easterly; λ < 0 , Westerly

l (or ∆λ or ∆θ) is defined as l D= Λ−λ with λ and Λ in customary mathematical
format for measuring angles, that is, measured positively in an easterly direction.
Angles in celestial navigation are traditionally measured in navigational format, that
is, positively in a westerly direction.
Most angles (with one exception) tabulated or computed in celestial navigation

are positive. If a computed angle is negative, it is changed to a positive angle by
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adding to it 360◦. Moreover if an angle is greater than 360◦, we subtract 360◦ from
it.

Let LHA(P ) = 360◦ −∆θ, the local hour angle of P

GHA = 360◦ − Λ ⇒ Λ = 360◦ −GHA
Then

LHA = 360◦ − (Λ− λ)

LHA = λ+ (360◦ − Λ) = λ+GHA

l is the angle by which the celestial body P is east of the observer M .
LHA is the angle by which celestial body P is west of observer M .

We may then write

LHA(P ) = GHA (P ) + λ (2)

For example, see Figure 3 below.

Figure 3: The Equality of 360◦ −∆θ and LHA.

If the three points on the globe, the North Pole, M and P are connected by
great circles, there are two possible navigational (spherical) triangles. In celestial
navigation, we are interested in the smaller of these, the spherical triangle which has
the smaller angle between the meridian of the celestial body and the meridian of the
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observer. However, the equations in this paper derived via rotation matrices apply
to any spherical triangle.
The longitude difference LHA is frequently supplemented by the measure t ε [0, 180◦),

themeridian angle, the smaller of the two angles between the meridian of the observer
M and the meridian of the geographical position of the celestial body observed [10].
It is measured east or west, t = tE or tW , depending upon its value.

If LHA ≤ 180◦, then tW = LHA, celestial body P west of observer’s meridian.

If LHA > 180◦, then tE = 360◦ − LHA, celestial body P east of observer’s meridian.

Both of these meridian angles are positive.
In this paper all declinations north of the equator are positive; those south of

the equator are negative. Until relatively recently, before modern calculators and
computers were available, arguments of trigonometric functions were tabulated for
angles in the first trigonometric quadrant, that is, 0◦ to 90◦. If any sign changes
of the trigonometric functions of angles used in the navigational calculations were
necessary for angles residing in any quadrant other than the first, rules were used to
assign these signs.

1.1 Derivation of The Navigation Equations

In the derivation of the equations of spherical trigonometry used in celestial naviga-
tion, there are 3 rotations of coordinates to be performed.
I typically use the symbols (x, y, z) to refer to coordinates of a vector R in a

coordinate system S and (x′, y′, z′) to refer to coordinates of the same vector R in
the rotated coordinate system S ′ (rotated relative to system S). Frequently, system
S is referred to as the "laboratory system" with (x, y, z) as the "space axes" and
system S ′ as the "body axis system" with (x′, y′, z′) as the "body axes". Here, the
laboratory system is the celestial equator (equinoctial) system and the "body axis
system" is the horizon system.
I know θA and φA. I want to determine φB and θB, or conversely.
We proceed as follows:

1.1.1 Sequence of Three Rotations to be Performed

For the purpose of this section, we will undertake a temporary reassignment of symbols
for the Cartesian coordinates involved.
Step 1. The Cartesian coordinates in the equinoctial system of celestial body P

are (x0, y0, z0). The first rotation is around the z0 axis by angle θ = λE(M), the east
longitude of the observer M. The new coordinates of P are (x1, y1, z1). (At the end
of these three coordinate rotations, we will relabel (x0, y0, z0) as (x, y, z)).
Step 2. The second rotation is around the y1 axis by angle φ, the colatitude of

the observer M. The new coordinates of P are (x2, y2, z2).
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Step 3. The third rotation is around the z2 axis by angle ψ = 180◦, so that the
new x-axis points in the northerly direction. The new coordinates of P are (x3, y3, z3).

Figure 4: After Two Rotations.

Now, reassign (x0, y0, z0)← (x, y, z) and (x3, y3, z3)← (x′, y′, z′).
Proceeding in this way as we have done before, we write

Suppose that

 x
y
z

 = R

 sinφA cos θA
sinφA sin θA
cosφA

 are the components of a vectorR in
the celestial equator (equinoctial system), and that this coordinate system is copied

and then rotated via G(θ, φ, ψ) = Z(ψ) · Y (φ) · Z(θ), which we call the gyro rotation
matrix.

G(θ, φ, ψ) =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 cosφ 0 − sinφ
0 1 0

sinφ 0 cosφ

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1



=

 cosφ cos θ cosψ − sin θ sinψ cos θ sinψ + cosφ cosψ sin θ − sinφ cosψ
− sin θ cosψ − cosφ cos θ sinψ cos θ cosψ − cosφ sin θ sinψ sinφ sinψ

sinφ cos θ sinφ sin θ cosφ

 (3)

7



After the coordinate system has been rotated via Z(θ) and Y (φ) , the new (car-
ried) x-axis will be pointing away from the original z-axis, that is, it will be pointing
in a south direction along the meridian to which it is tangent. But we require that
the x-axis point in a northerly direction along the meridian, because North is the di-
rection from which co-azimuth is measured. For this to occur, the coordinate system
must be rotated by π around the latest z-axis, that is, we must have ψ = 180◦. (This
was described above).

G(θ, φ, π) = Z(π) · Y (φ) · Z(θ) =

 − cos θ cosφ − cosφ sin θ sinφ
sin θ − cos θ 0

cos θ sinφ sin θ sinφ cosφ

 (4)

Figure 5 portrays the relevant lines and angles with which we are concerned. Keep
in mind that the axes x′ and y′ lie in a different plane than axes x and y.

Figure 5: Position Vectors of the GP and the Observer’s Position M.
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The Euler rotation matrix rather than the Gyro rotation matrix can be used for
these derivations with ultimately the same results.
Diagrams or figures constructed for the study of spherical trigonometry portray

relevant lines, angles and great circles. These enable us to visualize the mutual
geometrical relationships of these lines, angles and great circles, and to subsequently
declare these relationships algebraically. Without such figures, it would be diffi cult
to accomplish this task. Moreover, these figures, which represent three-dimensional
entities, are produced on a two-dimensional sheet of paper as perspective drawings.
We do not have three-dimensional (e.g., holographic) drawings, and visualization
of perspective on a two-dimensional surface can be diffi cult if care is not taken in
their creation. Furthermore, the figures can become cluttered if we attach all of
the relevant lines and symbols, detracting from their visualization. For example,
the angle of intersection of two great circles is measured by the angle between their
tangents at the point of intersection. Conventionally however, we usually express this
angle as between the circular arcs themselves as illustrated below.

Figure 6: Arcs and Tangents.

In Figure 7A and 7B below we observe that the vertices of the spherical triangle
are each connected to the origin O by equal radii R. The vertices are NP , M and P .
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Figure 7A: Navigational Triangle, P East of M.

Figure 7B: Navigational Triangle, M East of P.

The intersection of the three great circles spanned by the central angles γ,∆, φ
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and the surface of the earth form a trihedron. If we include the chords and/or arcs
between M,P and NP , we have a tetrahedron.
(e.g., the figure above created from line segmentsOM, OP, O NP, MP, NP M,
NP P and the corresponding great circle arcs). These and the spherical triangle

M-P-NP possess threefold symmetry.
The angles (γ, ∆θ) of Figure 9A or (γ, LHA) of Figure 9B each subtend the

circular arc of length Rγ.
The angles (∆, Z) of Figure 9A or (∆, A) of Figure 9B each subtend the circular

arc of length R∆.
The angles (φ, β) of Figure 9A or (∆, B) of Figure 9B each subtend the circular

arc of length Rφ.
Equations derived from the analysis of the tetrahedron alone are the same for the

three angle pairs except for their interior angle arguments. As will be shown shortly,
because of the symmetry inherent in the tetrahedron, we may permute the symbols
in equations 4, 5, 6. These equations are known as the spherical trigonometric sine
and cosine equations. Derivations of these appear in the Appendix.

However, when the tetrahedron is embedded in the Cartesian coordinate system
S overlaid by spherical coordinates (using the results of the coordinate rotations):
1. The same cosine equations continue to be threefold symmetrical, except now

their arguments also include exterior angles. These angles are not the same as the
interior angles, but are arithmetically related to them.
2. Three of the sine equations are symmetrical.
3. Additional equations are generated via the coordinate rotation process. These

provide information to uniquely justify the trigonometric quadrants and are not usu-
ally derived via the "classical" method appearing in the Appendix.

If the radii and chords of the tetrahedron were characterized by (overlaid with)
direction cosines rather than by spherical coordinates, there would be complete three-
fold symmetry, because direction cosine angles are all measured in the same manner.
However, the two spherical coordinate angles (colatitude and longitude) are not mea-
sured in a similar manner to one-another. Longitude for both M and P are measured
in the same plane, whereas the co-declination and co-latitude are each measured in
different planes.

1.2 A Perspective on the Measurement Angles

In Figure 8, the surface of the earth in the neighborhood of the observer’s position
M is represented by the surface of the rotor of a mechanical gyroscope. This is a
supplementary figure introduced here merely to provide, in this author’s opinion, a
better visualization of the relevant angles. In the neighborhood of M, the surface of
the earth may, for computational purposes, be regarded as being flat.
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Figure 8: Celestial Equator and Horizon Systems of Coordinates.

Referring to Figure 5, suppose that we replace symbols,

θ ← λ, φ = φ (unchanged), φA ← ∆, φB ← γ, θA ← Λ, θB ← A

The components of vector R in the original Cartesian coordinate system (the
celestial equator system) are

 x
y
z

 = R

 sinφA cos θA
sinφA sin θA
cosφA

 = R

 sin ∆ cos Λ
sin ∆ sin Λ
cos ∆

 (5)

The components of vector R in the new rotated Cartesian coordinate system (the
horizon system) are

12



 x′

y′

z′

 = R

 sinφB cos θB
sinφB sin θB
cosφB

 = R

 sin γ cosA
sin γ sinA
cos γ

 (6)

 x′

y′

z′

 = G(θ, φ, π)

 x
y
z

 (7)

where G(θ, φ, π) = G(λ, φ, π). That is,

 sin γ cosA
sin γ sinA
cos γ

 =

 − cosλ cosφ − cosφ sinλ sinφ
sinλ − cosλ 0

cosλ sinφ sinλ sinφ cosφ

 sin ∆ cos Λ
sin ∆ sin Λ
cos ∆

 (8)

=

 cos ∆ sinφ− cosλ cos Λ cosφ sin ∆− cosφ sinλ sin ∆ sin Λ
cos Λ sinλ sin ∆− cosλ sin ∆ sin Λ

cos ∆ cosφ+ cosλ cos Λ sin ∆ sinφ+ sinλ sin ∆ sin Λ sinφ



=

 cos ∆ sinφ− cosφ sin ∆ (cosλ cos Λ + sinλ sin Λ)
sin ∆ (sinλ cos Λ− cosλ sin Λ)

cos ∆ cosφ+ sinφ sin ∆ (cosλ cos Λ + sinλ sin Λ)



That is,

 sin γ cosAB
sin γ sinA
cos γ

 =

 cos ∆ sinφ− cosφ sin ∆ cos(Λ− λ)
− sin ∆ sin(Λ− λ)

cos ∆ cosφ+ sinφ sin ∆ cos(Λ− λ)


 sin γ cosA

sin γ sinA
cos γ

 =

 cos ∆ sinφ− cosφ sin ∆ cos l
− sin ∆ sin l

cos ∆ cosφ+ sinφ sin ∆ cos l

 , where l = ∆λ = Λ− λ

Displayed below are the equations of spherical trigonometry using different com-
binations of (alias) symbols, (e.g., l = ∆θ = ∆λ).

Angles measured in standard mathematical format, that is, easterly:

sin γ cosλB = cosφA sinφ− cosφ sinφA cos ∆θ (9.1)

sin γ sinλB = − sinφA sin ∆θ (9.2)

cos γ = cosφA cosφ+ sinφA sinφ cos ∆θ (9.3)

where ∆θ = θA − θ = Λ− λ (alias l or ∆λ)
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Displayed below are the equations of spherical trigonometry using different com-
binations of (alias) symbols:

sin γ cosA = cos ∆ sinφ− cosφ sin ∆ cos l (10.1)

sin γ sinA = − sin ∆ sin l (10.2)

cos γ = cos ∆ cosφ+ sin ∆ sinφ cos l (10.3)

where l = ∆θ = ∆λ = Λ− λ

If the third equation 10.3 is solved for cos l and substituted into equation 10.1, we
obtain

cosA =
cos ∆− cosφ cos γ

sinφ sin γ
(11)

sinA = −sin ∆ sin l

sin γ
(12.1)

cosA =
cos ∆− cosφ cos γ

sinφ sin γ
(12.2)

cos γ = cos ∆ cosφ+ sin ∆ sinφ cos l (12.3)

where l = ∆λ = Λ− λ

Angles measured in navigational format with LHA = 360◦ − l, that is, westerly:

cosh cosZ = sin d cosL− cos d sinL cosLHA (13.1)

cosh sinZ = cos d sinLHA (13.2)

sinh = sin d sinL+ cos d cosL cosLHA (13.3)

where LHA = 360◦ − l

If the third equation 13.3 is solved for cosLHA and substituted into equation
13.1, we obtain

cosZ =
sin d− sinL sinh

cosL cosh
(14)
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hc is computed altitude, d (or alias δ) is declination of celestial body P, and L
is latitude of observer M. Let subscript "a" indicate "assumed", and subscript "c"
indicate "computed".

Angles measured in navigational format, that is, westerly:

sinZ = −cos d sinLHA

cosh
(15.1)

cosZ =
sin d− sinL sinh

cosL cosh
(15.2)

sinh = sin d sinL+ cos d cosL cosLHA (15.3)

where LHA = GHA+ λ

In the practice of celestial navigation, we usually use equations 15.1,
15.2 and 15.3. And, of course, equation (15.3) must be evaluated first for subsequent
substitution in to (15.1) and (15.2). L is the assumed latitude of observer M, λ is
the assumed longitude of observer M, with westerly observer longitudes replaced by
their negatives. h is computed altitude of celestial body P. A subscript "c" might
typically be appended to these symbols to represent "computed".

1.3 More Spherical Trigonometry Equations

Figures 9A, 9B, 10A, 10B below provide refinements to Figures 7A, 7B presented
earlier. In these figures we notice a threefold symmetry.
The internal angles γ,∆, φ subtend circular arcs. The internal angles ∆θ, Z, β of

Figure 9A or LHA,A,B of Figure 9B are angles on the surface of the celestial sphere
between tangent lines of intersecting circular arcs.
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Figure 9A:

Figure 9B:

Celestial Body Coordinates Revisited
From previous derivations, we have:

• Coordinates of celestial body P (of GP) relative to Greenwich G in system S,
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 x
y
z

 = R

 sin ∆ cos Λ
sin ∆ sin Λ
cos ∆

 (5, repeated);

• Coordinates of celestial body P (of GP) relative to observer M in system S ′, x′

y′

z′

 = R

 sin γ cosA
sin γ sinA
cos γ

 (6, repeated); x′

y′

z′


↑

Position of P

in S′ system
(What M sees)

= G(λ, φ, π)
↑

Coordinates
of M

 x
y
z


↑

Position of P
in S system

(What G sees)

that is,

 sin γ cosA
sin γ sinA
cos γ

 = G(λ, φ, π)

 sin ∆ cos Λ
sin ∆ sin Λ
cos ∆


where

G(λ, φ, π) =

 − cosφ cosλ − cosφ sinλ sinφ
sinλ − cosλ 0

sinφ cosλ sinφ sinλ cosφ


 sin γ cosA

sin γ sinA
cos γ

 =

 − cosλ cosφ − cosφ sinλ sinφ
sinλ − cosλ 0

cosλ sinφ sinλ sinφ cosφ

 sin ∆ cos Λ
sin ∆ sin Λ
cos ∆


We may now consider the inverse relationship, x

y
z

 = G−1(λ, φ, π)

 x′

y′

z′

 ≡ GT (λ, φ, π)

 x′

y′

z′


 sin ∆ cos Λ

sin ∆ sin Λ
cos ∆

 =

 − cosλ cosφ sinλ cosλ sinφ
− cosφ sinλ − cosλ sinλ sinφ

sinφ 0 cosφ

 sin γ cosA
sin γ sinA
cos γ



=

 sinλ sin γ sinA+ cosλ (sinφ cos γ − cosφ sin γ cosA)
− cosλ sin γ sinA+ sinλ (sinφ cos γ − cosφ sin γ cosA)

cosφ cos γ + sinφ sin γ cosA

 ⇒

sin ∆ cos Λ = sinλ sin γ sinA+ cosλ (sinφ cos γ − cosφ sin γ cosA) (16.1)
sin ∆ sin Λ = − cosλ sin γ sinA+ sinλ (sinφ cos γ − cosφ sin γ cosA) (16.2)
cos ∆ = cosφ cos γ + sinφ sin γ cosA (16.3)

17



(Eq.16.1)× cosλ+ (Eq.16.2)× sinλ ⇒

sin ∆ cos l = sinφ cos γ − cosφ sin γ cosA (17)

where l = Λ− λ

Observer Coordinates Revisited

• Coordinates of observer M in system S,

 u
v
w

 = R

 sinφ cosλ
sinφ sinλ
cosφ

 (18)

• Coordinates of observer M in system S ′,

 u′

v′

w′

 = R

 sin γ cos β
sin γ sin β
cos γ

 (19)

 u′

v′

w′


↑

Position of M

in S′ system
(What P sees)

= G(Λ,∆, π)
↑

Coordinates
of P

 u
v
w


↑

Position of M
in S system

(What G sees)

(20)

G(Λ,∆, π) =

 − cos Λ cos ∆ − cos ∆ sin Λ sin ∆
sin Λ − cos Λ 0

cos Λ sin ∆ sin Λ sin ∆ cos ∆

 (21)

 sin γ cos β
sin γ sin β
cos γ

 =

 − cos Λ cos ∆ − cos ∆ sin Λ sin ∆
sin Λ − cos Λ 0

cos Λ sin ∆ sin Λ sin ∆ cos ∆

 sinφ cosλ
sinφ sinλ
cosφ

 (22)

=

 sin ∆ cosφ− cos ∆ sinφ cos(Λ− λ)
sin(Λ− λ) sinφ

cos ∆ cosφ+ cos(Λ− λ) sin ∆ sinφ

 , that is,
 sin γ cos β

sin γ sin β
cos γ

 =

 sin ∆ cosφ− cos ∆ sinφ cos l
sin l sinφ

cos ∆ cosφ+ sin ∆ sinφ cos l


sin γ cos β = sin ∆ cosφ− cos ∆ sinφ cos l (23.1)
sin γ sin β = sinφ sin l (23.2)
cos γ = cos ∆ cosφ+ sin ∆ sinφ cos l (23.3)
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With the exception of a different variable (requiring a minus sign) in equation (10.2),
equations (23.2) and (10.2) are of the same form. With the substitution of A =
360◦ − Z into equation 10.2 we may restore the symmetry.

sin γ sinZ = sin ∆ sin l (24)

Equation (23.3) is identical to (10.3).
From Equations 10.2 and 23.2, we observe that

sin l

sin γ
=

sin β

sinφ
=

sinZ

sin ∆
(25)

The three equations 25 are known as the Spherical Law of Sines. In Figure 10A, we
see that these are interior angles of the navigational tetrahedron.

Again, we may consider the inverse relationship,

 u
v
w

 = GT (Λ,∆, π)

 u′

v′

w′

.

G−1(Λ,∆, π) = GT (Λ,∆, π) =

 − cos ∆ cos Λ sin Λ cos Λ sin ∆
− cos ∆ sin Λ − cos Λ sin ∆ sin Λ

sin ∆ 0 cos ∆


 sinφ cosλ

sinφ sinλ
cosφ

 =

 − cos ∆ cos Λ sin Λ cos Λ sin ∆
− cos ∆ sin Λ − cos Λ sin ∆ sin Λ

sin ∆ 0 cos ∆

 sin γ cos β
sin γ sin β
cos γ


 sinφ cosλ

sinφ sinλ
cosφ

 =

 sin Λ sin β sin γ + cos Λ (sin ∆ cos γ − cos ∆ sin γ cos β)
sin Λ sin ∆ cos γ − sin γ (cos Λ sin β + cos ∆ sin Λ cos β)

cos ∆ cos γ + sin ∆ sin γ cos β


That is,

sinφ cosλ = sin Λ sin γ sin β + cos Λ (sin ∆ cos γ − cos ∆ sin γ cos β) (26.1)
sinφ sinλ = sin Λ sin ∆ cos γ − sin γ (cos Λ sin β + cos ∆ sin Λ cos β) (26.2)
cosφ = cos γ cos ∆ + sin γ sin ∆ cos β (26.3)

Equations 10.3, 16.3 and 26.3 are known as the Spherical Law of Cosines and are,
for convenience, restated below.

cos γ = cos ∆ cosφ+ sin ∆ sinφ cos l (10.3, repeated)
cos ∆ = cosφ cos γ + sinφ sin γ cosA (16.3, repeated)
cosφ = cos γ cos ∆ + sin γ sin ∆ cos β (26.3, repeated)
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Note: cosZ ≡ cosA, so that (16.3) may used with that substitution if required.
Elsewhere, sinZ = − sinA may be used.
A traditional derivation of the spherical law of sines and of cosines is provided in

the Appendix.

1.4 A Second Spherical Law of Cosines

We have already derived equations (10.3), (16.3) and (26.3), the three instances
of the spherical law of cosines. These equations are repeated below for convenience.

cos γ = cos ∆ cosφ+ sin ∆ sinφ cos l (10.3, repeated)
cos ∆ = cosφ cos γ + sinφ sin γ cosA (16.3, repeated)
cosφ = cos γ cos ∆ + sin γ sin ∆ cos β (26.3, repeated)

These equations express the cosines of the interior angles γ,∆ and φ as functions of the
other interior angles and the one surface angle l, Z, or β, repectively, corresponding
to the interior angle on the left hand side of these equations. There exist three
complementary or converse equations of rather similar but not identical form, with
interior angles and surface angles interchanged. These equations are provided below,
followed by their derivations from equations (10.3), (16.3) and (26.3). These converse
equations express what we refer to as the second spherical law of cosines.

cos l = − cosZ cos β + sinZ sin β cos γ (27.1)
cosZ = − cos β cos l + sin β sin l cos ∆ (27.2)
cos β = − cos l cosZ + sin l sinZ cosφ (27.3)

1.4.1 Some Auxiliary Equations

We first derive a set of equations from (10.3), (16.3) and (26.3), which equations will
subsequently be used to derive (27.1), (27.2) and (27.3).
Derivation 1.
Substitute (3) into (1) to eliminate cosφ:

cos γ = cos ∆ (cos γ cos ∆ + sin γ sin ∆ cos β) + sin ∆ sinφ cos l

cos γ = cos γ cos2 ∆ + sin γ sin ∆ cos ∆ cos β + sin ∆ sinφ cos l

cos γ
(
1− cos2 ∆

)
= sin γ sin ∆ cos ∆ cos β + sin ∆ sinφ cos l

cos γ sin2 ∆ = sin γ sin ∆ cos ∆ cos β + sin ∆ sinφ cos l

cos γ sin ∆ = sin γ cos ∆ cos β + sinφ cos l

cos γ
sin ∆

sin γ
= cos ∆ cos β +

sinφ

sin γ
cos l
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But

sin l

sin γ
=

sinZ

sin ∆
=

sin β

sinφ
(4) ⇒ sin ∆

sin γ
=

sinZ

sin l
and

sinφ

sin γ
=

sin β

sin l

Making these substitutions,

cos γ
sinZ

sin l
= cos ∆ cos β +

sin β

sin l
cos l

cos γ sinZ = cos ∆ sin l cos β + cos l sin β (28.1)

Derivation 2.
Substitute (3) into (2) to eliminate cosφ:

cos ∆ = (cos γ cos ∆ + sin γ sin ∆ cos β) cos γ + sinφ sin γ cosZ

cos ∆ = cos2 γ cos ∆ + sin γ cos γ sin ∆ cos β + sinφ sin γ cosZ

cos ∆
(
1− cos2 γ

)
= sin γ cos γ sin ∆ cos β + sinφ sin γ cosZ

cos ∆ sin2 γ = sin γ cos γ sin ∆ cos β + sinφ sin γ cosZ

cos ∆ sin γ = cos γ sin ∆ cos β + sinφ cosZ

cos ∆
sin γ

sin ∆
= cos γ cos β +

sinφ

sin ∆
cosZ

But

sin l

sin γ
=

sinZ

sin ∆
=

sin β

sinφ
(4) ⇒ sin γ

sin ∆
=

sin l

sinZ
and

sinφ

sin ∆
=

sin β

sinZ

Making these substitutions,

cos ∆
sin l

sinZ
= cos γ cos β +

sin β

sinZ
cosZ

cos ∆ sin l = cos γ sinZ cos β + sin β cosZ 2nd eq. (28.2)

Derivation 3.
Substitute (2) into (3) to eliminate cos ∆:

cosφ = cos γ (cosφ cos γ + sinφ sin γ cosZ) + sin γ sin ∆ cos β

cosφ = cosφ cos2 γ + sinφ sin γ cos γ cosZ + sin γ sin ∆ cos β

cosφ
(
1− cos2 γ

)
= sinφ sin γ cos γ cosZ + sin γ sin ∆ cos β
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cosφ sin2 γ = sinφ sin γ cos γ cosZ + sin γ sin ∆ cos β

cosφ sin γ = sinφ cos γ cosZ + sin ∆ cos β

cosφ
sin γ

sinφ
= cos γ cosZ +

sin ∆

sinφ
cos β

But

sin l

sin γ
=

sinZ

sin ∆
=

sin β

sinφ
(4) ⇒ sin γ

sinφ
=

sin l

sin β
and

sin ∆

sinφ
=

sinZ

sin β

Making these substitutions,

cosφ
sin l

sin β
= cos γ cosZ +

sinZ

sin β
cos β

1

cosφ sin l = cos γ cosZ sin β + sinZ cos β (28.3)

Derivation 4.
Substitute (2) into (1) to eliminate cos ∆:

cos γ = (cosφ cos γ + sinφ sin γ cosZ) cosφ+ sin ∆ sinφ cos l

cos γ = cos2 φ cos γ + sinφ cosφ sin γ cosZ + sin ∆ sinφ cos l

cos γ
(
1− cos2 φ

)
= sinφ cosφ sin γ cosZ + sin ∆ sinφ cos l

cos γ sin2 φ = sinφ cosφ sin γ cosZ + sin ∆ sinφ cos l

cos γ sinφ = cosφ sin γ cosZ + sin ∆ cos l

cos γ
sinφ

sin γ
= cosφ cosZ +

sin ∆

sin γ
cos l

But

sin l

sin γ
=

sinZ

sin ∆
=

sin β

sinφ
(4) ⇒ sinφ

sin γ
=

sin β

sin l
and

sin ∆

sin γ
=

sinZ

sin l

Making these substitutions,

cos γ
sin β

sin l
= cosφ cosZ +

sinZ

sin l
cos l

cos γ sin β = cosφ sin l cosZ + sinZ cos l (28.4)
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Derivation 5.
Substitute (1) into (2) to eliminate cos γ:

cos ∆ = cosφ (cos ∆ cosφ+ sin ∆ sinφ cos l) + sinφ sin γ cosZ

cos ∆ = cos ∆ cos2 φ+ sin ∆ sinφ cosφ cos l + sinφ sin γ cosZ

cos ∆
(
1− cos2 φ

)
= sin ∆ sinφ cosφ cos l + sinφ sin γ cosZ

cos ∆ sin2 φ = sin ∆ sinφ cosφ cos l + sinφ sin γ cosZ

cos ∆ sinφ = sin ∆ cosφ cos l + sin γ cosZ

cos ∆
sinφ

sin γ
=

sin ∆

sin γ
cosφ cos l + cosZ

But

sin l

sin γ
=

sinZ

sin ∆
=

sin β

sinφ
(4) ⇒ sinφ

sin γ
=

sin β

sin l
and

sin ∆

sin γ
=

sinZ

sin l

Making these substitutions,

cos ∆
sin β

sin l
=

sinZ

sin l
cosφ cos l + cosZ

cos ∆ sin β = sinZ cos l cosφ+ sin l cosZ (28.5)

Derivation 6.
Substitute (1) into (3) to eliminate cos γ:

cosφ = (cos ∆ cosφ+ sin ∆ sinφ cos l) cos ∆ + sin γ sin ∆ cos β

cosφ = cos2 ∆ cosφ+ sin ∆ cos ∆ sinφ cos l + sin γ sin ∆ cos β

cosφ
(
1− cos2 ∆

)
= sin ∆ cos ∆ sinφ cos l + sin γ sin ∆ cos β

cosφ sin2 ∆ = sin ∆ cos ∆ sinφ cos l + sin γ sin ∆ cos β

cosφ sin ∆ = cos ∆ sinφ cos l + sin γ cos β

cosφ
sin ∆

sin γ
= cos ∆

sinφ

sin γ
cos l + cos β

But

sin l

sin γ
=

sinZ

sin ∆
=

sin β

sinφ
(4) ⇒ sin ∆

sin γ
=

sinZ

sin l
and

sinφ

sin γ
=

sin β

sin l
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Making these substitutions,

cosφ
sinZ

sin l
= cos ∆

sin β

sin l
cos l + cos β

cosφ sinZ = cos ∆ sin β cos l + sin l cos β (28.6)

Summary of Auxiliary Equations:

cos γ sinZ = cos ∆ sin l cos β + cos l sin β (28.1)

cos ∆ sin l = cos γ sinZ cos β + sin β cosZ (28.2)

cosφ sin l = cos γ cosZ sin β + sinZ cos β (28.3)

cos γ sin β = cosφ sin l cosZ + sinZ cos l (28.4)

cos ∆ sin β = sinZ cos l cosφ+ sin l cosZ (28.5)

cosφ sinZ = cos ∆ sin β cos l + sin l cos β (28.6)

1.4.2 Combining the Auxiliary Equations

First Instance of the Second Cosine Law:

cos γ sinZ = cos ∆ sin l cos β + sin β cos l (28.1)

cos ∆ sin l = cos γ sinZ cos β + sin β cosZ (28.2)

Substitute (28.2) into (28.1) to eliminate cos ∆ sin l:

cos γ sinZ = (cos γ sinZ cos β + sin β cosZ) cos β + cos l sin β

cos γ sinZ = cos γ sinZ cos2 β + sin β cos β cosZ + cos l sin β

cos γ sinZ
(
1− cos2 β

)
= sin β cos β cosZ + cos l sin β

cos γ sinZ sin2 β = sin β cos β cosZ + cos l sin β

cos γ sinZ sin β = cos β cosZ + cos l

∴ cos l = − cosZ cos β + sinZ sin β cos γ (27.1, repeated)

Second Instance of the Second Cosine Law:

cos ∆ sin β = sinZ cos l cosφ+ sin l cosZ (28.5)
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cosφ sinZ = cos ∆ sin β cos l + sin l cos β (28.6)

Substitute (28.6) into (28.5) to eliminate cosφ sinZ:

cos ∆ sin β = (cos ∆ sin β cos l + sin l cos β) cos l + sin l cosZ

cos ∆ sin β = cos ∆ sin β cos2 l + sin l cos l cos β + sin l cosZ

cos ∆ sin β
(
1− cos2 l

)
= sin l cos l cos β + sin l cosZ

cos ∆ sin β sin2 l = sin l cos l cos β + sin l cosZ

cos ∆ sin β sin l = cos l cos β + cosZ

∴ cosZ = − cos l cos β+ sin β sin l cos ∆ (27.2, repeated)

Third Instance of the Second Cosine Law:

cos ∆ sin β = sinZ cos l cosφ+ sin l cosZ (28.5)

cosφ sinZ = cos ∆ sin β cos l + sin l cos β (28.6)

Substitute (28.5) into (28.6) to eliminate cos ∆ sin β:

cosφ sinZ = (sinZ cos l cosφ+ sin l cosZ) cos l + sin l cos β

cosφ sinZ = (sinZ cos l cosφ+ sin l cosZ) cos l + sin l cos β

cosφ sinZ = sinZ cos2 l cosφ+ sin l cos l cosZ + sin l cos β

cosφ sinZ
(
1− cos2 l

)
= sin l cos l cosZ + sin l cos β

cosφ sinZ sin2 l = sin l cos l cosZ + sin l cos β

cosφ sinZ sin l = cos l cosZ + cos β

∴ cos β = − cos l cosZ + sin l sinZ cosφ (27.3, repeated)
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2 Right Triangles and Short-Method Tables

For three points on the surface of the earth, NP , M and P , there are two possible
polar spherical triangles, the smaller (minor) local triangle and the larger (major)
remote triangle on the other side of the earth. The coaltitude γ spans the smaller
spherical triangle, and it is this spherical triangle with which we are concerned. The
major spherical triangle, spanned by 360◦ − γ, is of no interest to us here.
The spherical triangles of Figures 7A and 7B can be cut with great circles into

two adjacent right spherical triangles via an auxiliary great circle. An advantage of
doing so is that the equations describing them are simplified. The sine of 90◦ degrees
is one and the cosine of 90◦ is zero, rendering one or more terms in the equations
constant, 0 or 1.
Several relatively short mathematical tables have been compiled using these equa-

tions to "solve the navigational triangle", that is, to compute the altitude and azimuth
of a celestial body based upon its LHA and the observer’s latitude L.

Two different methods are employed to accomplish this based upon an auxiliary
great circle configured in one of two ways. In the past, a number of investigators
have derived and published their short-method trigonometric derivations and tables,
but all are somewhat similar to one-another.

Ogura’s Method: The new great circle passes through the observer’s position
M and intersects the declination great circle at a right angle. Reference: Figures 10A
and 10B. This method is employed in the short-method navigational tables of Sintiki
Ogura (1884-1937), the Line of Position Book [11] of P.V.H Weems, H.O. 208 of
Dreisonstock, among others.

Ageton’s Method: The new great circle passes through the geographical posi-
tion P (or GP ) of the celestial body and intersects the colatitude great circle at a
right angle. Reference: Figures 11A and 11B.
This method is employed in H.O 211 by Arthur Ageton (1931) and a modified

H.O 211 by Allan Bayless (1980).
"H.O." is an abbreviation for "Hydrographic Offi ce", the name of the American

government agency that formerly dealt with navigational charts.

In Figures 10A, 10B, 11A and 11B, note the arcs of great circles between M
and P ′ (Ogura’s Method) and between P and M ′ (Ageton’s Method), ( and
respectively). As described above, these great circles cut the navigational triangles
into two adjacent right-angled spherical triangles. The two companion right-angled
spherical triangles each have more simple algebraic and trigonometric forms than the
original triangles, and are used in compiling the "short-method" mathematical tables
for celestial navigation.
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The original polar spherical triangle and the upper right-angled polar spherical
triangle can be analyzed with the original equations (15.1, 15.2, 15.3). Both of these
spherical triangles are directly described via spherical coordinates. The upper right-
angled polar spherical triangle with vertices NP,M,P ′ is sometimes referred to as
the Time triangle [6], and the lower right-angled non-polar spherical triangle with
vertices P ′,M, P is sometimes referred to as the Altitude triangle [6]. The altitude
triangle cannot be directly described via spherical coordinates in the same manner as
the other two triangles, because it does not have a vertex at NP .

For economy of space in the figures, the single letter symbolsM and P are used.
M represents the observer’s position, usually designated as AP (assumed position),
and P represents the geographical position of the celestial body, usually designated
as GP . The symbols l and ∆θ are aliases of each other.

In Figures 10A and 10B, the expressions "P East of M" and "PWest of M" simply
indicate that these figures represent the extreme configurations of the spherical trian-
gle(s) for small and large l , i.e., for large and small GHA. The same trigonometric
equations are used to "solve" these spherical triangles.

The domain of the coaltitude γ, as a standard spherical coordinate, is [0, 180◦].
However, in marine celestial navigation, since γ = 90◦ − h, γ is further restricted to
[0, 90◦]. Altitudes h below the horizon are not typically measured by the marine
sextant. Hence, if we know sin γ, we can uniquely determine γ, an angle in the first
trigonometric quadrant.
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Figure 10A: Spherical Triangle, P East of M.

Figure 10B. Spherical Triangle 1, P West of M.
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2.1 Splitting the Codeclination, Ogura’s Method

For the upper spherical triangle, we use the spherical sine formulas.

sin l

sin γ
=

sin β

sinφ
=

sinZ

sin ∆
(25, repeated)

Domains of the angles:

D(γ) = [0, 180◦] ⇒ (γ) : sin γ ≥ 0

D(φ) = [0, 180◦] ⇒ (φ) : sinφ ≥ 0

However, D(β) = D(l) = [0, 360◦], so sin β and sin l may be positive or negative.

But for the ratios

sin β

sin l
=

sinφ

sin γ
≥ 0 and

sin β′

sin l
=

sinφ

sin γ′
≥ 0

∴ sign(sin β) = sign(sin l).

β′ = 90◦ ⇒ sin β′ = 1 and β′ = 270◦ ⇒ sin β′ = −1.

sin γ′ = sinφ
sin l

sin β′
= sinφ |sin l| ≥ 0 (29)

sin γ sin β = sinφ sin l and sin γ′ sin β′ = sinφ sin l

sin γ′ sin β′ = sin γ sin β

sin γ′

sin γ
=

sin β

sin β′

Observe in Figure 10A that as l decreases withM moving to the right, β increases
and P ′ moves down the codeclination great circle and ∆′ increases. When l = 0 (i.e.,
360◦), β = 180◦, M and P lie on the same meridian. As M moves further to the
right (east) of P and l decreases from 360◦, β decreases, the point P ′ moves up the
codeclination great circle, ∆′ decreases until finally β′ = 270◦.
As M moves from its original position to the left (westward) from P , l increases

and ∆′ decreases. When l = 180◦, P ′ moves up to NP . The angle β′ is always
equal to 90◦ or 270◦.

sign β′ = sign β. Therefore,
sin β

sin β′
≥ 0 and sign (sin γ′) = sign (sin γ).

Derivation.

sin γ cos β = sin ∆ cosφ− cos ∆ sinφ cos l (23.1, repeated)
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sin γ′ cos β′ = sin ∆′ cosφ− cos ∆′ sinφ cos l

β′ = 90◦ or β′ = 270◦ ⇒ cos β′ = 0.

∴ sin ∆′ cosφ = cos ∆′ sinφ cos l (30)

⇒ tan ∆′ = tanφ cos l

∆′ is the codeclination of point P ′ and its domain is [0, 180◦]. If tan ∆′ ≥ 0,
then ∆′ lies in the 1st trigonometric quadrant; if tan ∆′ < 0, then ∆′ lies in the 2nd

trigonometric quadrant. Thus, ∆′ = arctan (tan ∆′) uniquely determines the value
of the angle ∆′.

Derivation.

cosφ = cos γ cos ∆ + sin γ sin ∆ cos β (26.3, repeated)

cosφ = cos γ′ cos ∆′ + sin γ′ sin ∆′ cos β′

∴ cosφ = cos ∆′ cos γ′

cos ∆′ =
cosφ

cos γ′
(31)

Substituting cosφ = cos ∆′ cos γ′ into equation (30), we have...

sin ∆′ cos γ′ = sinφ cos l (32)

Derivation.

cos γ = cos ∆ cosφ+ sin ∆ sinφ cos l (10.3, repeated)

From (31), cosφ = cos ∆′ cos γ′ and from (32), sin ∆′ cos γ′ = sinφ cos l. Making
these replacements,

cos γ = cos ∆ (cos ∆′ cos γ′) + sin ∆ (sin ∆′ cos γ′)

cos γ = cos γ′ (cos ∆ cos ∆′ + sin ∆ sin ∆′)

∴ cos γ = cos γ′ cos (∆−∆′) (33)

Since the cosine function cos (∆−∆′) =
cos γ

cos γ′
and cos (∆−∆′) < 1, so

cos γ

cos γ′
< 1 and cos γ < cos γ′ ⇒ γ′ < γ.

Derivation.
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Recall

sinφ cosλ = sin Λ sin γ sin β + cos Λ (sin ∆ cos γ − cos ∆ sin γ cos β) (26.1, repeated)
sinφ sinλ = sin Λ sin ∆ cos γ − sin γ (cos Λ sin β + cos ∆ sin Λ cos β) (26.2, repeated)
cosφ = cos γ cos ∆ + sin γ sin ∆ cos β (26.3, repeated)

sin β′ = ±1, depending upon β′ with cos β′ = 0. Therefore,

sinφ cosλ = sin Λ′ sin γ′ sin β′ + cos Λ′ sin ∆′ cos γ′

sinφ sinλ = sin Λ′ sin ∆′ cos γ′ − sin γ′ cos Λ′ sin β′

cosφ = cos γ′ cos ∆′

Re-arrange terms in second equation:

sinφ cosλ = sin Λ′ sin γ′ sin β′ + cos Λ′ sin ∆′ cos γ′

sinφ sinλ = − cos Λ′ sin γ′ sin β′ + sin Λ′ sin ∆′ cos γ′

cosφ = cos γ′ cos ∆′

Multiplying the 1st equation by sinλ and the 2nd equation by cosλ,

sinφ cosλ sinλ = sin Λ′ sin γ′ sin β′ sinλ+ cos Λ′ sin ∆′ cos γ′ sinλ
sinφ sinλ cosλ = − cos Λ′ sin γ′ sin β′ cosλ+ sin Λ′ sin ∆′ cos γ′ cosλ
cosφ = cos γ′ cos ∆′

Subtract the 2nd equation from the 1st equation:

0 = sin Λ′ sin γ′ sin β′ sinλ+ cos Λ′ sin γ′ sin β′ cosλ+ cos Λ′ sin ∆′ cos γ′ sinλ

− sin Λ′ sin ∆′ cos γ′ cosλ

0 = sin γ′ sin β′ (cos Λ′ cosλ+ sin Λ′ sinλ)− sin ∆′ cos γ′ (sin Λ′ cosλ− cos Λ′ sinλ)

sin γ′ sin β′ cos (Λ′ − λ) = sin ∆′ cos γ′ sin (Λ′ − λ)

tan γ′ sin β′ = sin ∆′ tan (Λ′ − λ)

But Λ′ = Λ and l = Λ− λ, so

tan γ′ sin β′ = sin ∆′ tan l (34 )

31



2.1.1 The Line of Position Book

In the Line of Position Book (LPB), Weems uses the methods of Sintiki Ogura to split
the spherical navigational triangle into two right-angled spherical triangles [11]. The
right angles occur on the declination great circle. Dreisonstock used a similar method
for his tables, H.O. 208. The LPB splits the calculations into two parts, each part
using fairly simple equations to solve the spherical triangle. Since the Line of Position
Book tables are tabulated only for λ−Λ ε (0, 180◦), the meridian angle t (rather than
LHA) and observer’s latitude L (DR or AP ) are input into the LPB tables. Upon
completing the two part calculations, the final outputs are the computed altitude hc
and azimuth Z of the celestial body. However, in our derivations, we will use the
more general LHA rather than meridian angle t.
Ogura’s method and similar methods were developed before the advent of modern

digital computers. In legacy practice of spherical trigonometry and celestial naviga-
tion, cosecants and secants were usually employed instead of sines and cosines, because
these functions always possess values greater than or equal to one. Furthermore, the
105 factor was used to generate large integers. It is peculiar that in the LPB, Weems
and Lee omit mention of the 105 factor in their explanation. Logarithms were then
used to evaluate products or ratios of these positive integers; this practice, done with
paper and pencil, made the computational process possible [11].

First Part Calculation. Entering with LHA and L, the output from the first
part calculation consists of two numbers, A and K, where

A = 105 log sec γ′ = 105 log sec (90◦ − h′) = 105 log csch′ (35.1)

K = d′ = 90◦ −∆′ (35.2)

in which we have written the symbols A and K in script (calligraphic) form to
distinguish the first symbol from the symbol A which is already used to represent the
coazimuth of P . γ′ and ∆′ are the coaltitude and codeclination that the celestial
body would have if its altitude great circle and declination great circle intersected at
90◦ as shown in Figure 10A, that is, if it were located at point P ′ in that figure.
Hence, (LHA,L)⇒ (A,K)⇒ (h′, d′), that is, (l, φ)⇒ (γ′,∆′). The numbers A

and K are obtained from Table A of the LPB.

Compute γ′.
The LPB uses (29) with L = 90◦ − φ to evaluate γ′.

sin γ′ = sinφ |sin l| (29, repeated)

In the First Part Calculation in the Line of Position Book, the angle γ′ is calculated
simply by taking the arcsine of sinγ′. This is suffi cient to uniquely evaluate the angle
γ′, because in marine navigation γ′ is always an angle in the first trigonometric
quadrant, that is, less than or equal to 90◦.
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For aerial or space navigation, in which we might measure negative sextant angles
(i.e., below the local horizontal plane), the coaltitudes would be angles in the second
trigonometric quadrant. Keep in mind that the angles γ and γ′ are normal spherical
coordinates just like φ and ∆ whose mathematical domains are [0, 180◦]. In that case,
equation 28 alone would be insuffi cient to uniquely determine γ′. We would require
quadrant justification via, e.g., the cosine or the tangent function. This situation will
be addressed shortly.

Compute d′.
Having just evaluated γ′, equation 31 is now used to determine d′.

cos ∆′ =
cosφ

cos γ′
(31, repeated)

d′ = 90◦ −∆′

End of first part calculations.

Second Part Calculation.
Definitions:

K ∼ d
D
= d′ − d = (90◦ −∆′)− (90◦ −∆) = ∆−∆′ (35.3)

If the declinations d and d′ are South declinations, they are negative numbers.

B D
= 105 log sec (K ∼ d) = 105 log sec (∆−∆′) = 105 log

1

cos (∆−∆′)
(35.4)

Again, a script (calligraphic) font is used for this quantity to distinguish it from the
angle B.

K ∼ d and B are obtained from Table B of the LPB. A and B are then added
together.

A+ B = 105 log sec γ′ + 105 log sec (∆−∆′)

= 105 log [sec γ′ sec (∆−∆′)]

But
cos γ = cos γ′ cos (∆−∆′) (33, repeated)
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so
sec γ = sec γ′ sec (∆−∆′)

and
A+ B = 105 log sec γ

The sum A and B is then entered into Table B of the LPB to obtain the computed
altitude h. The degrees of altitude appear on the bottom of the page and the minutes
of altitude in the right margin.
.

Azimuth Calculation. In the Line of Position Book, the azimuth Z of P is

obtained from "Rust’s Diagram". This diagram is based upon (25)
sin l

sin γ
=

sinZ

sin ∆

⇒ sinZ =
sin ∆ sin l

sin γ
, except that Weems uses meridian angle t (i.e., HA) instead

of l.

End of LPB calculations (Weems).

2.1.2 Numerical Example

Suppose that L = 35◦N ⇒ φ = 55◦, LHA = 48◦ ⇒ l = 312◦.
d = 20◦S = −20◦ ⇒ ∆ = 110◦.
sin γ′ = sinφ |sin l| = sin 55◦ |sin 312◦| = (0.8195) |−0.74314| = 0.6088
γ′ = arcsin (sin γ′) = 37.499◦ or 142.501◦. In marine celestial navigation we are

only interested in the value in the first trigonometric quadrant, so γ′ = 37.50◦. The
LPB goes no further in trigonometric quadrant determination of angle γ′.

From (31), cos ∆′ =
cosφ

cos γ′
=

cos 55◦

cos 37.50◦
= 0.7230, and ∆′ = arcos(0.7230) =

43.70◦.
∆−∆′ = 110◦ − 43.70◦ = 66.30◦.
From (33), cos γ = cos γ′ cos (∆−∆′) = cos 37.50◦ cos (66.30◦) = 0.3189, and

γ = arcos(0.3189) = 71.40◦ ⇒ h = 18.60◦.

Digression.
With computer computation for aerial or space navigation, wherein which h (and

h′) might assume negative values, we can proceed in a somewhat different manner
than that employed in the LPB. Write

tan ∆′ = tanφ cos l (30, repeated)
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tan ∆′ = tan 55◦ cos 312◦ = 0.9556. ∆′ = arctan (0.9556) ⇒ 43.70◦ with the
positive sign (+) of ∆′ uniquely determining that this ∆′ lies in the 1st trigonometric
quadrant (rather than in the 2nd).

From (31), we write cos γ′ =
cosφ

cos ∆′
=

cos 55◦

cos 43.70◦
= 0.793 4.

γ′ = arcos(0.793 4) = 37.50◦ with the positive sign (+) of γ′ uniquely determining
that γ′ lies in the 1st trigonometric quadrant (rather than in the 2nd).

∆−∆′ = 110◦ − 43.70◦ = 66.30◦.
cos (∆−∆′) = cos (66.30◦) = 0.4020.
From (33), cos γ = cos γ′ cos (∆−∆′) = (0.7934) (0.4020) = 0.3190.
γ = arcos (0.3190) = 71.40◦ ⇒ h = 18.60◦.

Computations via the LPB Logarithmic Tables Round offto a whole number.

A = 105 log sec γ′ = 105 log
1

cos 37.50◦
= 10, 053

B = 105 log sec (K ∼ d) = 105 log
1

cos (∆−∆′)
= 105 log

1

0.40195
= 39, 583

A+ B = 10, 053 + 39, 583 = 49, 636

(A+ B) 10−5 = 0.49636 = log
1

cos γ
⇒ cos γ = 10−0.49636 = 0.3189 > 0

that is, 1st quadrant.

γ = arcos (0.3189) = 71.40◦

or, since sinh = sin (90◦ − γ) = cos γ, sinh = 0.3189 ⇒ h = 18.60◦ (confirma-
tion).

Azimuth calculation:
Again, from (25),

sinZ =
sin ∆ sin l

sin γ
=

sin 110◦ sin 312◦

sin 71.40◦
= −0.7369

Z = arcsin (−0.7369) = −47.46◦ = 227.46◦ or 312.54◦

⇒ that is, this evaluation indicates that Z lies in the 3rd or 4th trigonometric
quadrant.
The LPB predicts one of these values and provides directions for the navigator

to eliminate the quadrant ambiguity. However, in this example, we will provide
mathematical determination of the angle.
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From (16.3),

cosZ ≡ cosA =
cos ∆− cosφ cos γ

sinφ sin γ
=

cos 110◦ − cos 55

0.3190

◦
︷ ︸︸ ︷
cos 71.4042◦

sin 55◦ sin 71.4042◦

= −0.6761 < 0

Z = arcos (−0.6761) = 132.54◦ or 227.46◦

⇒ that is, this evaluation indicates that Z lies in the 2nd or 3rd trigonometric
quadrant.

Zn = arctan 2 (cosZ, sinZ) = 227.46◦

End of LPB Numerical Example.

2.2 Dividing the Colatitude, Ageton’s Method

Figures 11A and 11B display the great circles

Figure 11A: Spherical Triangle, P East of M.
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Figure 11B: Spherical Triangle 2, P West of M.

This is the geometry used by Ageton in his "short-method" tables. In order
to avoid symbol congestion, primes (rather than, e.g., double primes) are attached
to some of the angle symbols. These must not be confused with the same
primed symbols employed in the section of this paper dealing with Ogura’s
method.
Again, for the upper spherical triangle in Figure 11A of Figure 11B, we make use

of Equations 25 and write...

sin γ sinZ = sin ∆ sin l

sin γ′ sinZ ′ = sin ∆ sin l

Domains of the angles:

D(γ) = [0, 180◦] ⇒ (γ) : sin γ ≥ 0

D(∆) = [0, 180◦] ⇒ (∆) : sin ∆ ≥ 0

However, D(Z) = D(l) = [0, 360◦], so sinZ and sin l may be positive or negative.

But
sinZ

sin l
=

sin ∆

sin γ
≥ 0 and

sinZ ′

sin l
=

sin ∆

sin γ′
≥ 0

∴ sign(sinZ) = sign(sin l).
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sin γ′ = sin ∆
sin l

sinZ ′

sin γ′ = sin ∆
sin l

sinZ ′
= sin ∆ |sin l| (36)

cos ∆ = cosφ cos γ + sinφ sin γ cosA (16.3, repeated)

cos ∆ = cosφ′ cos γ′ + sinφ′ sin γ′ cosA′

cos ∆ = cosφ′ cos γ′ + sinφ′ sin γ′ cos (360◦ − Z ′)
cos ∆ = cosφ′ cos γ′ + sinφ′ sin γ′ cosZ ′

Z ′ = 90◦ ⇒ cosZ ′ = 0. Therefore, cos ∆ = cosφ′ cos γ′ .

cosφ′ =
cos ∆

cos γ′
(37)

Derivation.

sin γ cosA = cos ∆ sinφ− cosφ sin ∆ cos l (10.1, repeated)

sin γ′ cosA′ = cos ∆ sinφ′ − cosφ′ sin ∆ cos l

But A′ = 90◦ or 270◦; therefore, cosA′ = /0,

cos ∆ sinφ′ = cosφ′ sin ∆ cos l

But from (37), cos ∆ = cosφ′ cos γ′, so

(cosφ′ cos γ′) sinφ′ = cosφ′ sin ∆ cos l

cos γ′ sinφ′ = sin ∆ cos l (38)

cos γ = cos ∆ cosφ+ sin ∆ sinφ cos l (23.3, repeated)

cos γ = (cosφ′ cos γ′) cosφ+ sinφ (cos γ′ sinφ′)

cos γ = cos γ′ (cosφ cosφ′ + sinφ sinφ′)

cos γ = cos γ′ cos (φ− φ′) (39)

End of calculations via Ageton’s Method.
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Recapitulation The sequence of calculations used in the LPB (Sintiki Ogura’s
Method):
1. Use (29) sin γ′ = sinφ |sin l| and γ′ = arcsin (sin γ′), assumed to lie in the

1st trigonometric quadrant.

2. Use (31), cos ∆′ =
cosφ

cos γ′
and ∆′ = arcos(cos ∆′) to uniquely calculate

the angle ∆′.
3. Use (33), cos γ = cos γ′ cos (∆−∆′) and γ = arcos(cos γ) to calculate
the angle γ, assumed to lie in the 1st trigonometric quadrant.

Another way of performing the calculations (This sequence not followed in
the LPB):
1. Use (30), tan ∆′ = tanφ cos l and ∆′ = arctan (tan ∆′) to uniquely calculate
the angle ∆′. sign(cos ∆′) = sign(tan ∆′) .

2. From (31), calculate cos γ′ =
cosφ

cos ∆′
.

3. Use (33), cos γ = cos γ′ cos (∆−∆′) and γ = arcos(cos γ) to uniquely
calculate the angle γ.

The sequence of calculations used in Ageton’s Method:
1. Use (36), sin γ′ = sin ∆ |sin l| and γ′ = arcsin (sin γ′), assumed to lie in the

1st trigonometric quadrant.

2. Use (37), cosφ′ =
cos ∆

cos γ′
and φ′ = arcos(cosφ′) to uniquely calculate

the angle φ′.
3. Use (39), cos γ = cos γ′ cos (φ− φ′) and γ = arcos(cos γ) to calculate
the angle γ, assumed to lie in the 1st trigonometric quadrant.
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2.3 Appendix

2.3.1 The Navigational Tetrahedron

Consider spherical triangles such as those of Figures 7A and 7B. Figure 12, below, is
representative of a tetrahedron in a general spherical triangle. We will use this figure
to derive equations suitable for its description.

Figure 12: Details of the Navigational Tetrahedron.

The internal angles a, b, c (expressed in the lower case
above) subtend circular arcs. The surface angles A,B,C are angles between tangent
lines of intersecting circular arcs.
We derive equations on the basis of all angles less than 180◦ and greater than or

equal to zero (no unique directions).

m = OE n = OD, l = DE
p = AE, q = AD, R = OA
R = OB, R = OC
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The Spherical Trigonometry Law of Cosines

l2 = m2 + n2 − 2mn cos a

l2 = p2 + q2 − 2pq cosA

m2 = R2 + p2

n2 = R2 + q2

Subtract the second equation above from the first equation:

0 = m2 − p2 + n2 − q2 − 2mn cos a+ 2pq cosA

But m2 − p2 = R2 and n2 − q2 = R2, so

0 = R2 −mn cos a+ pq cosA

mn cos a = R2 + pq cosA

cos a =
R

n

R

m
+
p

n

q

m
cosA

In Figure 15, notice that the angles ∠OAD and ∠OAE are right angles.

But cos b =
R

n
, cos c =

R

m
, sin b =

q

n
, sin c =

p

m
.

Then,
cos a = cos b cos c+ sin b sin c cosA (40.1)

Likewise for the other two tangent lines, chords and angles. By similar reckon-
ing for the other vertices, lines and angles, we have the three "cosine equations" of
spherical trigonometry: a← b, b← c, c← a.

cos b = cos c cos a+ sin c sin a cosB (40.2)

cos c = cos a cos b+ sin a sin b cosC (40.3)

Temporary symbols ε, α, α′ lying in the plane OED.

Problem: Determine whether CB //DE. CB //DE if and only if angle α = ε.
In triangle OBC, the two sides OB and OC are both equal to R ; Hence, the

same angle ε on both sides of the triangle. In triangle ODE, we may not assume that
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m = n; m =
R

cos c
and n =

R

cos b
. But angle b is not necessarily equal to angle c, so

m is not necessarily equal to n and thus, angle α′ is not necessarily equal to angle α.
Consequently, CB is not necessarily parallel to DE, i.e., l.

The Spherical Trigonometry Law of Sines
From (40.1),

cosA =
cos a− cos b cos c

sin b sin c

sin2A = 1− cos2A = 1− (cos a− cos b cos c)2

sin2 b sin2 c

sin2A =
sin2 b sin2 c− (cos a− cos b cos c)2

sin2 b sin2 c

=
(1− cos2 b) (1− cos2 c)− (cos a− cos b cos c)2

sin2 b sin2 c

sin2A =
sin2 b sin2 c− (cos a− cos b cos c)2

sin2 b sin2 c

=
1− cos2 b− cos2 c+ cos2 b cos2 c− (cos2 a− 2 cos a cos b cos c+ cos2 b cos2 c)

sin2 b sin2 c

sin2A =
1− cos2 a− cos2 b− cos2 c+ 2 cos a cos b cos c

sin2 b sin2 c

sin2A

sin2 a
=

1− cos2 a− cos2 b− cos2 c+ 2 cos a cos b cos c

sin2 a sin2 b sin2 c

sinA

sin a
=

√
1− cos2 a− cos2 b− cos2 c+ 2 cos a cos b cos c

sin a sin b sin c

When we do likewise for
sinB

sin b
and

sinC

sin c
, the right hand side of each of these

equations is equal to
√

1− cos2 a− cos2 b− cos2 c+ 2 cos a cos b cos c

sin a sin b sin c
.

From this we have what are known as the Law of Sines for Spherical Trigonometry:

sinA

sin a
=

sinB

sin b
=

sinC

sin c
(41)

Equations 40.1, 40.2 and 40.3 express cos a, cos b and cos c as trigonometric func-
tions of angles a, b , c, A, B , C. Similarly, we would like to create some kind of
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converse relationship to these equations, expressing cosA, cosB and cosC as trigono-
metric functions of angles a, b , c, A, B , C. We refer to this "converse relationship"
as the second spherical law of cosines. Three instances of this law are presented below,

cosA = − cosB cosC + sinB sinC cos a (42.1)

cosB = − cosC cosA+ sinC sinA cos b (42.2)

cosC = − cosA cosB + sinA sinB cos c (42.3)

We have previously discussed this law at length in the main text:
Suppose that we introduce the following replacements of angle symbols:
(a, A)← (γ, l) for the circular arc of length Rγ.
(b, B)← (∆, Z) for the circular arc of length R∆.
(c, C)← (φ, β) for the circular arc of length Rφ.

Then,
sinA

sin a
=

sinB

sin b
=

sinC

sin c
is replaced by

sin l

sin γ
=

sin β

sinφ
=

sinZ

sin ∆
or

sin LHA

sin γ
=

sinB

sinφ
=

sinA

sin ∆
.

Hence, we see that sin γ sinA = − sin ∆ sin l, which we had earlier derived in the
original rotation matrix derivation as equation 10.2.
Similarly, equations 40.1, 40.2, 40.3 are replaced by equations 10.3, 16.3 and 26.3

respectively (repeated below).

cos γ = cos ∆ cosφ+ sin ∆ sinφ cos l
cos ∆ = cosφ cos γ + sinφ sin γ cosA

cosφ = cos γ cos ∆ + sin γ sin ∆ cos β

Many authors derive the second spherical law of cosines by considering "polar
triangles", which are discussed in some of the texts appearing in the bibliography. We
will not address those concepts here, except to mention that the equations expressing
the second law can be obtained by making the following replacements in the spherical
law of cosines:

A← 180◦ − a
B ← 180◦ − b
C ← 180◦ − c

and
a← 180◦ − A
b← 180◦ −B
c← 180◦ − C

However, these replacements alone do not constitute mathematical proofs.
All of the derivations in this appendix are based upon the assumption that the

domains of all surface angles, D(A) = D(B) = D(C) = [0, 180◦ ]̇. However, based
upon arguments in the text derived via rotation matrices, we see that the domain of
the surface angles is [0, 360◦), provided that we adhere to the interpretation of those
angles as given in the text.
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