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Abstract. Runtime monitoring provides a more realistic and applicable alterna-
tive to verification in the setting of real neural networks used in industry. It is
particularly useful for detecting out-of-distribution (OOD) inputs, for which the
network was not trained and can yield erroneous results. We extend a runtime-
monitoring approach previously proposed for classification networks to percep-
tion systems capable of identification and localization of multiple objects. Fur-
thermore, we analyze its adequacy experimentally on different kinds of OOD
settings, documenting the overall efficacy of our approach.

Keywords: Runtime monitoring · Neural networks · Out-of-distribution detec-
tion · Object detection.

1 Introduction

Neural Networks (NNs) can be trained to solve complex problems with very high ac-
curacy. Consequently, there is a high demand to deploy them in various settings, many
of which are also safety critical. In order to guarantee their safe operation, various
verification techniques are being developed [3, 10, 16, 21, 32, 35]. Unfortunately, de-
spite the enormous effort, verification of NN of realistic industrial sizes is not within
sight [1]. Therefore, more lightweight techniques, less depending on the size of the NN,
are needed these days to provide some assurance of safety. In particular, runtime mon-
itoring replaces checking correctness universally on all inputs by following the current
input only and raising an alarm, whenever the safety of operation might be violated.

Due to omnipresent abundance of data, NN can typically be trained well on these
given inputs. However, they may work incorrectly particularly on inputs significantly
different from the training data. Whenever such an Out-Of-Distribution (OOD) input
occurs, it is desirable to raise an alarm since there is much less trust in a correct de-
cision of the NN on this input. OOD inputs may be, for instance, pictures containing
previously unseen objects or with noise stemming from the sensors or from an adver-
sary.

In this paper, we provide a technique to efficiently detect such OOD inputs for the
industrially relevant task of object detection, for which objects in an input image need to
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be localized and classified. We consider PolyYolo [20] as the object detection system of
choice as it encompasses a very complex architecture like complex perception systems
used in development of advanced driver assistance systems (ADAS) and autonomous
driving functions. Our approach builds upon a recent runtime-monitoring technique
[14] for efficient monitoring of classification networks. As we consider object detection
networks, the setting is technically different: the inputs are of a different type and,
apart from classifying objects, their bounding boxes are to be produced. Even more
importantly, the number of objects in the picture to be identified can now be more than
1 (often reaching dozens). As a result, questions arise how to apply the technique in this
context, so that the efficiency and adequacy of the monitor is retained or even improved.

Our contribution can be summarized as follows. We (i) propose how to extend the
technique to this new setting (in Section 3.1), (ii) improve and automate the detection
mechanism (in Section 3.2), and (iii) provide experiments on industrial benchmarks,
concluding the efficacy of our approach (in Section 4). In particular, our experiments
focus on OOD due to pictures (i) from other sources, (ii) affected by random noise, e.g.,
from sensors, and (iii) affected by adversarial noise due to an FGSM attack [13]. On
the methodological side, we leverage non-conformity measures to automate threshold
setting for OOD detection. Altogether, we extend the white-box monitoring approach
[14] to object detection systems more suited for real-world applications.

Related Work In this paper we focus on OOD detection when considering the neural
network as a white box. OOD detection based on the activation values of neurons ob-
served at runtime is extensively exploited in the state of the art [2, 4, 14, 17, 25, 31].
In particular, Hashemi et al. [14] calculate the class-specific expectation values of all
layer’s neurons based on training data to abstract the In-Distribution (ID) behavior of
the network. On top of that, they calculate the activations’ confidence interval per class.
At runtime if the network predicts a class but the activation values are not within the
class-specific confidence interval, the result is declared as OOD as it does not match the
expected ID behavior represented by the interval. Sastry et al. [31] also monitor the net-
work’s activations during training. With this information, they calculate class-specific
Gram matrices allowing them to detect deviations between the values within the ma-
trix and the predicted class during the execution. Henzinger et al. [17] use interval
abstraction [6] where for each neuron an interval set is built which includes the neu-
ron’s activation values recorded while executing the training dataset. They utilize these
constructed abstractions to identify novel inputs at runtime. In a follow-up work, Luk-
ina et al. [25] calculated distance functions to quantitatively measure the discrepancy
between novel and in-distribution samples. Other directions of work for OOD detection
involve generative models to measure the distance between the original image and the
generated sample or monitoring of the last layer, e.g., [24, 33].

Hendrycks et al. present different benchmarks for OOD detection in multi-class,
multi-label and segmentation settings and apply baseline methods [15]. They show that
the MaxLogit monitor works well on all those problems. However, it is not directly
applicable to the problem of object detection as in the other settings either the image or
each pixel separately is assigned to classes. In the case of object detection, some parts
of the image cannot be assigned meaningfully.
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While all of the above techniques focus on classification or segmentation networks,
we are only aware of few other approaches focusing on object detection neural net-
works. Du et al. [8] introduced a method for monitoring object detection systems by
distilling unknown OOD objects from the training data and then training the object
detector from scratch in combination with an uncertainty regularization branch. Simi-
larly, [9] train an uncertainty branch by artificially synthesizing outliers from the fea-
ture space of the NN. Consequently, the tools are not applicable to the frozen graph of
a trained model. Unfortunately, this restriction beats the purpose of using (and monitor-
ing) a given trained network.

We refer the reader to [34] for a detailed overview on other monitoring approaches.

2 Preliminaries

2.1 Neural Networks

Neural Networks (NNs) are learning components which are often applied to complex
tasks especially when it is hard to directly find algorithmic solutions. Examples of such
tasks are classification, where the type of object in an image should be predicted, and
object detection. In the latter case, images can contain several different objects at dif-
ferent locations. The NN identifies the different objects in the image, assigns them to
classes and computes bounding boxes, usually of rectangular form, surrounding the ob-
ject.

In general, a NN consists of several consecutive layers 1, ..., L containing compu-
tation units called neurons. The neurons receive their input as a sum from weighted
connections to neurons in the previous layer and apply a usually non-linear activation
function σ to their input. The result of this computation is called the activation value h
of the neuron. More formally, the behavior of a neuron j in layer l + 1 with activation
function σl+1 and incoming weights wij from neuron i ∈ Nl from layer l with neurons
Nl can be described as follows for an input x:

hj(x) = σl+1(
∑
i∈Nl

wijhi(x))

The activation values for neurons at layer 1, which is called the input layer, are defined
as the input x:

~h 1(x) = x

The last layer is the output layer. The layers in between are called hidden layers.
An exemplary NN is shown in Figure 1.

The basic network architecture can be extended with different types of layers. Ex-
amples are convolutional, batch normalization and leaky ReLU layers. A convolutional
layer takes its input as a 2- or 3-dimensional matrix and moves another matrix called
the filter over the input. The input values are multiplied by the corresponding value in
the filter to obtain the output. The goal of a batch normalization layer is to normalize
the activation values of the neurons. Therefore, the mean and standard deviation are
learned during training. During inference, the batch normalization layer behaves like
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a layer without an activation function as it only normalizes the activation values ac-
cording to the learned parameters. The leaky ReLU layer takes only one input without
weights and performs the following activation function:

LeakyReLU (x) =

{
x for x > 0

0.01x otherwise
(1)

A more detailed introduction to NNs and different layer types can be found in [28].

input layer hidden layers output layer

Fig. 1: Architecture of a NN

2.2 Gaussian-Based White-Box Monitoring

In [14] Hashemi at al. introduced Gaussian-based OOD detection for a classification
NN. In this setting, the NN is trained to assign an image to one of the classes in C =
{c1, ..., cnL

}. The underlying assumption is that neurons behave similar for objects
of a particular class. Furthermore, neuron activation values are assumed to follow a
Gaussian distribution. Therefore, the neuron activation values hi are recorded for each
monitored neuron i ∈ M for a set of monitored neurons M and for each sample of the
training data X = {x1, .., xm} leading to a vector ~r i with rij = hi(xj). The vector
is then separated by class to ~r i

c? for c? ∈ C. In the next step, the mean and standard
deviation µi,c? , σi,c? are calculated for the neurons dependent on the classes. Due to
assumption of a Gaussian distribution, 95% of the samples are expected to fall into the
range [µi,c? − k σi,c? , µi,c? + k σi,c? ] where k is a value close to 2.

During inference, a new sample x is fed into the NN, a class c? is predicted and the
neuron activation values are recorded. The monitor checks if the activation values fall
within the previously computed range of values. More formally:

∀i ∈M : hi(x) ∈ [µi,c? − k σi,c? , µi,c? + kσi,c? ] (2)

However, the paper [14] showed that rarely the activation values of all neurons fall
within the desired range. Due to the selection of bounds for the interval to contain 95%
of the neuron activation values of the training data, even examples utilized to calculate
the bounds may not fulfill the above condition. Therefore, the condition is weakened
to only require a fixed percentage of neurons to be inside the bounds. This threshold
was set manually in the paper with the goal of obtaining similar false alarm rates as
Henzinger et al. [17].
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2.3 Inductive Conformal Anomaly Detection

In our work we leverage Inductive Conformal Anomaly Detection (ICAD) which was
introduced in [23]. ICAD extends conformal anomaly detection [22]. The idea is to
predict if a new sample xm+1 is similar to a given training set X = {x1, ..., xm}. For
this purpose, a nonconformity measure A is introduced. This function takes as input
the training set and a new sample for which to compute the nonconformity score and
returns a real-valued measure of the distance of xm+1 to the samples of X . Afterwards,
the p-value is calculated based on the nonconformity measure. The p-value for sample
xm+1 is calculated by

pm+1 =
|{xi ∈ X|A(X \ {xi}, xi) ≥ A(X,xm+1)}|

|X|
. (3)

A low p-value hints to a non-conformal sample xm+1. In general, this approach is
inefficient as it requires the repeated computation of the nonconformity score for the
entire training set X . An improvement was introduced in [23]. The training set is split
into a proper training set Xp = {x1, ..., xk} and a calibration set Xc = {xk+1, ..., xm}
with k < m. In the first step, the nonconformity measure A is applied to samples of
the calibration set based on the proper training set. For the new test sample xm+1 the
p-value is then computed in comparison to the calibration set:

pm+1 =
|{xi ∈ Xc|A(Xp, xi) ≥ A(Xp, xm+1)}|

|Xc|
(4)

3 Monitoring Algorithm

In this paper we propose a monitoring algorithm which extends the Gaussian based
monitoring from [14] to object detection NNs and embeds it into the framework of
ICAD.

3.1 Extension to Object Detection Neural Networks

The approach presented by Hashemi et al. [14] relies on the distinction of images by
different classes as a separate interval for the neuron activation values is computed for
each of the classes. However, images fed to an object detection network can contain sev-
eral objects of different classes at different locations at the same time. When computing
the intervals based on the classes contained in the images, one image could be relevant
for several of those intervals. For example, an image containing a car and a pedestrian
would contribute to the intervals for both classes. However, the pedestrian could only
make up a small part of the input image leading to only a small fraction of neurons being
influenced by the object. Consequently, neurons not related to the person are considered
as relevant for the class intervals. Furthermore, the position of pedestrians throughout
different images can shift and the neurons related to the pedestrian change accordingly.
Consequently, the class related intervals would mostly consists of values from neurons
that are not related to objects of the class. In addition, this approach increases the run-
time at inference time. A previously unseen image would need to be checked against
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an interval for each class it contains an object of. In the worst case this could result in
the total number of classes. As most of the values used for constructing the intervals
are similar since they are not related to the particular object, the computations are also
highly redundant.

To resolve both issues we discard the class information. This is supported by the
observation that images are generally recorded in similar areas and therefore the general
setting of a street is contained in all of them. The only changes are due to the objects
and are locally bounded to their locations. The approach reduces the runtime to only
one check per image and discards redundant computations. In total, we monitor the
following condition discarding the class information:

∀i ∈M : hi(x) ∈ [µi − k σi, µi + k σi] (5)

3.2 Embedding into the Framework of Inductive Conformal Anomaly Detection

In the next step we improve the manual threshold setting from [14] for the number of
neurons that need to fall inside the expected interval. We propose to use ICAD for this
purpose. Therefore, we divide the training set into the proper training set Xp and the
calibration setXc and define the nonconformity measureA to be the number of neurons
falling outside the range [µi,p − k σi,p, µi,l,p + k σi,p] computed based on the proper
training set Xp. We capture the number of neurons outside the interval rather than the
ones inside as the nonconformity measure is expected to grow for OOD data. More
formally with M as the set of monitored neurons, usually all neurons of a particular
layer and µi,p, σi,p the bounds computed as described in the last section based on the
set Xp as training set:

A(Xp, x) =
|{i ∈M |hi(x) /∈ [µi,p − k σi,p, µi,p + k σi,p]}|

|M |
(6)

Afterwards, the p-value is calculated as described in equation 4. The threshold for
the p-values is then set manually based on the requirements of the use case as there
is a trade-off between the false alarm rate and the detection rate. For example, a high
threshold for the p-vale leads to a low number of wrongly classified OOD examples, but
the number of ID data classified as OOD will also rise as even some of the images from
the calibration set are classified as OOD. Overall, the threshold setting is now closely
related to the calibration set instead of the abstract metric of number of neurons inside
the bounds.

4 Experiments

Experiments were performed on PolyYolo [20] which is based on the famous architec-
ture called YOLO (You Only Look Once) [29]. YOLO was introduced in 2016 from
Redmon et al. and afterwards continuously extended to improve the performance. For
our work we decided to focus on PolyYolo [20] as it improves YOLOv3 [30] while also
reducing the size of the network. The architectue can be seen in Figure 2. PolyYolo
consists of three main building blocks. A convolutional set contains a convolutional
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layer and a batch normalization layer followed by leaky ReLU layer. A Squeeze-and-
Excitation (SE) block [19] contains a Global Average Pooling layer to reduce the size
of each channel to 1 followed by a reshape layer, a dense layer, a leaky ReLU layer and
a dense layer. The output of this sequence is meant to represent the importance of each
channel compared to the others. Therefore, the last layer of the block multiplies the
input with the result of the sequence to scale the input. The residual block with SE then
contains two consecutive convolutional sets followed by a SE block. The result is added
to the input. The backbone of PolyYolo consists of several iterations of convolutional
sets followed by residual blocks with SE as shown in figure 2. In between, there are
three skip-connections to the neck. The neck uses upsampling to scale all results of the
skip-connections to the same size and adds them up with intermediate convolutional
sets. After all connections are added to one feature map, four convolutional sets are
applied. The final layer is a convolutional layer. We monitored layers from the last con-
volutional set of the network as those are the last hidden layers and Hashemi et al. [14]
discovered that a monitor based on the last layers of a NN lead to more accurate results.
Namely we focus on the last batch normalization and leaky ReLU layer. As ID data we
used Cityscapes [5] which is the data set PolyYolo was trained on.

Fig. 2: The image is taken from [20] and shows the architecture of PolyYolo. White
blocks represent convolutional sets, light pink indicates residual blocks with SE and
dark pink shows the upsampling.

We computed intervals for the neuron activation values based on 500 training im-
ages of the Cityscapes data set and the calibration set consists of 100 test images of
Cityscapes. In a first step, we investigated the size of the calibration set. Figure 3 shows
the importance of including images with different features. The x-axis shows the in-
terval of p-values considered for the bar while the y-axis shows the number of images
resulting in a p-value within this interval. For a calibration set of size 20, many sam-
ples obtain a p-value in the interval (15, 20]. For a large calibration set, the peaks in the
graph are flattened. However, it is also noticeable that some elements of Xc are of more
importance to the test data than others resulting in peaks as they separate the test data.
Small bars in the graph are the result of elements ofXc that do not contribute a value for
the nonconformity measure with huge difference to their neighbors. Therefore, samples
from the test data that have a higher nonconformity score than these images also have a
larger nonconformity score than other samples of Xc. A more advanced selection strat-
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egy for the calibration set could reduce this effect. To this end, we therefore fix the size
of the calibration set to 100 images.

(a) Last batch normalization layer with
|Xc| = 20

(b) Last leaky ReLU layer with |Xc| = 20

(c) Last batch normalization layer with
|Xc| = 60

(d) Last leaky ReLU layer with |Xc| = 60

(e) Last batch normalization layer with
|Xc| = 100

(f) Last leaky ReLU layer with |Xc| = 100

Fig. 3: The x-axis shows the range of p-value and the y-axis the number of images
resulting in a p-value contained in the interval. The rows correspond to different sizes
of calibration sets while the columns contain the monitored layers.

Figure 4 then shows the behavior of the p-values on selected OOD data in com-
parison to ID data. The x-axis represents again the intervals of the p-values while the
y-axis shows the number of images with p-values ranging in the specified interval. The
blue bars represent 250 ID images obtained from the validation set of Cityscapes. The
respective p-values are visualized with blue color. Similarly to the setting of Hashemi
et al. [14] we obtained OOD data by using a different data set, namely KITTI [11],
which also contains images captured by a vehicle driving in a German city. However,
all randomly selected 100 images from the KITTI data set resulted in a p-value of 0
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which is indicated with the red bar. Therefore, we generated OOD examples from the
250 Cityscapes images we used as test data by adding Gaussian noise, as noise can
be used to fool a neural network [7, 18, 26]. Our implementation is based on [27]. We
considered additional Gaussian noise with mean 0 and variance 0.02, 0.04 or 0.06. The
noise is barely detectable for humans (see Figure 5) but leads to sever faults in PolyY-
olo. As indicated in Figure 5, a noise of variance 0.02 already leads to a huge decrease
in detection rate and for a larger variance no objects were detected correctly. In Figure 4
the behavior of the p-values for images with additional noise is portrayed. The noises of
variance 0.02, 0.04 and 0.06 are depicted by cyan, green and orange bars, respectively.
For better readability, some bars were shortened. It can be seen that the p-values de-
crease when the severity of the noise increases. This trade off can be considered when
selecting a threshold value at runtime in order to decide when to raise an alarm.

(a) Last leaky ReLU layer (b) Last batch normalization layer

Fig. 4: Number of images with the respective p-value. The x-axis shows the p-value, the
y-axis the number of images resulting in the specific p-value.

For the evaluation of the monitor in a practical setting we set the threshold for p-
values to 5% meaning that a sample is classified as ID if it has a higher p-value than at
least 5% of the calibration set. This decision was influenced by Figure 4. Most samples
perturbed with a severe Gaussian noise and only a small portion of ID are classified
as OOD by this threshold. The experiments were carried out on 100 previously unseen
images of the Cityscapes data set as well as 100 images of KITTI and A2D2 [12].
Perturbations were applied to the Cityscapes images. In addition to Gaussian noise
we used impulse noise, also called salt-and-pepper noise, and the Fast Gradient Sign
Method (FGSM) attack [13]. The impulse noise manifests as white and black pixels in
the image and the strength is influenced by the random parameter. Our implementation
is again based on [27]. The FGSM attack corrupts the input pixels based on the gradient
of the output. The gradient is used to calculate a mask of changes which is then added
to the input image. The mask is usually multiplied with a small factor to make the attack
less obvious to humans. Examples of the perturbations can be seen in Figure 5.

Results of the experiment are shown in Table 1. The number of ID data classified as
OOD data lies within the range of expected values due to the setting of the threshold to
5%. Both layers detect Gaussian noise with variance of 0.04 and 0.06 while a variance
of 0.02 can fool the approach. However, this noise is not as critical as large objects
are still detected from the network (see Figure 5 for an example). For the attacked
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(a) Original image (b) Gaussian Noise with vari-
ance 0.02

(c) Gaussian Noise with vari-
ance 0.04

(d) Gaussian Noise with vari-
ance 0.06

(e) Impulse Noise with ran-
dom parameter 0.03

(f) Impulse Noise with ran-
dom parameter 0.06

(g) FGSM Attack with mask
of 0.02 times attack

(h) FGSM Attack with mask
of 0.04 times attack

(i) FGSM Attack with mask
of 0.06 times attack

Fig. 5: Image from the Cityscapes data set with additional perturbations and the predic-
tions obtained from PolyYolo on the perturbed image

images, the leaky ReLU layer was more precise. This is presumably due to the fact
that in the FGSM images pixels were purposely changed to make a large impact on the
output of the network. The leaky ReLU layer is a successor of the batch normalization
layer and the last layer before the output layer. Therefore, the changes should reflect
more. Furthermore, it is noticeable that all images taken from different data sets were
classified correctly.

5 Conclusion and Future Work

In this work we developed a tool to detect OOD images at runtime for 2D object de-
tection systems. The idea was based on Gaussian monitoring of the neuron activation
patterns. We additionally embedded the method into the framework of inductive con-
formal anomaly detection to receive a quantitative measure of difference between the
training set and new samples. Experiments visualizing the p-values were carried out.

The proposed idea can be extended in several ways. First of all, the selection of im-
ages for the calibration set can be improved as we observed a difference in importance
for the randomly selected images. In addition, the selection of monitored layers re-
quires further evaluation. We only considered the last two hidden layers of the network.
However, the architecture of PolyYolo contains staircase upsampling with skip connec-
tions. Activation values obtained from these connections are a natural way to extend
the monitoring approach to also take intermediate neuron values into consideration.
Furthermore, more experiments on other neural network architectures are required in
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Table 1: The table shows the number of images classified as ID and OOD dependent on
the perturbation applied and the data set used. Noise and FGSM were applied to the ID
data.

Data
Leaky ReLU layer Batch normalization layer

Classified
as ID

Classified as
OOD

Classified
as ID

Classified as
OOD

ID data 97 3 94 6

Gaussian noise with variance
0.02

93 7 91 9

Gaussian noise with variance
0.04

9 91 8 92

Gaussian noise with variance
0.06

0 100 0 100

Impulse noise with random
parameter 0.03

0 100 0 100

Impulse noise with random
parameter 0.06

0 100 0 100

FGSM with mask multiplied
by 0.02

35 65 39 61

FGSM with mask multiplied
by 0.04

8 92 11 89

FGSM with mask multiplied
by 0.06

0 100 0 100

KITTI 0 100 0 100

A2D2 0 100 0 100

order to generalize the results. For the same reason, different types of perturbations and
attacks should be considered for generating OOD data. An extension of the MaxLogit
monitor from [15] to the application of object detection with the goal of comparing both
monitors is worth to be exploited.
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