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Abstract—Distributed massive MIMO (DM-MIMO) systems
are a key enabler to improve the energy efficiency (EE) in future
wireless networks. Thereby, herein this architecture is considered
for the estimation of a correlated source vector in wireless sensor
networks (WSN), where each sensor node amplifies and forwards
its observation through a coherent Multiple Access Channel
(MAC) channel. Namely, the fusion centre (FC) consists of a
large number of distributed single antenna access points (AP)
connected through a backhaul network to a central processing
unit (CPU), where a Linear Minimum Mean Square Error
(LMMSE) estimation is computed. Within this setting the exact
and an approximated MSE, obtained by the LMMSE estimation,
are derived. Bearing in mind these results, we address the design
of the optimal power allocation, at each sensor node, to minimize
the total transmitted power subject to an MSE estimation
constraint. The approximation of the MSE paves the way to cast
the optimal allocation problem as a Semidefinite Programming
Problem (SDP). Finally, the numerical simulations show that our
system permits to reduce significantly the total transmitted power
compared to related work architectures proposing a massive
MIMO system where all the antennas are collocated at the FC.

Index Terms—Distributed Massive MIMO, power allocation,
estimation, sensor networks.

I. INTRODUCTION

WSN have been widely considered for decentralized in-
ference problems such as parameter estimation. Moreover,
they are a key ingredient in disruptive technologies such as
the Internet of Things (IoT). The sensor nodes of a WSN
have a limited energy budget, as they are usually battery
powered. Thereby, inference tasks in WSN are designed to
be energy efficient. Herein, the energy efficient estimation of
a source vector observed by a WSN is considered. Several
methods have been proposed to address the energy efficient
estimation task. [1] studied the quantization of the WSN data
measurements. A sensor selection method was proposed in
[2] to minimize the estimation error subject to a given energy
budget. Data reduction methods based on a linear compression
of sensor nodes’ data were proposed in [3] and [4] taking into
account its impact on the estimation error. [5] analyzed the
power allocation at each sensor node to minimize the MSE
subject to power constraints, in a multiple antenna FC.

In fact, EE is regarded as a key pillar in the design of
future wireless communications systems [6]. The rationale
is that the capacity has to increase dramatically without
increasing the current power consumption to avoid economical
and societal concerns. Thereby, new system architectures have
been recently proposed to increase the EE through a network

densification, i.e. increasing the number of access nodes or
the communication links per unit area [6], [7]. One of them
is collocated massive MIMO (CM-MIMO), which considers
a large number of antennas at the base station (BS) [8]. This
system architecture has been recently considered in WSN to
reduce the transmitted power in estimation problems. Namely,
considering a scalar parameter and a coherent MAC channel,
[9] and [10] studied the ML and LMMSE estimation at the
FC, respectively. Within this setting [11] tackled the LMMSE
estimation of a correlated source vector.

Herein, the LMMSE estimation of a correlated source vector
is studied within the context of a DM-MIMO system. Namely,
a WSN sends the noisy measurements of the source vector
through a coherent MAC channel to the FC. The FC consists
of a large number of single antenna APs, which on its turn
are connected to a CPU through a backhaul network. Thereby,
the CPU obtains an LMMSE estimation of the source vector.
Moreover, power allocation is considered at each WSN node to
minimize the total transmitted power subject to an estimation
error constraint. Thereby unlike the related works in [9], [10]
and [11] a DM-MIMO system is considered for decentral-
ized estimation. This type of systems, a.k.a. large distributed
antenna systems (L-DAS), have been considered recently to
increase dramatically the EE in 5G cellular networks, see
e.g. [7] or [12]. Our contributions are stated next. We obtain
the MSE associated to the LMMSE estimation as well as an
approximation of it, bearing in mind the DM-MIMO context.
This permits to obtain the optimal power allocation that
minimizes the total transmitted power for a given estimation
error as an SDP problem, which can be efficiently solved.
The numerical simulations show that compared to [11], which
considers a CM-MIMO, the total transmitted power in the
WSN is reduced for a given MSE constraint, both in the
uniform and the optimal power allocation problems. Moreover,
our work is more general than [9] and [10] as a vector source
is considered in the estimation rather than a scalar.

The rest of the paper is organized as follows. Section II
describes the system model. Section III obtains the MSE
associated to the LMMSE and the optimal power allocation for
a given estimation error in the DM-MIMO setting. Section IV
presents the numerical results and section V the conclusions.

II. SYSTEM MODEL

The proposed system model is depicted in figure 1. Namely,
we consider a WSN composed of L sensor nodes, which



take noisy observations of a source vector θ. The vector of
measurements x is expressed as

x = θ + n,

where n is the sensing noise. Both θ,n ∈ CL are mod-
eled as circularly symmetric complex normal random vec-
tors, i.e. θ ∼ CN (0,Cθ) and n ∼ CN (0,Cn) , with
Cn = diag(σ2

n1
, . . . , σ2

nL
) 1. Power allocation is considered

at each sensor, i.e. the l-th node multiplies its observation by
a complex gain αl and forwards it through a coherent MAC
channel to the FC.

Regarding the FC, it is composed of a large number N
of geographically distributed single antenna APs, which are
supposed to serve simultaneously all the sensor nodes. The
APs are connected to a CPU via a backhaul network. On its
turn, the CPU performs the estimation of θ given the received
WSN measurements stacked in y. Herein it is assumed that
N � L, thereby this is a DM-MIMO system, a.k.a. L-DAS
or cloud radio access network (C-RAN) if the CPU is imple-
mented within the cloud computing paradigm. DM-MIMO has
been recently considered to increase the EE in future wireless
communications systems, see e.g. [7] or [12]. Herein, DM-
MIMO is considered within the context of wireless sensing
to assess its potential to reduce the transmitted power of the
WSN for a given estimation error constraint. Regarding y, it
is modeled as follows,

y = HDx + v. (1)

Where D = diag(α1, . . . , αL) is the matrix of gains to
be designed, i.e. the one implementing the power allocation.
v ∼ CN (0, σ2

vI) is an additive white gaussian noise (AWGN)
and H ∈ CN×L is the channel between the sensor nodes and
the APs. Note that the l-th column of H is the channel between
the l-th sensor node and each of the APs and can be modeled
as,

H = (h1, . . . ,hL) , hl = Γ
1/2
l fl. (2)

Where Γ
1/2
l is a diagonal matrix modeling the large-scale

fading, i.e. Γl , diag(γ1l, . . . , γNl), γnl = d−2βnl , dnl is the
distance between the l-th sensor node and the n-th AP and β
is the pathloss exponent. The small-scale fading is modeled
by fl whose components are i.i.d random variables, namely
[fl]i ∼ CN (0, 1) ∀i = 1, . . . , N .

Remark 1: Several assumptions are assumed in the pro-
posed DM-MIMO system. Firstly, as in e.g. [12], a perfect
backhaul network is presumed between the APs and the CPU.
Secondly, perfect synchronization is assumed between the
WSN nodes and the APs, to allow coherent reception at the
FC, similarly than [11]. Thirdly, the FC, namely the CPU, has
perfect knowledge of the channel and noise statistics.

Remark 2: The channel model in (2) shows that the
proposed DM-MIMO generalizes the CM-MIMO system in
[11]. Namely, assume that all the antennas are collocated at

1From now on diag(x1, . . . , xn) denotes a diagonal matrix with elements
x1, . . . , xn in its main diagonal.

a given AP, then the distance between the l-th sensor node
and any of the antennas is approximately the same, i.e. the
elements of Γ

1/2
l in (2) fulfill that γnl = γl ∀n = 1, . . . , N .

This leads to obtain the channel model for a CM-MIMO
proposed in [11, eq.(3)].

Figure 1. Proposed DM-MIMO system for decentralized estimation of a
source.

III. OPTIMAL POWER ALLOCATION IN A DM-MIMO
SYSTEM

A. LMMSE estimation and asymptotic MSE approximation

This section deals with the LMMSE estimation of the
source of interest (SoI) θ within the context of the system
model proposed in section II. Namely, the data received at
the CPU of the FC fulfills the model stated in (1) with
the assumptions stated in Remark 1. Morevoer, recall that
the LMMSE estimation of θ is given by the conditional
expectation θ̂ = E[θ | y,H], see [13, Ch.15]. Thereby, in
a DM-MIMO setting θ̂ takes the next expression,

θ̂ = E[θ | y,H] =
(
C−1θ + DHHHC−1w HD

)−1
×DHHHC−1w y. (3)

Moreover, after easy manipulations involving the matrix
inversion lemma, one obtains that the MSE obtained by θ̂
is given,

MSE = Tr
[(

C−1θ + σ−2v DHHHHD− σ−4v DHHHHD

×
(
C−1n + σ−2v DHHHHD

)−1
DHHHHD

)−1]
. (4)

Next, an asymptotic approximation of the MSE is derived.
This has several benefits. Firstly, a more compact expression
will be obtained. Secondly, the randomness of the channel
due to the small-scale fading will vanish. This is interesting in
terms of channel estimation, as the estimation must be updated
less frequently. Namely, the large scale fading varies much
more slowly than the small-scale fading. Thirdly, this MSE
approximation will pave the way to formulate the design of
the optimal power allocation within a convex optimization
framework, see section III-B. To obtain the desired MSE
approximation, let us introduce the next lemma,



Lemma 1. Consider the asymptotic regime where N → ∞
and L remains fixed. Then, HHH, with H defined in (2),
converges in probability to the next expression,

HHH
p−→ diag

(
N∑
n=1

γn1, . . . ,

N∑
n=1

γnL

)
(5)

Proof: See Appendix.

Lemma 1 paves the way to obtain the desired approximation
of the MSE. This is formally stated in the next theorem.

Theorem 1. Let define the diagonal matrix B with diagonal
elements bl = |αl|2

∑N
n=1 γnl for l = 1, . . . , L. Then, when

N →∞ for a fixed L, the MSE in (4) converges in probability
to MSE, whose expression is given next,

MSE
p−→ MSE = Tr

[(
C−1θ + σ−2v B− σ−4v B

×
(
C−1n + σ−2v B

)−1
B
)−1]

. (6)

Proof: (6) is obtained by applying Lemma 1 into (4).

B. Optimal Power allocation

The energy budget is a scarce resource in a WSN and
the proposed DM-MIMO system permits to reduce drastically
the WSN power consumption by having a large number of
virtual antennas at the FC. Thereby, this section deals with
the problem of minimizing the total transmitted power Pt
of the WSN nodes for a given performance constraint in
the estimation task, within the DM-MIMO context proposed
herein. This problem is expressed as,

minimize
{bl>0}Ll=1

Pt(bl)

subject to MSE(bl) 6 δ.
(7)

Where δ is the maximum estimation error permitted in the
estimation problem at hand and the approximation of the MSE,
i.e. MSE(bl) in (6), is considered. This will pave the way to
obtain a convex optimization problem. Moreover, according to
section II, Pt(bl) has the next expression,

Pt(bl) = E[‖D(θ + n)‖2] = Tr[DHD(Cθ + Cn)]. (8)

Next, let us define Γ̃ as

Γ̃ = diag

(
N∑
n=1

γn1, . . . ,

N∑
n=1

γnL

)
.

Given this definition of Γ̃ an recalling the expression of bl
in Theorem 1 leads to express Pt(bl) as follows,

Pt(bl) = Tr
[
Γ̃
−1

B(Cθ + Cn)
]
. (9)

Thus, the optimization problem (7) can be restated as
follows after substituting (9) and (6) into it,

minimize
B�0

Tr
[
Γ̃
−1

B(Cθ + Cn)
]

subject to Tr
[(

C−1θ + σ−2v B− σ−4v B

×
(
C−1n + σ−2v B

)−1
B
)−1]

6 δ.

(10)

Next, after introducing slack variables X,Z and by consid-
ering the Schur complement of a block matrix, the optimiza-
tion problem (10) can be cast as follows,

minimize
B,X,Z�0

Tr
[
Γ̃
−1

B(Cθ + Cn)
]

subject to Tr[Z] 6 δ(
C−1θ + σ−2v B− σ−4v X I

I Z

)
� 0(

X B
B C−1n + σ−2v B

)
� 0.

(11)

This is an SDP problem and thereby can be solved effi-
ciently, i.e. in polynomial time, by software packages relying
on interior point methods.

Remark 3: The comparison of the proposed algorithm in
(11) to a uniform power allocation method is of paramount
importance. This analysis is presented in section IV. In the
latter case, D = αI and thereby B = |α|2Γ̃ and Pt =
Tr[|α|2(Cθ + Cn)] in (11).

IV. NUMERICAL RESULTS

Next, we assess the power allocation method proposed in
(11), which seeks to minimize the total transmitted power of
a WSN in a DM-MIMO context, for a given estimation error
constraint. The next simulation parameters are considered for
the experiments. An exponential covariance matrix model is
considered for the source covariance, i.e. [Cθ]ij = ρ

|i−j|
θ with

0 6 ρθ 6 1. The sensing and AWGN noise variances, i.e.
σ2
v , σ

2
nl

, are specified below. The number of WSN nodes is
L = 15. In the coefficients modeling the large-scale fading,
i.e. γnl = d−2βnl , the pathloss exponent β = 1. The WSN nodes
and the APs, of the DM-MIMO setting, are within a square
area with side length a = 160, and their coordinates are gen-
erated randomly according to a uniform distribution between
0 and a at each iteration of the simulation, which leads to
obtain dnl. For the CM-MIMO setting, the same scenario is
considered but the antennas of the FC are fixed at the center of
the square area. This leads to obtain γl = d−2βl , see Remark 2
above for further clarifications. Finally δ in (11) is set to the
middle of the interval (Tr[(C−1θ + C−1n )−1],Tr[Cθ]], which
defines its possible values according to [11].

In Figure 2 the asymptotic approximation of the MSE
proposed in (6) is studied. Namely, we consider a WSN with
a total transmitted power of Pt = 10−2 W, ρθ = 0.95,
σ2
nl

= 10−3 W ∀l and σ2
v = 10−6 W. Moreover, a uniform

power allocation (UPA) is implemented, i.e. D = αI. Thereby,
according to (8), |α|2 = Pt

L([Cθ+Cn]ll)
∀l. Moreover, a Monte

Carlo simulation with 100 iterations is considered. At each
iteration the coordinates of the WSN nodes and APs are



generated randomly as specified above, this produces a given
H. Given these simulation conditions, we plot the exact MSE
in (4) and its approximation in (6) achieved by the LMMSE
in a DM-MIMO setting. For comparison purposes, we plot
the exact and approximated MSE achieved by the LMMSE in
a CM-MIMO context as well. These MSE expressions were
obtained in [11] and are a particular case of (4) and (6) due to
the Remark 2 explained above. Figure 2 highlights that MSE
tends to MSE when N increases for a fixed L as predicted in
Theorem 1 and for N > 100 on the approximation is tight.
It can be observed, that for a UPA setting, the performance
of the proposed LMMSE in a DM-MIMO outperforms the
one of the LMMSE in a CM-MIMO, which was proposed
in [11]. The rationale is that due to its distributed nature, a
DM-MIMO setting permits to shorten the distance between
the WSN nodes and the virtual antennas of the FC compared
to a CM-MIMO scenario. Also there is more diversity in the
links as it reflected in the corresponding channel models, see
(2) and Remark 2.

Figure 2. Comparison MSE in (4) and asymptotic MSE in (6) of a DM-MIMO
and a CM-MIMO.

In Figures 3-5 we compare the Optimal Power Allocation
(OPA) and UPA in a DM-MIMO scenario (see (11) and
Remark 3) to the OPA and UPA in a CM-MIMO setting [11,
eq.(10)]. Figure 3 considers that the SoI is an uncorrelated
source vector, σ2

v = 10−3 W and σ2
nl

= 10−6 W ∀l. It can be
observed that the total transmitted power of the WSN, for a
given estimation error constraint, can be significantly reduced
in the proposed DM-MIMO setting compared to a CM-MIMO
setting. The rationale is analogous to the one of figure 2.
Moreover, it can be observed that both the UPA and OPA
obtain similar performance. The reason is that the source is
uncorrelated, the sensing noise variance is the same among
WSN nodes and the AWGN variance is the same at the APs.
Thereby, in this case the optimal power allocation is a uniform
one, because there is not redundant information measured by
the sensors and the quality of the information arriving at the
FC from different WSN nodes is the same.

In figure 4 the same type of simulation than figure 3 is
carried out. Herein, σ2

v = 10−3 W and the main difference
is that the sensing noise variance is varied in the WSN

Figure 3. Comparison for uncorrelated source vector (i.e. ρθ = 0).

nodes. Namely, it is generated randomly according to the
next uniform distribution σ2

nl
∼ U(0.5 · 10−3, 0.9 · 10−3).

This variable sensing noise leads the OPA to obtain better
performance than the UPA both for the DM-MIMO and CM-
MIMO scenarios, as a higher weight is assigned to the nodes
with better sensing information. Moreover, in this scenario
the OPA DM-MIMO and UPA DM-MIMO permit to reduce
significantly the total tranmstted power compared to the CM-
MIMO case due to the same rationale than the previous figures.

Figure 4. Comparison for uncorrelated source vector (i.e. ρθ = 0) and
variable sensing noise variance (σ2

nl
∼ U(0.5 · 10−3, 0.9 · 10−3)).

Finally, in figure 5 a similar simulation than figure 3 is
presented. The difference is that now the source vector is
correlated with correlation factor ρθ = 0.95. It can be observed
that the OPA methods obtain better performance than the UPA
ones. The rationale is that in this case there is redundant
information among sensors. Thereby, one can discard the
information or lower the weight at some of the WSN nodes
to reduce significantly the total transmitted power without
affecting significantly the resulting MSE at the FC. As in the
previous figures, the transmitted power in the proposed DM-
MIMO setting is reduced notably compared to the CM-MIMO
scenario. Again this is because in a DM-MIMO setting the



virtual antennas lower the distance to the WSN nodes thanks
to their distributed nature compared to CM-MIMO where all
the antennas are collocated at the FC.

Figure 5. Comparison for correlated source vector with ρθ = 0.95.

V. CONCLUSIONS

This paper has considered a distributed massive MIMO
scenario to reduce significantly the total transmitted power of a
WSN in the estimation of a correlated source vector. Namely,
a WSN takes noisy measurements of the SoI and transmit
them via a coherent MAC channel to a FC. This consists
of a large number of distributed APs, or virtual antennas,
which are connected to a CPU via a backhaul network. We
have presented the exact MSE associated to an LMMSE
estimation at the CPU of the FC. Then, leveraging the massive
MIMO setting, an approximated MSE has been obtained,
which converges to the exact MSE when L remains fixed
and N grows without bound. This approximated MSE has
paved the way to design an optimal power allocation method
to minimize the total transmitted power of the WSN subject to
an estimation error constraint at the FC. The obtained method
can be cast as an SDP problem. The numerical results show
that the proposed method leads to reduce notably the total
transmitted power for a given MSE constraint compared to
the related work where all the antennas are collocated at the
FC, i.e. a collocated massive MIMO setting.

APPENDIX: PROOF OF LEMMA 1

First, according to (2), we obtain the next equality,[
HHH

]
ll
= fHl Γlfl.

Recalling the expression of Γl in (2) and defining fl =
(f1l, . . . , fNl)

T ,
[
HHH

]
ll

ca be rewritten as[
HHH

]
ll
= γ1l|f1l|2 + . . .+ γNl|fNl|2. (12)

Now, for ease of notation, we introduce Sll, xn and µn,
which have the next definitions,

Sll =
[
HHH

]
ll
, Sll =

∑N
n=1 xn, µn = E[xn].

Thus, assuming that var(xn) 6 c <∞ and xn are indepen-
dent ∀n, by the Chebyshev’s inequality the next relation holds
for any real number ε > 0,

Pr[|N−1Sll−N−1
N∑
n=1

µn| > ε] 6

∑N
n=1 var(xn)
N2ε2

6
c

Nε2
.

Note that µn = E[γnl|fnl|2] = γnl, as fnl ∼ CN (0, 1).
Thereby, taking N → ∞ in both sides of the last equation,
the next convergence in probability is obtained,

lim
N→∞

Pr[|N−1Sll −N−1
N∑
n=1

γnl| > ε] = 0 (13)

The same procedure can be applied to show that the off
diagonal elements of HHH converge to 0. To this end, note
that

[
HHH

]
lk

= fHl Γ
1/2
l Γ

1/2
k fk and recall that fl, fk are

independent with zero mean elements.
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