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Abstract—This paper suggests a new methodology based on
the Lattice Boltzmann Method for the modelling of complex
biomechanical systems. The LBM can be applied for different
operations due to the matching of the pixels of medical images
with the nodes of the lattice used by the Lattice Boltzmann
method. This allows the optimisation and reduction of the com-
putation time when solving multiphysics complex phenomena. To
demonstrate the efficiency of the chosen approach, the modelling
of the thrombosis phenomenon within the cavity of a giant cere-
bral aneurysm has been implemented. The underlying strategy
is to implement the Lattice Boltzmann Method for different
operations such as extracting the geometry of a considered
aneurysm associated to its parent vessel, solving fluid dynamics
governing the blood flow and modelling the thrombus growth.

I. INTRODUCTION

The Lattice Boltzmann Method (LBM) is famous in fluid

dynamics [1] [2] [3], it is especially appreciated for its

accuracy, its rapidity and its simplicity, indeed it requires

no meshing operation and a regular or irregular network is

sufficient [4]. Moreover, LBM shown also its efficiency in

image processing [5]. Since an image is a regular grid of

pixels, it is theoretically possible to work on the same network

for this two previous fields. Here is presented a method

going from the theory to the demonstration of its feasibility

through a medical application and even further by adding

biological phenomena. Thus, the original idea of working on

a same support to implement concurrently image processing,

fluid mechanics simulation and biomechanics modelling is

original, challenging and promising (see Fig. 1). Thanks to the

linearisation of some partial differential equation introduced by

Bhatnagar, Gross and Krook [6], it is possible to have a generic

LBM capable of solving image processing, computational

fluid dynamics and mechanobiology problems. The proposed

method is more than a simple succession of well studied cases,

it shares the same support to solve all theses problems together.

This allows, each LBM layer of the solver to have, at any time,

access to informations from the others layers. The presentation

of this paper is constructed with the following parts. First a

short but general introduction to the LBM method is given.
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Fig. 1. Schematic representing the order to use the different LBM layers

Second, the LBM is presented as a dedicated tool for image

processing, filtering and segmenting images. The third part

shows how the LBM can be used as Computational Fluid

Dynamics (CFD) applications solver. Finally, the last part

shows how LBM can be used to simulate mechanobiogical

interactions. Then the application case of a cerebral aneurysm

is treated to illustrate the generic proposed method. A cerebral

aneurysm is a vascular disorder characterised by a dilation of

the vessel wall itself caused by vessel walls weakening. A

cerebral aneurysm healing is conditioned by the formation

of clot or thrombus. The modelling of this biomechanical

phenomenon named thrombosis is complex since the hemody-

namic must be coupled to a biomechanical model in order to

understand the thrombus formation based on patient biological

factors [7] [8].

II. LATTICE BOLTZMANN METHOD

A. The Boltzmann equation and the BGK approximation

In physics, it is common to focus on pressure and tempera-

ture parameters. Both are originated from a statistical average

over a large number of individual particles. This statistical

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2723



aspect has been taken into account by the Boltzmann equation,

which has been proved to be a valuable tool that is best

suited to fluids behaviours investigations [9]. The Boltzmann

equation takes in consideration the probability at time t that a

high level of particles fills a small domain centred in x with

a velocity ξ . This probability considered as a distribution

function f(x, ξ, t) obeys the Boltzmann integro-differential

equation [9]:

∂f

∂t
+ ξ ·∇xf +

g

m
·∇ξf = Ω(f, f), (1)

where g is the external force acting on the particles in the

fluid, m the particle mass and Ω the collision integral which

describes the collisions between particles. The main concern

when working with the Boltzmann equation is the non linear

expression of Ω. To tackle this issue, different models have

been implemented; In particular the linearisation induced by

the BGK model has been proposed by Bhatnagar, Gross and

Krook [6]. With this model the right hand side of Eq. (1)

becomes:

∂f

∂t
+ ξ ·∇xf +

g

m
·∇ξf = −

1

τ
(f − feq), (2)

where τ is a relaxation time. In Eq. (2) the Maxwell-

Boltzmann equilibrium distribution function feq is expressed

as

feq =
ρ

(2πkBT )
D/2

exp

[

−
(ξ − u)2

2kBT

]

, (3)

where ρ is the fluid density, kB the Boltzmann constant

and D the physical dimension. u is the mean velocity. The

temperature T is supposed constant in our problem,

B. From Boltzmann equation to Lattice Boltzmann method

The LBM is issued from lattice gas cellular au-

tomata [9] [10] [11] introduced with the HPP model [12] [13].

The traditional CFD methods aim to solve partial differential

equations on a meshed geometry, where the LBM fills the

physical space with a regular lattice and models fluid on it by

using probable distributions of particles to perform propaga-

tion and collision processes over this lattice. Moreover, each

node of the lattice respects conservation laws which guarantee

to solve correctly fluid mechanics applications. LBM can

also be considered as a discretised version of the Boltzmann

equation [14] elaborated as follows; Initially, the discretisation

of velocity and distribution functions is performed, leading to:

ξ → ξi, (x, t)→ fi (xi, t) . (4)

In this operation, the discrete velocities must be correctly

chosen to respect the spatial isotropy of the problem [2] [9].

Then, assuming no external force and the BGK approximation,

the discrete Boltzmann equation is expressed like:

∂fi

∂t
+ ξi ·∇fi = −

1

τ
(fi − f

eq
i ) , (5)

Note that ei =
ξ

U0

where U0 is the reference velocity. The

discrete time unit can be given as ∆t = ∆x
cs

= 1 with ∆x

the basic unit for lattice spacing and cs is the speed of sound.

f
eq
i represents the discrete form of the equilibrium distribution

function.

After calculus of the Boltzmann equation in non-

dimensional form, and discretisation of both time and space,

the lattice Boltzmann equation expression is obtained [9]:

fi (x+ ei ·∆t, t+∆t)− fi (x, t) = −
1

τ
(fi − f

eq
i ) , (6)

where f
eq
i is obtained with the first terms of Taylor’s series

of the Maxwellian equilibrium distribution function shown in

Eq. (3). It can be read as

f
eq
i = ρwi

(

1 +
ei · u

cs2
+

(ei · u)
2

2cs4
−

u · u

2cs2

)

, (7)

where wi are the weight coefficients associated to the direc-

tions; ρ represent the macroscopic density of the fluid and u

represents its velocity. The density and the velocity are written

in function of the fi:

ρ =
∑

i

fi =
∑

i

f
eq
i , (8)

ρu =
∑

i

eifi =
∑

i

eif
eq
i . (9)

The numerical code has been implemented in the framework of

the Palabos project (http://www.palabos.org) which is an open-

source CFD solver based on the Lattice Boltzmann Method.

The numerical simulations have been performed by using the

facilities of the IN2P3 computing centre (National Institute

of Nuclear and Particle Physics) from the CNRS (French

National Scientific Research Council).

III. LBM AND SEGMENTATION

LBM anisotropic diffusion for image processing has been

implemented for image preprocessing such as smoothing and

filtering operations [5] [15] and segmentation [16] [17]. To

explain the genesis of this method, the Chapman-Enskog and

Taylor expansions are applied on the LBM Eq. (6) and the

Equation of Diffusion is recovered:

∂ρ

∂t
=

∆x2

3∆t
(τ − 0.5)∇2ρ. (10)

Then with a variable relaxation time τ , the anisotropic diffu-

sion equation can be reconstructed.

More recently a LBM segmentation tool has been elaborated

to capture a Geometric Active contour model. This new

method has been applied with success to the segmentation

of aneurysms, and relevant scientific results have been pub-

lished [18]. Thanks to the advances in medical image tech-

niques and reconstruction tools, patient-specific geometries of

aneurysms with parent blood vessels, are provided with the

LBM (see Fig. 2).
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Fig. 2. Result of the thrombus segmentation with a LBM anisotropic diffusion

IV. COMPUTATIONAL FLUID DYNAMICS

CFD is a branch of fluid dynamics providing a qualitative

and quantitative prediction of real fluids by performing nu-

merical solutions of the governing equations. Theses are the

famous Navier-Stokes equations which aim to describe the

evolution of flow behaviour. In fact, these governing equations

are complex with no analytical solution yet in the general

case. This is the reason why a numerical approach is often

chosen. The LBM offers an original way to solve Navier-

Stokes equations at a mesoscopic scale based on the average of

microscopic parameters, through the resulting variables such

as ρ and u [3], but also with two major macroscopic quantities

the stress tensor Π and the equilibrium tensor Πeq:

Παβ =
∑

i

eiαeiβfi (11)

Πeq
αβ =

∑

i

eiαeiβf
eq = pδαβ + ρuαuβ (12)

where eiα is the αth component of the ei (i.e. eiα = ei · rα
with rα a vector of the space base) ; p is the fluid pressure

and δαβ is the Kronecker symbol.

By applying the Chapman-Enskog expansion in Eq. (5), the

Navier-Stokes equations can be retrieved:

∂tρ+∇.(ρu) = 0, (13)

∂t(ρu) +∇.Π = 0, (14)

where Π is the stress tensor:

Π = (pI + ρuu− 2νσ) (15)

with σ the viscous stress tensor and ν the kinematic viscosity.

The hemodynamics field has been studied using CFD with

LBM formulation and several studies demonstrated the LBM
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Fig. 3. Computed velocity of the blood flow inside the aneurysm and its
parent vessel

ability for providing a detailed analysis of the blood flow for

patient-specific cases [8] [19] [20] (see Fig. 3).

V. THROMBUS MODELLING WITHIN CEREBRAL ANEURYSM

The biological mechanism of thrombus formation inside

aneurysms is complex and deals with different nature of bio-

logical parameters with their variability related to patients [21]

(see Eq. (16)).

In addition to biochemical factors, hemodynamics plays

a key role in the understanding of the thrombus forma-

tion [19] [22]. Hemodynamic parameters, such as velocity

and Wall Shear Stress (WSS) have been estimated in-vivo

and in-vitro to understand the underlying biomechanical re-

actions [23] [24].

Endothelial Cells
WSS<Threshold
−−−−−−−−−−−→ Thrombin

Thrombin+Antithrombin −→ ∅

Fibrinogen
Thrombin
−−−−−−→ Fibrin (16)















































Fibrin −→ Fibrin Mesh

Fibrin Mesh+ Platelet −→ Thrombosis

Thrombosis
Specific time T
−−−−−−−−−−−→ Endothelial Cells

Thrombus with onion-skin structure have been observed on

some giant aneurysms from patients. They have the capacity

to initiate the thrombus formation when the WSS inside the

cavity of the aneurysm is low enough to provide the good

environment for the building of a blood clot [25]. As a result,

the thrombus formation can be triggered or not, by changing

the magnitude of the velocity profile [20].

In consequence, a thrombosis model has been implemented

with the LBM taking in consideration the successive steps
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given by Eq. (16) reflecting the biological schematic on Fig. 4.

Indeed, the hemodynamic and the biological parameters are

varying [19] [20] [26] [27] [28] with the successive growth of

the thrombus (see Fig. 5).
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Fig. 4. Schematic of the thrombosis reaction system

Fig. 5. Numerical simulation of the thrombosis growing layer by layer

In the above model, for example the thrombin particles can-

not be generated by a thrombus node until this node becomes

a new born wall node after a specific time to control the

thrombosis process [26]. Since the considered thrombosis is

growing with an onion-skin structure [20], when no thrombin

particle stays inside the vessel, the process of constructing the

next layer is initiated. This is far from being usual and very

different from well studied cases [7] [21] [26].

Thus, a patient-specific giant aneurysm geometry has been

chosen for elaborating an onion-skin multilayer model imple-

mented with the LBM [18]. A final result is shown Fig. 6,

where the successive layers of the onion-skin clot are delimited

by white lines. Comparing with the thrombus developed by the

patient, the relevance of the model leads to a good prediction

of the formation of the thrombus. This tends to prove the

validity of the method and the models used [20].

Fig. 6. Representation of the onion-skin structure of the giant aneurysm

VI. CONCLUSION

The Lattice Boltzmann method is powerful by the fact that

the physics commonly described through partial differential

equations, must be reinterpreted at a mesoscopic scale provid-

ing a bridge between microscopic parameters and macroscopic

parameters. The fact of solving image processing, CFD and

mechanobiology on the same support is original, but above all

it has the strong advantage to allow crossing informations at

any time. This paper provides the opportunity to imagine the

modelling of physico-chemical and biological mechanisms by

implementing the Lattice Boltzmann method on a single lattice

solving different particulars mechanisms. The efficiency of

this idea was illustrated with the thrombus formation, but this

method is given without any specific focusing. The challenge

for simulating the thrombus formation remains in resolving the

biomechanical interactions between different components of

the blood taking in consideration the characteristic of the blood

flow in the parent blood vessel and in the cavity of the cerebral

aneurysm. The presented method gave good results validated

by the theoretical frame of CFD and image processing with

LBM. Plus, the mechanobiology results were validated by the

medical staff of the Thrombus project. The implementation

of LBM is a real opportunity to propose an unprecedented

and efficient numerical simulation of an onion-skin structured

thrombus formation by using the same network/lattice from

image processing applied on DICOM medical images, to

the modelling of the thrombosis mechanism coupled to the

hemodynamics of the blood; leading to a novel investigation

tool for medical scenarii without a priori models, based on

experimental data.
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