
A Two-term Penalty Function for Inverse Problems
with Sparsity Constrains

Paul Rodriguez
Department of Electrical Engineering

Pontificia Universidad Católica del Perú
Lima, Peru

Email: prodrig@pucp.edu.pe

Abstract—Inverse problems with sparsity constrains, such Ba-
sis Pursuit denoising (BPDN) and Convolutional BPDN (CBPDN),
usually use the `1-norm as the penalty function; however such
choice leads to a solution that is biased towards zero. Recently,
several works have proposed and assessed the properties of other
non-standard penalty functions (most of them non-convex), which
avoid the above mentioned drawback and at the same time are
intended to induce sparsity more strongly than the `1-norm.

In this paper we propose a two-term penalty function consist-
ing of a synthesis between the `1-norm and the penalty function
associated with the Non-Negative Garrote (NNG) thresholding
rule. Although the proposed two-term penalty function is non-
convex, the total cost function for the BPDN / CBPDN prob-
lems is still convex. The performance of the proposed two-
term penalty function is compared with other reported choices
for practical denoising, deconvolution and convolutional sparse
coding (CSC) problems within the BPDN / CBPDN frameworks.
Our experimental results show that the proposed two-term
penalty function is particularly effective (better reconstruction
with sparser solutions) for the CSC problem while attaining
competitive performance for the denoising and deconvolution
problems.

I. INTRODUCTION

A sparse representation is an adaptive signal decomposition
consisting of a linear combination of atoms from an over-
complete dictionary, where the coefficients of the linear com-
bination are optimized according to some sparsity criterion.
One of the most well-known methods for computing such a
sparse representation is Basis Pursuit Denoising (BPDN) [1]
which consists of the minimization

arg min
{u}

1

2
‖Φu− b‖22 + p(u, λ) (1)

where b is the input data, an N1 × N2 image in the present
context, Φ represents the overcomplete dictionary, u is the
sparse representation, and p(.) is the penalty function, which
usually is the `1-norm, i.e. p(u, λ) = λ · ‖u‖1.

Moreover, a convolutional sparse representation (CSR) [2],
[3] models an entire image as a sum over a set of convo-
lutions of coefficient maps, of the same size as the image,
with their corresponding dictionary filters. Given a set of
dictionary filters, the most widely used formulation of the
convolutional sparse coding (CSC) problem is Convolutional
BPDN (CBPDN) [4], defined as

arg min
{uk}

1

2

∥∥∥∥∥
K∑
k=1

Hk ∗ uk − b

∥∥∥∥∥
2

2

+
K∑
k=1

p(uk, λ) (2)

where {Hk} is a set of K (usually but not necessarily) non-
separable L1 × L2 filters and {uk} is the corresponding set
coefficient maps (each with N = N1 × N2 samples); b and
p(.) are the same as for (1).

Recently, several works [5], [6], [7], [8] have proposed or
assessed the use of different penalty functions for (1); the
list includes the Logarithmic and Arctangent penalty functions
[6], as well as those associated with the Non-negative Garrote
(NNG) [9], SCAD [10] and Firm [11] thresholding rules. The
key sought-after property for these alternatives is to induce
sparsity more strongly than the `1-norm penalty function. Due
to the similarities (see discussion in Section II-B) between
(1) and (2), at a high level, known theoretical results for (1)
do apply to (2), however computational results (reconstruction
quality, sparsity) do not necessarily follow the same trend for
(1) and (2) (see results in Section IV).

In this paper we propose a parametric two-term penalty
function (originally reported in [12]), defined as

p(x, λ, α, β) = λ · α · ‖x‖1 + pnng(x, λ · β), (3)

with α > 0, β > 0, and pnng(x, γ) is the penalty function
associated with the Non-Negative Garrote (NNG) thresholding
rule (see (12)-(13)).

II. PREVIOUS RELATED WORK

We start this section with a summary of the properties
of several non `1-norm penalty functions, to then continue
with a brief review of the well-known FISTA and ADMM
algorithms, which we use to solve (1)-(2) and carry out the
computational experiments reported in Section IV; finally we
outline known results and conditions for which the FISTA
and ADMM algorithms, considering a non-convex penalty
function, converge to the global minimum.

A. Non `1-norm penalty functions
In [5] the Firm thresholding rule was used to solve problem

(1) via a modified version of the ISTA and FISTA algorithms;
computational results showed that a larger regularization pa-
rameter (λ in (1)) can be used, when compared to the case of

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2185

the soft-thresholding rule (associated to the `1-norm penalty
function, see (11)), thus leading to a significant reduction of
the total number of iterations.

[6] assessed the convergence properties of the ISTA al-
gorithm for any thresholding rule1 and presented numeri-
cal examples comparing the `0, `1 norms with the NNG,
SCAD and Firm thresholding rules when solving problem
(1) applied to denoising and inpaiting of images. One of
the main conclusions of [6] is that the best thresholding rule
(reconstruction quality point of view) is problem dependent. It
is also mentioned that NNG, SCAD and the Firm thresholding
rules have very similar performance.

The Logarithmic and Arctangent (parametric) penalty func-
tions were introduced in [7]; it also focused on the conditions
to be met by non-convex penalty functions so as to ensure
the convexity of the total cost function of (1). While these
penalty functions exhibit less bias (than the `1-norm) they are
particularly convenient in algorithms for solving (1) that do
not used their corresponding thresholding rules directly but the
derivative of their penalty functions, such IRLS [14], FOCUSS
[15] and (majorization-minimization) MM-based [16].

[8] provided a general framework to show the convergence
of the ISTA algorithm when solving (1) along with a non-
convex penalty function. Experimentally, it was shown that the
use of large step sizes in ISTA can accelerate its convergence
when used along the Firm thresholding rule; furthermore, a
novel weakly convex penalty function, designed to promote
integer values (see [8, Section V]), was also proposed.

B. Numerical algorithms for (1) and (2)

In a generic fashion, either (1) or (2) can be written as

arg min
{x}

f(x) + p(x, λ). (4)

Furthermore, for both cases we can also consider that f(x) =
1
2 ‖Ax− b‖22; in the case of (1) the relationship is direct,
while for (2) we have that x = [u1,u2, . . . ,uK] and Ax =∑K
k=1Hk ∗ uk. Using this notation, for either (1) or (2)

∇f(u) = AT (Ax− b).
1) FISTA: The Fast Iterative Shrinkage Thresholding al-

gorithm (FISTA) [17] is closely related to ISTA, but has
faster convergence. For convenience the computational steps
of FISTA are reproduced in Algorithm 1. Note that L in this
algorithm can be updated for each iteration by following a
backtracking step size rule [17, Section 4].

It is worth mentioning that ISTA/FISTA algorithms have
been previously used to solve (2): [18] and [19] proposed
an ISTA and FISTA based algorithms respectively, computing
the necessary gradient in the spatial domain, assuming a non-
separable filter bank (FB) {Hk}, while [12] proposed a FISTA
based algorithm, assuming a separable FB.

2) ADMM: The ADMM algorithm [20] is a well-known
and versatile method used to solve an optimization problem
of the form minu,v f(x) + p(y, λ) s.t. Fx + Gy − c = 0.

1Given a thresholding rule, a corresponding penalty function p(·) can
always be computed (see [13], [6], [7]).

Inputs : λ (parameter), L (Lipschitz constant of ∇f(x))
Step 0 : Set y1 = x0 (initial guess), β1 = 1
Step n: (n ≥ 1) Compute

1 xn = thresh(xn−1 + 1
LA

T (b−Ayn), λL)

2 βn+1 = 1+
√
1+4βn
2

3 yn+1 = xn + βn−1
βn+1

(xn − xn−1)

Algorithm 1: FISTA applied to (4) for which f(u) =
1
2 ‖Ax− b‖22. thresh(·), in line 1, is the corresponding thresh-
olding rule3 for the particular penalty function in (4).

The ADMM iterations with scaled dual variable are given by
(5)-(7) and can be readily applied to problem (1) as well as to
problem (2). For the latter case, see [4, Section 3]; moreover,
recent ADMM-based approaches compute the convolutions in
the frequency domain [21], [22], [23], [4], [24].

x(n+1) = min
x

f(x) +
ρ

2
‖Fx +Gy(n) − c + z(n)‖22 (5)

y(n+1) = min
y

p(y, λ) +
ρ

2
‖Fx(n+1) +Gy − c + z(n)‖22 (6)

z(n+1) = z(n) + Fx(n+1) +Gy(n+1) − c . (7)

It is worth noting that, when G is the identity2, the solution
to (6) is given by (8), where thresh(·) is the corresponding
thresholding rule3 for the selected penalty function.

yn+1 = thresh(Fx(n+1) + z(n),
λ

ρ
), (8)

C. Convergence under non-convex penalty functions

In this section we provide a summary of the results pre-
sented in [6], [8] and [25], [26], which focused on the
convergence of the ISTA and ADMM algorithms respectively,
when solving (1) for non-convex penalty functions.

Definition II.1. A function p : <N −→ < is said to be c-
semi convex (see [6, Definition 1]) or c-weakly convex (see
[8, Definition 1]) if g(x) = τ

2‖x‖
2
2 + p(x, λ) is convex when

τ ≥ c ≥ 0.

On what follows we use the term “c-semi convex” to indis-
tinctly refer to either “c-semi convex” or “c-weakly convex”.

If the penalty function p(.), for problem (1), is c-semi
convex, then
• It can be shown that the cost function defined by problem

(1) is convex.
• The ISTA algorithm converges to the global minimum of

(1), see [6, Theorem 2]. A similar result was presented
in [8, Proposition 4].

Furthermore, in [25] an empirical study was carried out
to assess the practical performance of ADMM algorithm on
several nonconvex applications, including the case when the
penalty function p(.) in (1), applied to image denoising, is the
`0-norm. For the above mentioned case, the ADMM algorithm
usually converged; moreover, it was noted that the choice of
the ρ parameter (see (5)-(6)) greatly affects the convergence

2This is the case for the problems consider in this work.
3If p(x, γ) = γ ·‖x‖1, then thresh(.) is soft thresholding, defined in (11).

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2186

rate and quality of the denoised image and thus even simple
adaptive schemes, such the ones described in [20, Section 3.4],
should be considered.

In a more general context, [26] proved the convergence of
the ADMM algorithm for several nonconvex penalty functions.
For such purpose, the restricted prox-regularity (see [26,
Definition 2]) was defined; this definition is related to c-semi
convex (see Definition II.1), although instead of enforcing a
global condition it only requires to be hold over a subset,
resulting in a weaker condition and thus implicitly implying
that any c-semi convex penalty function, when solving (1) via
the ADMM algorithm, do converge to the global minimum.

III. PROPOSED TWO-TERM PENALTY FUNCTION

In this Section we describe the proposed two-term penalty
function defined in (3), reproduced below for convenience:

pmix(x, λ, α, β) = λ · α · ‖x‖1 + pnng(x, λ · β), (9)

where α > 0, β > 0, and pnng(x, γ) is defined in (13). We
also analyze the conditions for which problems (1)-(2) with
(9) as the penalty function converge to the global minimum
via either the FISTA or ADMM algorithms.

Since (9) can be understood as synthesis of the `-1 norm
and the penalty function associated with the NNG thresholding
rule, we start with a brief summary of both.

The solution to optimization problem

min
x

1

2
‖x− y‖+ p(x, λ), (10)

usually referred as the proximity operator4 for p(.), is given
by5

x∗ = shrink(y, λ) = sign(y) ·max{0, |y| − λ} (11)

when p(x, λ) = λ · ‖x‖1, and

x∗ = threshnng(y, λ) = y ·max{0, 1− λ2

y2
} (12)

when

p(x, λ) = λ2 ·
(

asinh

(
|x|
2λ

)
+

|x|√
x2 + λ2 + |x|

)
(13)

which is the penalty function associated with the NNG thresh-
olding rule (12). It is worth mentioning that (12) is c-semi
convex (see Definition II.1) with constant c = 1

2 .

Proposition III.1. The penalty function (9) is c-semi convex
with constant c = 1

2 .

Proof. Using Definition II.1, we have that g(x) = τ
2‖x‖

2
2 +

pmix(x, λ, α, β), where pmix(.) is defined in (9). Observing
that each component of g(·) is independent6 then we only need

4proxp,λ = minx
1
2
‖x− y‖+ p(x, λ)

5Scalar operations applied to a vector are considered to apply element-wise.
6g(x) = τ

2

∑
k x

2
k + λ · α

∑
k |xk| + (λβ)2 ·∑

k

(
asinh

(
|xk|
2λβ

)
+

|xk|√
x2
k
+(λβ)2+|xk|

)

to consider the scalar version g(x) = τ
2x

2 + pmix(x, λ, α, β)
in order to check for convexity.

Taking λα = λ · α and λβ = λ · β, the first and second
derivative for g(.) are given by

g′(x) = τx+ λα sign(x) +
2λβ√

x2 + 4λ2β + |x|
sign(x)(14)

g′′(x) = τ + λαδ(x) +
2λ2βδ(x)√

x2 + 4λ2β + |x|
−

2λ2β sign(x)
(

sign(x) + x
4λ2
β+x

2

)
(√

x2 + 4λ2β + |x|
)2 (15)

Noting that g′′(0) = τ+λα+λβ− 1
2 , g′′(0+) = τ− 1

2 and that
g′′(.) is strictly decreasing and symmetric, then g′′(x) > 0∀x
if τ ≥ 1

2 , and thus g(x) = τ
2x

2 + pmix(x, λ, α, β) is c-semi
convex with constant c = 1

2 .

Given the result of Proposition III.1 then when (9) is
used as the penalty function for either (1)-(2), such problems
are convex and have a unique minimizer. Furthermore, the
thresholding rule7 associated with penalty (9) is given by

thresh(x, λ, α, β) =

{
γ(x, λ, α, β) if |x| > λ · (α+ β)
0 otherwise

(16)
where γ(x, λ, α, β) =

x(x−sign(x) 2
λ·α)+λ2·α2−λ2·β2

x+λ·α .
When the constraint α + β = 1 is included, then (16)

is in fact a synthesis between soft-thresholding and NNG,
parametrized by the constants α, β 8. When (1)-(2) are solved
via the FISTA or ADMM algorithms, experimentally we have
observed that it is convenient to vary, at each main iteration,
the values of α and β, starting with α close to 1, and then
slowly decreasing it. The computational results in Section IV
indicate that this simple strategy is very effective.

IV. RESULTS

All related experiments were carried on an Intel i7-4710HQ
(2.5 GHz, 6MB Cache, 32GB RAM) based laptop with a
nvidia GTX980M GPU card. Images from the USC-SIPI
database [27], rescaled to the range [0, 1], were used as test
images for all cases.

We solve either (1) or (2) via the FISTA and the ADMM
algorithms; for the former, we developed a Matlab library
(GPU-enabled for the specific case of (2)), which has been
made publicly available [28]; for the latter, we make use of the
SPORCO9 library [29]. It is worth mentioning that our FISTA
implementation does include a backtracking step subroutine
(see Section II-B1), that greatly improves its convergence rate.
whereas the ADMM implementation includes the adaptive
schemes described in [20, Section 3.4], which as mentioned

7Can be directly computed by setting (14) equal to zero.
8For α = 1, β = 0, (16) is equivalent to soft-thresholding, i.e. (11),

whereas for α = 0, β = 1 (16) is equivalent to NNG, i.e. (12).
9We have made some minor variations to this library; patches are available

at [28].

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2187

in Section II-C, greatly improve the ADMM convergence rate
when solving (1) along with a nonconvex penalty functions.

For all related experiments we consider10 the `1-norm,
NNG, proposed (see (9)) and Logarithmic penalty functions,
labeled “L1”, “NNG”, “Mix” and “Log” respectively, and
present reconstruction metrics (SNR, PSNR, MSE and SSIM
[30]) and and a sparsity measure, defined as 100 · ‖u‖0N where
u represents the solution to (1) or (2) and N is the number
of pixels in the input image. Furthermore, for the denoising
and deconvolution cases we also report reconstruction metrics
for the Total Variation (TV) [31] and Expected Patch Log
Likelihood (EPLL) [32] methods, which are used as baselines.

A. Denoising and deconvolution

For the denoising and deconvolution cases we consider that
the observed image b is given by

b = H ∗ v + η, (17)

where v represents the original image, H is a blurring kernel
and η is Gaussian noise with standard deviation σ2. For the
denoising case H = I whereas for the deconvolution case H
is a 13×13 sample Gaussian filter with unit standard deviation.

Method SNR PSNR SSIM MSE Sp (%) Cost

ADMM

L1 17.29 30.54 0.82 7e-4 15.8 3.86e2
NNG 16.28 29.53 0.80 8e-4 17.4 4.22e2
Mix 17.15 30.40 0.80 7e-4 17.2 3.75e2
Log 15.74 28.99 0.81 9e-4 15.7 4.17e2

FISTA

L1 17.44 30.69 0.83 6e-4 13.9 3.82e2
NNG 17.47 30.72 0.83 6e-4 10.7 4.02e2
Mix 17.44 30.69 0.83 6e-4 14.0 3.80e2
Log 15.80 29.05 0.81 9e-4 13.9 4.13e2

TV 18.33 31.59 0.87 5e-4 – –
EPLL 19.99 33.24 0.89 4e-4 – –

TABLE I
DENOISING RESULTS FOR BPDN WITH DIFFERENT PENALTY COST

FUNCTIONS WITH λ = 0.075, WHEN APPLIED TO THE LENA TEST IMAGE,
CORRUPTED WITH σ = 0.05; THE OBSERVED IMAGE (SEE (17)) HAS SNR
= 11.49, PSNR = 24.74, SSIM = 0.36 AND MSE = 2.5e-3. THE TV AND

EPLL RESULTS ARE INCLUDED AS BASELINES.

We use the biorthogonal 6.8 wavelet as dictionary Φ for
the BPDN problem11 defined in (1), considering 2 and 3
decomposition levels for the denoising and deconvolution
cases respectively. The ADMM and FISTA algorithm are run
until an exit condition is reached or the maximum number of
global iterations are reached (60 and 30 for the denoising and
deconvolution cases respectively).

In Tables I and II we list the final values of the collected
statistics for the denoising and deconvolution cases respec-
tively, with noise level of σ = {0.05}12. The performance

10The SCAD and Firm thresholding rules are not considered since in [6]
it is reported that they have similar performance than NNG.

11Due to the characteristics of Wavelets, the problem to be solved is slightly
different than (1), and it is given by arg min{u}

1
2
‖H ∗ (Φu)− b‖22 +

p(Wu, λ), where W is a diagonal matrix of zeros and ones, which masks
out the approximation coefficients of the Wavelet transform.

12Results for other σ values are not included due to space limitations, but
can be obtained via our publicly available [28] code.

of the “L1”, “Mix” and “NNG” penalty functions are very
similar (“L1” and “Mix” slightly outperform the “NNG”) and
significantly better than the “Log” penalty function. These
results are representative for the majority of images in the
USC-SIPI database [27].

Method SNR PSNR SSIM MSE Sp (%) Cost

ADMM

L1 13.76 27.01 0.76 1.5e-3 4.33 3.36e+2
NNG 13.05 26.30 0.67 1.7e-3 6.38 3.17e+2
Mix 13.67 26.92 0.73 1.5e-9 5.33 3.28e+2
Log 12.41 25.66 0.73 2.0e-3 4.66 3.48e+2

FISTA

L1 13.78 27.03 0.76 1.5e-3 4.09 3.39e+2
NNG 13.67 26.92 0.74 1.5e-3 4.31 3.40e+2
Mix 13.78 27.03 0.76 1.5e-3 4.12 3.39e+2
Log 12.38 25.63 0.72 2.0e-3 4.35 3.47e+2

TV 14.14 27.39 0.78 1.4e-3 – –
EPLL 14.39 27.64 0.79 1.3e-3 – –

TABLE II
DECONVOLUTION RESULTS FOR BPDN WITH DIFFERENT PENALTY COST
FUNCTIONS WITH λ = 0.015, WHEN APPLIED TO THE LENA TEST IMAGE,
CORRUPTED WITH σ = 0.05; THE OBSERVED IMAGE (SEE (17)) HAS SNR
= 9.49, PSNR = 22.74, SSIM = 0.19 AND MSE = 4.0e− 3. THE TV AND

EPLL RESULTS ARE INCLUDED AS BASELINES.

B. Convolutional sparse coding

For the experiments in this Section, we use the dictionary
filter bank (FB) {Hk} consisting of 144 non-separable filters
of size 12× 12 distributed with the SPORCO library [29].

It worth noting that there are some differences between
the ADMM and FISTA implementations use to solve (2).
The former, which is distributed with the SPORCO library,
computes the convolutions in the frequency domain in order
to improve its computational performance (see [4] for details).
The latter implementation computes the convolutions in the
spatial domain, by first pre-computing a separable approxima-
tion of the original non-separable FB (see [12] for details).
Both algorithms are run until a given maximum number of
global iterations is reached, independently chosen for the
ADMM (130 iterations) and FISTA (200 iterations) as to give
the best results (reconstruction quality and sparsity).

In Table III we list the final values of the collected statistics
for the CSC problem. We first highlight the different perfor-
mance of the “L1” and “Mix” penalty functions, for either the
ADMM or FISTA implementations: the latter gives superior
results from reconstruction quality as well as from sparsity
point of view than the former. These results are representative
for the majority of images in the USC-SIPI database [27].

Moreover, it also worth noting that the trend observed for
the denoising and deconvolution problems (see Tables I and II
in Section IV-A), i.e. “L1”, “Mix” and “NNG” having a similar
performance while at the same time having better performance
than “Log”, is not same for the CSC problem. For the CSC, the
use of the “Log” penalty function gives slightly inferior results
than either the “L1” or “Mix”, whereas results for the “NNG”
case, the results are mixed: (i) via the ADMM algorithm,
“NNG” gives rather poor reconstruction results, albeit very

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2188

sparse; (ii) via the FISTA algorithm, “NNG” gives very high
reconstruction metrics, however the resulting sparsity is very
high (about 1.5 times as much when compared to “L1” or
“Mix”). Overall, these results also hint a confirmation of the
conclusions presented in [6]: the best thresholding rule is
problem dependent.

Method SNR PSNR SSIM MSE Sp (%) Cost

ADMM

L1 32.68 45.92 0.99 1.9e-5 31.58 17.52
NNG 22.02 35.25 0.94 2.2e-4 14.48 41.59
Mix 33.28 46.51 0.99 1.6e-5 21.99 19.41
Log 32.10 45.33 0.98 2.1e-5 55.96 18.81

FISTA

L1 29.75 42.98 0.98 3.7e-5 35.76 23.01
NNG 40.75 54.00 0.99 0.3e-5 55.14 42.65
Mix 34.84 48.09 0.99 1.2e-5 39.33 25.79
Log 29.13 42.37 0.97 4.3e-5 61.76 24.54

TABLE III
CSC RESULTS FOR SOLVING CBPDN VIA THE ADMM AND FISTA

ALGORITHMS, WITH DIFFERENT PENALTY COST FUNCTIONS FOR
λ = 0.01, WHEN APPLIED TO THE ORIGINAL LENA TEST IMAGE.

V. CONCLUSION

We have proposed a two-term penalty function and eval-
uated its performance for denoising and deconvolution prob-
lems, under the BPDN framework, and convolutional sparse
coding (CSC) problem, under the Convolutional BPDN frame-
work.

Our experimental results, carried out via the ADMM and
FISTA algorithms, show that the proposed two-term penalty
function, when compared to alternatives such the `1-norm,
Logarithmic and the penalty function associated with the Non-
Negative Garrote thresholding rule, is particularly effective
(better reconstruction with sparser solutions) for the CSC prob-
lem while attaining competitive performance for the denoising
and deconvolution problems.

ACKNOWLEDGMENT

The authors thank Brendt Wohlberg for valuable discussion
on the use of the SPORCO library [29].

REFERENCES

[1] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis
pursuit,” SIAM Rev., vol. 43, no. 1, pp. 129–159, Jan. 2001.

[2] J. Yang, K. Yu, and T. Huang, “Supervised translation-invariant sparse
coding,” in IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2010, pp. 3517–3524.

[3] M. Zeiler, D. Krishnan, G. Taylor, and R. Fergus, “Deconvolutional
networks,” in IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), Jun. 2010, pp. 2528–2535.

[4] B. Wohlberg, “Efficient algorithms for convolutional sparse representa-
tions,” IEEE TIP, vol. 25, no. 1, pp. 301–315, Jan. 2016.

[5] S. Voronin and H. Woerdeman, “A new iterative firm-thresholding
algorithm for inverse problems with sparsity constraints,” Applied and
Computational Harmonic Analysis, vol. 35, no. 1, pp. 151 – 164, 2013.

[6] M. Kowalski, “Thresholding rules and iterative shrinkage/thresholding
algorithm: A convergence study,” in IEEE International Conference on
Image Processing (ICIP), Oct. 2014, pp. 4151–4155.

[7] I. Selesnick and I. Bayram, “Sparse signal estimation by maximally
sparse convex optimization,” IEEE Transactions on Signal Processing,
vol. 62, no. 5, pp. 1078–1092, March 2014.

[8] I. Bayram, “On the convergence of the iterative shrinkage/thresholding
algorithm with a weakly convex penalty,” IEEE Transactions on Signal
Processing, vol. 64, no. 6, pp. 1597–1608, March 2016.

[9] L. Breiman, “Better subset regression using the nonnegative garrote,”
Technometrics, vol. 37, no. 4, pp. 373–384, Nov. 1995.

[10] J. Fan, “Comments on ”wavelets in statistics: A review” by a. anto-
niadis,” J. of the Italian Statistical Society, vol. 6, no. 2, p. 131, 1997.

[11] H. Gao and A. Bruce, “Waveshrink with firm shrinkage,” Statistica
Sinica, vol. 7, pp. 855–874, 1997.

[12] G. Silva, J. Quesada, P. Rodriguez, and B. Wohlberg, “Fast convolutional
sparse coding with separable filters,” March 2017, accepted to IEEE
International Conference on Acoustics, Speech, and Signal Processing.

[13] A. Antoniadis, “Wavelet methods in statistics: some recent developments
and their applications,” Statist. Surv., vol. 1, pp. 16–55, 2007. [Online].
Available: http://dx.doi.org/10.1214/07-SS014

[14] A. Beaton and J. Tukey, “The fitting of power series, meaning polyno-
mials, illustrated on band-spectroscopic data,” Technometrics, vol. 16,
no. 2, pp. 147–185, 1974.

[15] I. Gorodnitsky and B. Rao, “Sparse signal reconstruction from limited
data using focuss: a re-weighted minimum norm algorithm,” IEEE TIP,
vol. 45, no. 3, pp. 600–616, Mar 1997.

[16] J. Bioucas-Dias, M. Figueiredo, and J. Oliveira, “Total variation-based
image deconvolution: a majorization-minimization approach,” in 2006
IEEE International Conference on Acoustics Speech and Signal Pro-
cessing Proceedings, vol. 2, May 2006, pp. II.861–II.864.

[17] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM Journal on Imaging Sciences,
vol. 2, no. 1, pp. 183–202, 2009.

[18] M. Zeiler, G. Taylor, and R. Fergus, “Adaptive deconvolutional networks
for mid and high level feature learning,” in International Conference on
Computer Vision (ICCV), 2011, pp. 2018–2025.

[19] R. Chalasani, J. C. Principe, and N. Ramakrishnan, “A fast proximal
method for convolutional sparse coding,” in International Joint Confer-
ence onNeural Networks (IJCNN), Aug. 2013, pp. 1–5.

[20] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
Jan. 2011. [Online]. Available: http://dx.doi.org/10.1561/2200000016

[21] H. Bristow, A. Eriksson, and S. Lucey, “Fast convolutional sparse cod-
ing,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Jun. 2013, pp. 391–398.

[22] B. Wohlberg, “Efficient convolutional sparse coding,” in IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP), May 2014, pp. 7173–7177.

[23] F. Heide, W. Heidrich, and G. Wetzstein, “Fast and flexible convolutional
sparse coding,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Jun. 2015, pp. 5135–5143.

[24] B. Wohlberg, “Boundary handling for convolutional sparse representa-
tions,” in IEEE International Conference on Image Processing (ICIP),
Phoenix, AZ, USA, Sep. 2016, pp. 1833–1837.

[25] Z. Xu, S. De, M. Figueiredo, C. Studer, and T. Goldstein, “An empirical
study of ADMM for nonconvex problems,” CoRR, vol. abs/1612.03349,
2016. [Online]. Available: http://arxiv.org/abs/1612.03349

[26] Y. Wang, W. Yin, and J. Zeng, “Global convergence of ADMM in
nonconvex nonsmooth optimization,” CoRR, vol. abs/1511.06324, 2015.

[27] “USC-SIPI image database,” Available from
http://sipi.usc.edu/database/.

[28] P. Rodriguez, “Simulations for two-term penalty function for inverse
problems with sparsity constrains,” Matlab library available from http:
//sites.google.com/a/istec.net/prodrig/Home/en/pubs/mixthresh, 2017.

[29] B. Wohlberg, “SParse Optimization Research COde (SPORCO),” Soft-
ware library available from http://purl.org/brendt/software/sporco, 2016.

[30] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assess-
ment: from error visibility to structural similarity,” IEEE Transactions
on Image Processing, vol. 13, no. 4, pp. 600–612, April 2004.

[31] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise
removal algorithms,” Phys. D, vol. 60, no. 1-4, pp. 259–268, Nov. 1992.

[32] D. Zoran and Y. Weiss, “From learning models of natural image
patches to whole image restoration,” in 2011 International Conference
on Computer Vision, Nov 2011, pp. 479–486.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2189

