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Urla, İzmir, Turkey

Email: oktaykarakus@iyte.edu.tr

Ercan E. Kuruoğlu
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Abstract—Many prediction studies using real life measure-
ments such as wind speed, power, electricity load and rain-
fall utilize linear autoregressive moving average (ARMA) based
models due to their simplicity and general character. However,
most of the real life applications exhibit nonlinear character and
modelling them with linear time series may become problematic.
Among nonlinear ARMA models, polynomial ARMA (PARMA)
models belong to the class of linear-in-the-parameters. In this
paper, we propose a reversible jump Markov chain Monte Carlo
(RJMCMC) based complete model estimation method which
estimates PARMA models with all their parameters including
the nonlinearity degree. The proposed method is unique in the
manner of estimating the nonlinearity degree and all other model
orders and model coefficients at the same time. Moreover, in
this paper, RJMCMC has been examined in an anomalous way
by performing transitions between linear and nonlinear model
spaces.

I. INTRODUCTION

Autoregressive moving average (ARMA) models have been

utilized often especially in time series prediction studies due to

the ease of estimation by methods such as that of Box-Jenkins

[1] and their generality encompassing both autoregressive

(AR) and moving average (MA) models. ARMA models have

been used in diverse areas of applications such as speech [2],

[3], seismology [4], video [5], image [6], etc. Particularly, they

have been applied in energy and meteorological prediction

studies of solar radiation [7], [8], electricity demand [9], [10]

and wind speed [11], [12].

However, many real life problems exhibit nonlinear charac-

ters. Nonlinear ARMA (NARMA) or specifically, polynomial

ARMA (PARMA) models appear as alternatives in modelling

problems including nonlinearity and have been used in pre-

diction studies in many different areas such as in energy

prediction studies for electricity load [13], wind speed [14],

modelling a nonlinear networked control system [15] and

forecasting of financial returns [16].

Reversible jump Markov chain Monte Carlo (RJMCMC)

is a Bayesian model identification method which was firstly

introduced in [17]. RJMCMC has been defined as an extended

and generalized version of the MCMC algorithm and offers

transitions between parameter spaces of different dimensions.

In the literature, RJMCMC has been generally used in linear

model estimation studies such as AR models [18], [19],

autoregressive integrated moving average (ARIMA) models

[20] and fractional ARIMA models [21].

Contrary to the general practice which employs RJMCMC

on problems which include exploring spaces of varying dimen-

sions of the same classes of models, RJMCMC offers much

wider interpretation than just exploring spaces of different

dimensions. In previous studies [22], [23], we have shown

that RJMCMC can be used as a model determination method

which performs transitions between linear and nonlinear model

spaces for polynomial AR (PAR) and polynomial MA (PMA)

models.

In this paper, the formulation in previous studies [22],

[23] has been reconstructed into a general framework which

estimates the nonlinearity degree of PARMA models. In

addition to the nonlinearity degree, AR and MA orders and

all the model coefficients have been estimated at the same

time. Results have been depicted in figures and tables for

synthetically generated PARMA models.

The rest of the paper is organized as follows: PARMA

models and general RJMCMC definition are examined in

Sections II and III, respectively. In Section IV, RJMCMC

construction for PARMA model estimation is studied in detail.

Numerical results about the study are presented with figures

and a table in Section V. Section VI concludes the paper with

a brief summary.

II. PARMA MODELS

The Volterra based linear-in-the-parameters PARMA mod-

els can be defined as:

xl = µ+

p
∑

d=1

k∑

τ1=1

. . .

k∑

τd=τd−1

a(d)τ1,...,τd

d∏

j=1

xl−τj

+ el +

p
∑

d=1

q
∑

τ1=1

. . .

q
∑

τd=τd−1

b(d)τ1,...,τd

d∏

j=1

el−τj , (1)

where l = 1, . . . , n and p, k and q refer to the nonlinearity

degree, the AR order and the MA memory of the model,

respectively. In addition, vector e = [e1, e2, . . . , en] repre-

sents the iid excitation sequence with distribution N (0, σ2
eIn),

a
(d)
τ1,...,τd and b

(d)
τ1,...,τd are the dth ordered coefficients of AR and
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MA parts, respectively. A PARMA model can be represented

with the notation: P(p)ARMA(k,q).

The system of equations in (1) can be easily represented in

matrix vector form for a P(p)ARMA(k, q) model by using the

linear-in-the-parameters property:

x = µ+Xa
(p,k) +Eb

(p,q) + e, (2)

where n × η matrix X, η-vector a
(p,k), n × γ matrix E and

γ-vector b(p,q) are given as:

X =






x0 . . . x1−k x20 x0x−1 . . . xp1−k

x1 . . . x2−k x21 x1x0 . . . xp2−k
...

. . .
...

...
...

. . .
...

xn−1 . . . xn−k x2n−1 xn−1xn−2 . . . xpn−k




 ,

(3)

a
(p,k) =



a
(1)
1 , . . . , a

(1)
k , a

(2)
1,1, a

(2)
1,2, . . . , a

(2)
k,k, . . . , a

(p)
k,k,...,k
︸ ︷︷ ︸

pth order





T

, (4)

E =






e0 . . . e1−q e20 e0e−1 . . . ep1−q

e1 . . . e2−q e21 e1e0 . . . ep2−q

...
. . .

...
...

...
. . .

...

en−1 . . . en−q e2n−1 en−1en−2 . . . epn−q




 , (5)

b
(p,q) =



b
(1)
1 , . . . , b(1)q , b

(2)
1,1, b

(2)
1,2, . . . , b

(2)
q,q, . . . , b

(p)
q,q,...,q
︸ ︷︷ ︸

pth order





T

, (6)

where η and γ are the lengths of parameter vectors a
(p,k) and

b
(p,q), respectively.

III. REVERSIBLE JUMP MCMC

Following [17], assume that we propose a move m with

probability pm from a Markov chain state κ to κ′. These states

have parameter vectors θ and θ
∗, respectively with different

dimensions. Given the observed data x, the general expression

for the acceptance ratio, α(κ→ κ′), is;

(7)min

{

1,
f(θ∗|x)pR

m

f(θ|x)pmχ(u)

∣
∣
∣
∣

∂θ∗

∂(θ,u)

∣
∣
∣
∣

}

,

where pR
m represents the probability for the reverse move of

m, χ(u) is the proposal distribution for the auxiliary variable

vector u which is required to provide dimension matching for

the move m and

∣
∣
∣

∂θ∗

∂(θ,u)

∣
∣
∣ is the magnitude of the Jacobian.

In each RJMCMC run, the standard Metropolis-Hastings

algorithm is applied for within-model moves, which we call

as life move. For between-model moves, namely birth and

death moves, reversible jump mechanism is applied.

IV. RJMCMC CONSTRUCTION FOR PARMA MODEL

ESTIMATION

PARMA model estimation via RJMCMC includes 3 stages

at each iteration. At each stage, one of the model parameters

(p, k or q) has been proposed while the others remain at

their recent values. Model order in question is increased

and decreased with probabilities Pbirth and Pdeath, respectively

and remains at the same order with probability Plife. If the

proposed model order is accepted, RJMCMC performs a

training procedure by applying 10 consecutive life moves to

update the newly estimated model coefficients. All these steps

have been repeated at each stage for each model order (p, k
or q).

In the case of a birth move corresponding to a model change

from k = 2 to k′ = 3 when q = 0 and p = 2, in order

to satisfy the dimension matching, it’s required to propose

λ = 9 − 5 = 4 candidate model coefficients from a proposal

distribution, χ(u), which is:

χ(u) =

λ∏

i=1

U(−δ, δ), and δ =
0.02

E[|x|]
, (8)

where E[|x|] is the expectation of the absolute value of the

observed data vector x.

The upper and lower bounds of the joint distribution are

chosen to depend on the given data. By doing so, distinct

limits can be arisen due to the fact that the magnitudes of

different data sets may vary in different ranges. Consequently,

this adhoc choice adds variety for the candidates. Moreover,

after some trial-error process, we see that keeping the interval

narrower (smaller δ values) increases the number of acceptable

moves. That’s why we have chosen a value of 0.02 for the

nominator part in equation (8).

Furthermore, each of the newly proposed model coefficients

have been chosen to be independent from the recent coeffi-

cients which causes a unity Jacobian.

RJMCMC construction for PARMA model estimation is

presented in detail in the sequel.

A. Bayesian Hierarchy

The target distribution of RJMCMC is a joint posterior

density and can be expressed as f(θ|x) with parameter vector

θ = {p, k, q,a(p,k),b(p,q), σ2
e , σ

2
a, σ

2
b}. This density can be

decomposed via Bayes Theorem:

f(θ|x) ∝ f(x|p, k, q,a(p,k),b(p,q), σ2
e)f(a

(p,k)|p, k, σ2
a)×

f(b(p,q)|p, q, σ2
b )f(σ

2
a)f(σ

2
b )f(σ

2
e)f(p)f(k)f(q). (9)

B. Likelihood Definition

In a previous study [24], it has been stated that for white

inputs and narrowband Volterra based models output follows

Gaussian characteristics. We have experimentally verified this

by testing the output process of a PARMA model.

Furthermore, in [25] a Gaussian approximate likelihood has

been used in restoration of nonlinearly distorted AR signals

when the whole system follows a nonlinear AR model char-

acteristics. Consequently, choosing a Gaussian likelihood for

PARMA models appears as a good practical approximation.

Moreover, in [1], an approximation of the likelihood func-

tion of ARMA models has been provided by performing a

recursive estimation procedure in the model itself for the

unobserved excitation values. This approach has been used

in model estimation studies for Bayesian analysis of ARMA

based time series models [19]–[21].
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Thus, an approximate likelihood function for a

P(p)ARMA(k,q) has been examined in this study as,

f(x|θ) =
1

√

(2πσ2
e)

(n−qmax)
exp

(

−1

2σ2
e

n∑

t=qmax+1

e2t

)

(10)

≈ N (x−Xa
(p,k) −Eb

(p,q)|0, σ2
eIn−qmax). (11)

Please see Section IV-F for the details of the estimation

process of the unobserved excitation sequence.

C. Priors

In the previous studies, general practice is to use uniform

priors for model order parameters [19]–[23]. Correspondingly,

in this study, we assume that each model is equally likely and

we choose uniform priors for model orders p, k, and q with

upper bounds pmax, kmax and qmax, respectively.

f(p) = U(1, pmax), f(k) = U(1, kmax), f(q) = U(1, qmax).
(12)

We choose priors for model coefficients and variances as

shown below so as to provide conditional conjugacy:

f(a(p,k)|p, k, σ2
a) = N (a(p,k)|0, σ2

aIw), (13)

f(b(p,q)|p, q, σ2
b ) = N (b(p,q)|0, σ2

b Iz), (14)

f(σ2
a) = IG(σ2

a|αa, βa), (15)

f(σ2
b ) = IG(σ2

b |αb, βb), (16)

f(σ2
e) = IG(σ2

e |αe, βe). (17)

where w and z are the length of coefficients vectors a
(p,k)

and b
(p,q), respectively, IG(·) refers to an inverse Gamma

distribution and αa, βa, αb, βb, αe, βe, are hyperparameters for

variances.

D. Between Model Moves

Between model moves require to change dimension of

parameter space. If proposed move requires an increase in

dimension, RJMCMC performs a birth move. In the contrary

case, death move has been performed.

Assume a birth move has been proposed from AR order k
to k′ when p and q are fixed. Then, resulting acceptance ratio

is αbirth = min{1, rbirth} where rbirth can be given as:

rbirth =
f(x|p, k′, q,a(p,k

′),b(p,q), σ2
e)

f(x|p, k, q,a(p,k),b(p,q), σ2
e)

×
f(a(p,k

′)|p, k′, σ2
a)

f(a(p,k)|p, k, σ2
a)

×
Pdeath

Pbirthχ(u)
×

∣
∣
∣
∣
∣

∂a(p,k
′)

∂(a(p,k),u)

∣
∣
∣
∣
∣
.

(18)

When a death move has been proposed from k to k′, no new

parameters are being proposed. Since birth and death moves

are reversible move pairs, αdeath(k → k′) can be written in

terms of αbirth(k
′ → k). By definition, if

αbirth(k
′ → k) = min{1, r′birth}, (19)

then we can directly write

αdeath(k → k′) = min{1, 1/r′birth}. (20)

E. Within Model Moves

When k′ = k, a life move will be proposed with acceptance

ratio, αlife = min {1, rlife} with

(21)

rlife =
f(x|p, k′, q,a(p,k

′),b(p,q), σ2
e)

f(x|p, k, q,a(p,q),b(p,q), σ2
e)

×
f(a(p,k

′)|p, k′, σ2
a)

f(a(p,k)|p, k, σ2
a)

×
ψ(a(p,k)|p, k′,a(p,k

′))

ψ(a(p,k′)|p, k,a(p,k))

where the proposal distribution ψ(·) is:

ψ(a(p,k)|p, k′,a(p,k
′)) = N (a(p,k

′)|µn,Σ
−1
n ), (22)

with µn = σ−2
e Σ−1

n X
T(x −Bǫ

(p,q)) and Σn = σ−2
e X

T
X +

σ−2
a Iw.

F. Update Moves

After the 3 stage mechanism for model order estimation has

been executed, at each iteration several update moves are per-

formed to update variance parameters and initial unobserved

excitation vector e(0) = [e1, e2, . . . , eq] via Gibbs sampling.

The full conditional distribution for σ2
e is [19]:

f(σ2
e |x, p, q,b

(p,q)) = IG(σ2
e |αen, βen), (23)

where αen = αe +
1
2n, βen = βe +

1
2e

T
e. Similarly, the full

conditionals for coefficient vector variances appear as:

f(σ2
a|x, p, k,a

(p,k)) = IG(σ2
a|αan, βan), (24)

f(σ2
b |x, p, q,b

(p,q)) = IG(σ2
b |αbn, βbn), (25)

where parameters for these inverse Gamma functions are

αan = αa+
1
2w, βan = βa+

1
2 (a

(p,k))Ta(p,k), αbn = αb+
1
2z

and βbn = βb +
1
2 (b

(p,q))Tb(p,q).

Initial excitation vector, e
(0) can be sampled from the

distribution:

e
(0) ∼ N (0, σ2

eIq) (26)

where σ2
e is the sampled value from (23). Complete excitation

vector e has been estimated at each iteration via (1) starting

from eq+1 up to en by using e
(0).

V. NUMERICAL RESULTS

In this study, 10 PARMA models have been generated for

simulations. Each model generates 20 different data sets with

zero mean (µ = 0) where each has a length of 750 samples.

Each data set is driven with a Gaussian excitation sequence

with variance of σ2
e .

In all the MCMC methods, selection of the initial values

of the parameters does not have a direct affect on the final

result. It only changes the convergence time to be long or

short according to the selection [26], [27]. We have chosen

the initial values by taking these issues into consideration.

Hyperparameters αa, αb, αe, βa, βb and βe are selected as 1.

Each of the initial values p0, k0 and q0 is also set to 1.

Upper bounds, pmax, kmax and qmax, for model orders have been

selected as 5, 6 and 6, respectively. Model orders change with

probability of 0.15 to up (birth) and down (death) and remain
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(1,0,4) (1,1,4) (1,2,4) (1,0,5) (1,1,5)

Models

0

0.1

0.2

0.3

0.4

0.5

P
ro

b
a

b
ili

ty

Frequently Estimated Models

(a) P(1)ARMA(0,4),

(2,3,1) (2,3,2) (1,5,1) (2,2,1) (1,5,2)

Models

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b
ili

ty

Frequently Estimated Models

(b) P(2)ARMA(3,1)

(3,1,0) (4,1,0) (3,1,1) (4,1,1) (5,1,0)

Models

0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

b
a
b
ili

ty

Frequently Estimated Models

(c) P(3)ARMA(1,0)

Fig. 1. Estimated joint posteriors for model orders in a single RJMCMC run.
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(a) Polynomial Order, p

0 0.5 1 1.5 2 2.5

Iteration ×10
4

0

1

2

3

4

5

6

7
A

R
 O

rd
e

r,
 k

(b) AR Order, k
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Fig. 2. The instantaneous model order estimates of P(2)ARMA(2,1).
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Fig. 3. Estimated posteriors for P(1)ARMA(3,1) Coefficients (b∗ = [0.25, 0.5,−0.2, 0.38]). Black vertical line with ”o” marker is the correct coefficient

value, vertical dashed lines with ”∇” and ”*” markers refer to ±σ and ±2σ CIs, respectively.

at the same (life) with a probability of 0.7. Each RJMCMC

run performs 25000 iterations including a burn-in period of

10000 iterations.

In order to measure model coefficient estimation per-

formance of the proposed method, the normalized mean

square error (NMSE) which is defined as NMSE =
1

w+z

∑w+z
i=1

(hi−ĥi)
2

‖h‖2

2

has been used. Here, vector h includes

both AR and MA model coefficients vectors a
(p,k) and b

(p,q)

and ĥ is its estimate.

Table I demonstrates results after 20 RJMCMC runs. These

results reveal that for all 10 PARMA models, RJMCMC

estimates correct model orders with the highest percentages.

In addition, RJMCMC exhibits great performance on model

coefficients estimation with NMSE values between 6 × 10−4

and 1× 10−2 for all the models.

Figure 1 depicts the estimated joint posteriors of model

order for 3 example PARMA models in a single RJMCMC run.

Each sub-figure shows 5 frequently estimated models and their

probabilities after burn-in period. Examining the figure, we can

TABLE I
MODEL ESTIMATION RESULTS

(1,3,0) (1,0,4) (1,3,1) (1,2,2) (2,1,1)

% Perf. Of Detection 85 65 80 80 95
Avg. NMSE 0.0015 0.0022 0.0081 0.0145 0.0079
# of Coeff. 3 4 4 4 4

(2,2,1) (2,3,1) (3,1,0) (3,0,1) (3,1,1)

% Perf. Of Detection 90 100 70 80 80
Avg. NMSE 0.0050 0.0056 0.0006 0.0011 0.0030
# of Coeff. 7 11 3 3 6

clearly state that models which have highest probabilities are

the correct models and these posteriors depict that RJMCMC

estimates the correct models.

In Figure 2, instantaneous estimates for each model order

p, k and q for a P(2)ARMA(2,1) model, have been shown for a

single RJMCMC run with 25000 iterations. Burn-in period is

also shown in Figure 2 in order to see the transient character

of the algorithm.
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Figure 3 shows the posterior probabilities for models coef-

ficients of P(1)ARMA(3,1) in a single RJMCMC run. Vertical

black line corresponds to the correct model coefficient value

for each sub-figure. Coefficient estimates for only correctly

estimated model orders after burn-in period have been used

to obtain the distributions in this figure. Resulting posteriors

show that RJMCMC estimates model coefficients with a re-

markable performance and the correct model coefficient values

stand in 95% confidence interval (CI) (±2σ) for b1 and a1 and

68% CI (±σ) for a2 and a3 of the estimated posteriors.

VI. CONCLUSIONS

In this study we present a general framework for Volterra

based linear-in-the-parameters nonlinear model estimation

problems by extending our previous works on PAR and

PMA models to PARMA models. We have utilized RJMCMC

algorithm which has been generally used for linear model

estimation problems, in the manner of performing transitions

between linear and nonlinear model spaces.

We propose a method which can estimate all parameters

of PARMA or its special cases PAR, PMA, linear AR, MA,

ARMA processes. In addition, RJMCMC has been used to

estimate the nonlinearity degree of the models which is

generally assumed to be known in the literature.

Numerical results demonstrate promising performance of

the proposed method in estimating model orders and corre-

sponding model coefficients concurrently.
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