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Abstract—In this paper, a matrix polynomial whose coefficients
are matrices is first defined. Its predictive model, called as the
Matrix Polynomial Predictive Model (MPPM), is then derived.
When the loading matrices of a decomposed tensor in the
Alternating Least Squares (ALS) are replaced by the predicted
ones of the MPPM, a new ALS algorithm with the MPPM (ALS-
MPPM) is proposed. Analyses show that the convergent rate of
the proposed ALS-MPPM is closely related to the degree of the
matrix polynomial. Namely, when an accelerative convergence
rate is expected, the polynomial with a high degree is preferred.
Although a high degree means a high possibility of prediction
failure, a simple solution can be used to handle such failure.
Moreover, the relationship between our ALS-MPPM and the
existing ALS-based algorithms is also analyzed. The results
of numerical simulations show that the proposed ALS-MPPM
outperforms the reported ALS-based algorithms in the literature
while the analytical results are verified.

I. INTRODUCTION

It is well known that the PARAllel FACtor decomposition

(PARAFAC) [1], also called as the CANonical DECOMPosi-

tion (CANDECOMP) [2] or Canonical Polyadic Decompo-

sition (CPD) [3] is one of the most commonly used tools

for processing multidimensional data. The PARAFAC decom-

position factorizes an N-way array (i.e., a tensor) into the

sum of vector outer products. It has theoretically been shown

that it is deterministic and essentially unique (that is the

uniqueness with scaling and permutation ambiguity) [4] [5]

under mild conditions, which makes it powerful for numerous

applications.

As the most commonly used algorithm for decomposing

a tensor, the Alternating Least Squares (ALS) [1] [2] can

be intuitively understood and straightforwardly implemented.

However, ALS usually needs to take multiple iterations to

make a PARAFAC decomposition converge and sometimes

it could encounter some numerical issues keeping it from

further convergence [6] [7]. To improve the convergence of

the ALS algorithm, the Line Search (LS) [8] [9] and the

Enhanced Line Search (ELS) [10] [11] techniques have been

reported. The LS and ELS accelerate the convergence of the
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ALS by predicting the loading matrices of a tensor via a

direction from the estimates of previous iterations. Although

they can speed up the convergence of the ALS, they have

their own drawbacks. For example, the relaxation factor in

the LS is usually chosen empirically, and therefore lacks solid

mathematical foundations. Although the relaxation factor in

the ELS can optimally be determined by solving a high degree

polynomial equation, there is no general solution available

for the equation. It means that it is very difficult and time-

consuming for one to finding such an optimal factor.

The Polynomial Predictive Model (PPM) is originally re-

ported in [12] for tracking maneuvering targets. It assumes

that, when a signal is described as a polynomial, one can

predict the signal by the previous sample values of the signal

with an FIR filter, whose optimal coefficients can be calculated

offline. In this paper, a matrix polynomial whose coefficients

are matrices is first defined. Its predictive model, called as

the Matrix Polynomial Predictive Model (MPPM), is then

derived. When the loading matrices of a decomposed tensor

in the Alternating Least Squares (ALS) are replaced by the

predicted ones of the MPPM, a new ALS algorithm with the

MPPM (ALS-MPPM) for the PARAFAC decomposition of a

tensor is obtained. The relationship between the degree of the

MPPM and the rate of convergence is analyzed. It is shown

that, when an accelerative convergence rate is expected, the

polynomial with a high degree is preferred. Although a high

degree means a high possibility of prediction failure, a simple

solution to handle such failure is given. The analyses also show

that there is a close relationship between our ALS-MPPM and

the existing ALS-based algorithms. For example, the original

ALS can be taken as a special case of our ALS-MPPM and

the LS and ELS is the version of our ALS-MPPM with a

polynomial of degree one. The numerical simulations show

that the proposed ALS-MPPM outperforms the reported ALS-

based algorithms in the literature while the analytical results

are verified.

The rest of the paper is organized as follows. The PARAFAC

decomposition of a tensor and ALS will be briefly reviewed

in Section II. In Section III, the MPPM for accelerating the

convergence of a ALS algorithm and the optimal coefficients

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1155



for our MPPMs with a low degree polynomial are given. In

Section IV, our MPPM is incorporated with the ALS, and the

relationships between our ALS-MPPM and the existing algo-

rithms are studied. Numerical simulation results are presented

in Section V. Finally, conclusions are drawn in Section VI.

Notations: The scalars, vectors, matrices, and tensors are

denoted by lowercase letters x, lowercase boldface letters x,

boldface capitals A, and calligraphic letters X , respectively.

The superscript T , H , and † respectively stand for the trans-

pose, conjugate transpose and pseudo-inverse. The symbols �
and ◦ denote the Khatri-Rao and vector outer product. The

norm of a matrix is represented by ‖ · ‖.

II. PROBLEM FORMULATION

For convenience of description and without loss of gener-

alization, a third-order tensor will be taken as an example to

give our approach since it is plain to extend our results into a

higher order one.

Given a third order tensor X ∈ C
I×J×K , the objective of

its PARAFAC decomposition is to find the best approximation

X̂ as [4] [5]

min
X̂

‖X − X̂‖ with X̂ =

R∑
r=1

ar ◦ br ◦ cr, (1)

where the minimal positive integer R that holds the equation

denotes the rank of X , ar, bf , and cr represent the r-th

column of the loading matrices A ∈ C
I×R, B ∈ C

J×R,

and C ∈ C
K×R, respectively. In the matricized form, the

PARAFAC decomposition can also be written as [4] [5]

⎧⎪⎨
⎪⎩

X(1) = A (C�B)
T

X(2) = B (C�A)
T

X(3) = C (B�A)
T

, (2)

where X(i), i = 1, 2, 3 are the mode-n unfolding of the tensor

X .

The most widely used PARAFAC algorithm is the Al-

ternating Least Squares, which alternately update only one

loading matrix while keeping the others fixed. Therefore the

PARAFAC decomposition of a tensor is taken as a linear

least-squares problem minÂ ‖X(1) − Â(C�B)T ‖F , whose

optimal estimate can be given as [4]

Â = X(1)

[
(C�B)

T
]†

. (3)

The optimal estimates of B and C can be similarly derived.

However, the ALS will usually take numerous iterations to

converge when the tensor is mixed with an additive noise.

Whats even worse, it could encounter some numerical issues

keeping it from further convergence [6] [7]. In the next

section, a predictive model will be introduced to accelerate

the convergence of the ALS.

III. MATRIX POLYNOMIAL PREDICTIVE MODEL

A. PPM in Matrix Form

Given an unknown signal xk, k = 1, · · · ,K, the PPM in

[12] assumes that the signal is a polynomial of degree L, then

it can be written as

xk =
L∑

l=0

p(l)kl. (4)

It is shown in [13] that the value of xk can be predicted by

the M previous values xk−M , · · · , xk−1 via an FIR filter as

x−
k =

M∑
m=1

hL(m)xk−m. (5)

Similarly, let us define a matrix polynomial signal as follows

Ak =

L∑
l=0

P(l)kl, (6)

where Ak, k = 1, · · · ,K are a series of matrix-valued signals,

and P(l), l = 0, · · · , L denote matrix-valued coefficients.

Following the derivation of (5) in [13], one can obtain an

FIR filter for predicting the matrix polynomial signal easily

as

A−
k =

M∑
m=1

hL(m)Ak−m, (7)

which is called as the Matrix Polynomial Predictive Model
(MPPM).

B. The coefficients of the MPPM

Despite the simplicity of the MPPM, the degree of the

polynomial L, the length of the FIR filter M , and the coef-

ficients hL(m),m = 1, · · · ,M should firstly be determined.

The optimal coefficients in (7) can be derived as follows.

If the matrix polynomial signal modeled as (6) can be

predicted by (7), the right side of (6) can be rewritten as

L∑
l=0

P(l)kl =

M∑
m=1

hL(m)

L∑
l=0

P(l)(k −m)l. (8)

By exchanging the summation on the right side of (8), one

can obtain L+ 1 separate equations as

P(l)kl =

M∑
m=1

hL(m)P(l)(k −m)l. (9)

When the two sides of (9) are left multiplied with the pseudo-

inverse of P(l) simultaneously, (9) can be rewritten as

kl =

M∑
m=1

hL(m)(k −m)l, (10)

which is no longer a matrix-valued equation. This equation

also shares the same form as the one in the coefficient

derivation of the original PPM or FIR filter in [12] or [13].

Therefore, the rest of the derivation should be the same as the
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one in those two references. If the details are needed, please

refer to the two references.

The optimal coefficients for the polynomials whose degrees

are no greater than 2 are provided in this paper. If one need

the optimal coefficients for the polynomials whose degrees

are larger than 2, please refer to the derivation in [13]. The

simplest case is L = 0, that is, the matrix signal is assumed

constant. In this situation, the optimal coefficients for the filter

are given as [13]

h0(m) =
1

M
. (11)

In other word, Ak can be predicted by (7) via the mean of

the previous M values. When L = 1 and 2, the optimal

coefficients are respectively given as [13]

h1(m) =
4M − 6m+ 2

M(M − 1)
, (12)

and

h2(m) =
9M2 − (9− 36m)M + (30m2 − 18m+ 6)

M(M − 1)(M − 2)
. (13)

From (11) to (13), one can see that the coefficients of the

predictive FIR filters have nothing to do with the matrix co-

efficients of the polynomials, which will make their following

applications very convenient.

IV. MATRIX POLYNOMIAL PREDICTIVE MODEL IN THE

PARAFAC DECOMPOSITION

A. ALS-MPPM

Let Ak, Bk, and Ck respectively denote the estimates of

the corresponding loading matrices in the k-th iteration of the

ALS. If the convergent progresses of the Ak, Bk, and Ck

are described by the polynomials as given (6), they can be

predicted by (7) via their previous M estimates Ak−m, Bk−m,

and Ck−m(m = 1, · · · ,M). When the predictions, A−
k , B−

k ,

and C−
k are taken as the known values of the next iteration for

the ALS, a new version of the ALS denoted as ALS-MPPM

is found.

It should be emphasized that the rate of the convergence can

be controlled by the degree of the polynomial model (6). It

means that the higher the degree of the polynomial is, the faster

the algorithm convergence will be. Such an acceleration can be

illustrated taking the PPM for a scalar polynomial signal as an

example. Assume that xk−2 and xk−1 are the estimates of x in

the previous iterations, whereas the x−
K is the prediction of xk

using (5) with L = 1 and M = 2. Let ε−k denote the absolute

error of the estimation x−
k , i.e., ε−k = |x−

k −x|. Then, ε−k can be

written as ε−k = εk−1 +Δx−
k , where Δx−

k = x−
k − xk−1 < 0

is the error increment of x−
k , and εk−1 is the absolute error

of the estimation xk−1. It is obvious that ε−k < εk−1. In other

words the predicted x−
k should be a better estimate of x than

xk−1. Therefore, the convergence is accelerated via such a

prediction. Nevertheless, the prediction could fail. Such failure

usually happens when a rapid convergence occurs near the

values of the convergence. When L = 1, the progresses of

the signal x to its convergence value is assumed to be linear.

In a rapid convergence progress, once |Δxk−1| > 2εk−1, the

prediction will fail since ε−k > εk−1, as illustrated in Fig.1.

As a result, a faster convergence means a higher possibility of

prediction failure. Therefore, a higher degree of polynomials

does not guarantee better performance.

2kx 1kx
kx true value

Fig. 1. An illustration of prediction failure using PPM in a rapid convergence
near its value of convergence.

The simplest solution to handle such a failure is to abandon

the prediction when ε−k > εk−1. Namely, a standard ALS

iteration is applied after the prediction fails have been detected.

The ALS-MPPM is summarized in TABLE I.

TABLE I
SUMMARIZATION OF THE ALS-MPPM ALGORITHM

Given: tensor data X , initial estimates A0, B0, and C0, degree of the
polynomial L, and the length of the filter M .

Initialize:

Calculate hL(m),m = 1, · · · ,M offline;

Define the collection A = [A0, · · · ,A0]
︸ ︷︷ ︸

M

, B = [B0, · · · ,B0]
︸ ︷︷ ︸

M

,

and C = [C0, · · · ,C0]
︸ ︷︷ ︸

M

;

Set k = 1.

Do
Predict A−

k , B−
k , and C−

k with A , B, and C using (7);

Calculate ε−k ;

If ε−k > εk−1

Adopt the re-prediction strategy;

End If
Do ALS Update:

Ak = X(1)[(C
−
k �B−

k )T ]†;

Bk = X(2)[(C
−
k �Ak)

T ]†;

Ck = X(3)[(Ak �Bk)
T ]†;

Calculate εk;

Update the collection of previous estimates A = [Ak,A2:M ],
B = [Bk,B2:M ], and C = [Ck,C2:M ];

k = k + 1;

Until some termination conditions are met.

Output: final estimation Â, B̂, and Ĉ.

B. Connection to Existing Algorithms

The relationship between the PPM and the Constant-
Velocity (CV) or Constant-Acceleration (CA) models has been

covered in [12]. Moreover, when our ALS-MPPM is used to
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do the PARAFAC decomposition, it is also closely related to

the existing ALS-based algorithms.

1) ALS: When L = 0 and M = 1, the coefficient of the

MPPM is h0(1) = 1, according to (11). In this case, it can be

seen that the prediction is

A−
k = Ak−1, (14)

which makes the ALS-MPPM equivalent to the original ALS.

In this sense, ALS can be seen as a special case of our ALS-

MPPM.

2) ALS-(E)LS: When L = 1 and M = 2, the coefficients

of the MPPM can be calculated by (12) as

A−
k = 2Ak−1 −Ak−2, (15)

which can also be written as

A−
k = Ak−2 + 2 (Ak−1 −Ak−2) . (16)

It can be seen that (16) shares the same form as the (Enhanced)
Line Search ((E)LS) techniques given in [8]- [11] with a

relaxation factor of 2. Since such a factor is the maximum

number allowed for a LS algorithm, it implies that our ALS-

MPPM will converge much faster than the existing LS-based

algorithms although a higher possibility of prediction failure

could occur. However, unlike the original LS, in which the

relaxation factor is chosen empirically, the MPPM is determin-

istic. Moreover, unlike the ELS, the MPPM does not need to

solve a high degree polynomial equation, which means MPPM

takes less computation than ELS does in each iteration.

V. NUMERICAL SIMULATIONS

In this section, Monte-Carlo simulations will be conducted

to test the proposed ALS-MPPM algorithm against the existing

ALS-based algorithms under different SNR conditions. The

tensor X in (1) is randomly generated as follows. The size

of the tensor is set to 4 × 4 × 4 with rank 3. Each element

in the loading matrices A, B, and C is drawn from a

uniform distribution on [0, 1], and then X is obtained by the

matricization (2). X is mixed with a Gaussian noise under

different SNR level. The SNR (in dB) is defined as

SNR = 10 log10
‖X‖2F
σ2IJK

, (17)

where σ2 denotes the variance of the Gaussian noise and

‖·‖F denotes the Frobenius norm. For each SNR, 1000 tensor

samples are generated, and a 5% truncated mean of results

is taken when processing the data to rule out the impact

of the numerical issues. For each algorithm tested here, the

convergence criteria include:

• Normalized Mean Square Error (NMSE) threshold:

εNMSE = 10−8;

• Relative NMSE threshold: εk = |εk − εk−1|/εk−1 =
10−6;

• Maximum number of iterations K = 5000,

where the NMSE is calculated by

εk =

∥∥∥X(1) −Ak (Ck �Bk)
T
∥∥∥
2

F∥∥X(1)

∥∥2
F

. (18)

In the first simulation, different configurations of the ALS-

MPPM algorithm are tested, as shown in Fig. 2. The con-

figuration with L = 0 and M = 1 is seen as the baseline

since in this case the ALS-MPPM is the same as the original

ALS. It can be seen that our ALS-MPPM is almost 10 times

faster (in iterations) than the baseline configuration. It is also

worth noticing that, when the degree remains unchanged, the

number of iterations grows with the length of the MPPM.

Therefore, it is recommended to use the shortest filter, that is,

the length of the filter is recommended to set as M = L+ 1.

On the other hand, the matrix polynomial with a higher degree

in this simulation does not guarantee a faster convergence,

since a higher order MPPM usually results in a higher rate of

prediction failure, as shown in Fig. 3.
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Fig. 2. Average number of iterations of several configurations of ALS-MPPM
under different SNR condition. (Lower is better.)
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Fig. 3. Average prediction failure rate of several configurations of ALS-
MPPM under different SNR condition.

In the second simulation, the ALS-MPPM is tested against

several existing acceleration techniques for the ALS, including
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two versions of Line Search (denoted as the ALS-LSB [9] and

ALS-LSH [1]) and the Enhanced Line Search (denoted as the

ALS-ELS [10]). The test results are shown in Fig. 4. It can

be observed that our ALS-MPPM outperforms all reported

acceleration techniques of the ALS.

0 10 20 30 40 50
SNR (dB)

102
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tio
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ALS-MPPM(L=0)
ALS-MPPM(L=1)
ALS-MPPM(L=2)

ALS-LSB
ALS-LSH
ALS-ELS

Fig. 4. Average number of iterations of the ALS-based algorithms. (Lower
is better.)

VI. CONCLUSION AND FUTURE WORK

To accelerate the convergence of the PARAFAC decom-

position of a tensor, a new ALS algorithm, called as the

ALS-MPPM, has been proposed. Analyses show that the rate

of the convergence of the proposed ALS-MPPM is closely

related to the degree of the matrix polynomial. The polynomial

with a high degree is preferred when an accelerative rate of

convergence is expected. Although a high degree means a

high possibility of prediction failure, a simple solution has

also been provided to handle such failure. Moreover, the rela-

tionship between our ALS-MPPM and the existing ALS-based

algorithms has also been analyzed. The results of numerical

simulations show that the proposed ALS-MPPM outperforms

the reported ALS-based algorithms in the literature while the

analytical results are verified. Our future work includes the

better strategies for handling the prediction failure and the

derivation of the detailed relationship between the degree of

the matrix polynomial and the rate of convergence.
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