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Abstract—The key results on maximum-likelihood (ML) esti-
mation of misspecified models have been introduced by statisti-
cians (P.J. Huber, H. Akaike, H. White, Q. H. Vuong) resorting to
a general probabilistic formalism somewhat difficult to rephrase
into the formalism widespread in the signal processing literature.
In particular, Vuong proposed two misspecified Cramér-Rao
bounds (CRBs) to address, respectively, the situation where the
true parametric probability model is known, or not known. In
this communication, derivations of the existing results on the
accuracy of ML estimation of misspecified models are outlined in
an easily comprehensible manner. Simple alternative derivations
of these two misspecified CRBs based on the seminal work of
Barankin (which underlies all the lower bounds introduced in
deterministic estimation) are provided. Since two distinct CRBs
exist when the true parametric probability model is known, a
quasi-efficiency denomination is introduced.

I. INTRODUCTION

Since its introduction by R.A. Fisher in deterministic es-
timation [1][2], the method of maximum likelihood (ML)
estimation has become one of the most widespread used
methods of estimation. The ongoing success of ML estimators
(MLEs) originates from the fact that, under reasonably general
conditions on the probabilistic observation model [1][2], the
MLEs are, in the limit of large sample support, Gaussian
distributed and consistent. Additionally, if the observation
model is Gaussian, some additional asymptotic regions of
operation yielding, for a subset of MLEs, Gaussian distributed
and consistent estimates, have also been identified at finite
sample support [3][4]. However, a fundamental assumption
underlying the above classical results on the properties of
MLEs is that the probability distribution which determines the
behavior of the observations is known to lie within a specified
parametric family of probability distributions (the probability
model). In other words, the probability model is assumed to
be ”correctly specified”.

Actually, in many (if not most) circumstances, a certain
amount of mismatch between the true probability distribution
of the observations and the probability model that we assume
is present. As a consequence, it is natural to investigate what
happens to the properties of MLE if the probability model is
misspecified, i.e. not correctly specified. Huber [5] explored in
detail the performance of MLEs under very general assump-
tions on misspecification, and proved consistency, normality,
and derived the MLEs asymptotic covariance that is often
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referred to as the Huber’s ”sandwich” covariance in literature.
However, Hubert did not explicitly discuss the information
theoretic interpretation of this limit. This interpretation has
been emphasized by Akaike [6] who has observed that when
the true distribution is unknown, the MLE is a natural estima-
tor for the parameters which minimizes the Kullback-Leibler
information criterion (KLIC) between the true and the assumed
probability model. Then White [7] provided simple conditions
under which the MLE is a strongly consistent estimator for
the parameter vector which minimize the KLIC. While not as
general as Huber’s conditions, White’s conditions are however
sufficiently general to have broad applicability. Lastly, Q. H.
Vuong [8] proposed two misspecified Cramér-Rao bounds
(CRBs) to address, respectively, the situation where the true
parametric probability model is known, or not known, under
a general probabilistic formalism involving regular and semi-
regular parametric models.

Therefore, the purpose of this communication is twofold.
Firstly, in order to foster the understanding of the works of
Huber, Akaike, and White on misspecified MLEs [5][6][7],
derivations of the key results are outlined in an easily compre-
hensible manner. Secondly, following the lead of Barankin’s
seminal work in deterministic estimation [9], simple alterna-
tive derivations of the two misspecified CRBs introduced by
Vuong are put forward. As a by-product, the misspecified
CRB proposed by Vuong [8, Theorem 4.1 ] when the true
parametric probability model is unknown, is a least-upper
CRB in the Barankin sense, which coincides with the Hu-
ber’s ”sandwich” covariance, and so called misspecified CRB
under ML constraints in [10, (42)] or misspecified CRB for
misspecified-unbiased estimators in [11, (5)]. Last, since two
distinct misspecified CRBs exist when the true parametric
probability model is known, a quasi-efficiency denomination
is introduced.

A. Notations and assumptions

Let xl be a M -dimensional complex random vector rep-
resenting the outcome of a random experiment (i.e., the
observation vector) whose probability density function (p.d.f.)
is known to belong to a family P . A structure S is a set of hy-
potheses, which implies a unique p.d.f. in P for xl. Such p.d.f.
is indicated with p (xl;S). The set of all the a priori possible
structures is called a probability model [2]. We assume that the
p.d.f. of the random vector xl has a parametric representation,
i.e., we assume that every structure S is parameterized by a
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P -dimensional vector ψ, that is p (xl;ψ) , p (xl;S (ψ)), and
that the model is described by a compact subspace U ⊂ RP . In
the following, we consider L i.i.d. observations, {xl}Ll=1, for
which the true parametric p.d.f. denoted pδ (xl) , p (xl; δ),
δ ∈ Uδ ⊂ RPδ , and the assumed parametric p.d.f. denoted
fθ (xl) , f (xl;θ), θ ∈ Uθ ⊂ RPθ , belong to two (generally
different) families of p.d.f.’s, Pδ and Fθ. Let us denote:
Eθ [g (x)] , Efθ [g (x)] =

∫
g (x) fθ (x) dx, Eδ [g (x)] ,

Epδ [g (x)] =
∫
g (x) pδ (x) dx, where xT =

(
xT1 , . . . ,x

T
L

)
,

fθ (x) =
∏L
l=1 fθ (xl) and pδ (x) =

∏L
l=1 pδ (xl). If the true

model is unknown or not needed, i.e., we do not have or do
not need prior information on the particular parameterization
of the true distribution, we refer to pδ (x) and Pδ only as
p (x) =

∏L
l=1 p (xl) and P , respectively, and we denote:

Ep [g (x)] =
∫
g (x) p (x) dx.

II. ML ESTIMATION OF MISSPECIFIED MODELS

As mentioned in the introduction, several authors [5][6][7]
have contributed to show that, under mild regularity conditions
given in [7] (and summarized in [11, Section II.A]), the
misspecified MLE (MMLE) defined as:

θ̂ (x) = arg max
θ

{fθ (x)} = arg max
θ

{ln fθ (x) /L} , (1a)

is, in the limit of large sample support (L → ∞), a strongly
consistent estimator for the parameter vector θf 1 which min-
imizes the KLIC:

θ̂ (x)
a.s.→ θf = arg

θ
min {D (p||fθ)} , D (p||fθ)

= Ep [ln (p (xl) /fθ (xl))] . (1b)

Indeed, as noticed in [6], since
ln fθ (x) /L =

∑L
l=1 ln fθ (xl) /L

a.s.→ Ep [ln (fθ (xl))]

(strong law of large numbers), θ̂ (x) is in general a natural
estimator of:

θf = arg max
θ

{Ep [ln (fθ (xl))]}

= arg min
θ

{Ep [ln (p (xl) /fθ (xl))]} ,

which can be proved to be strongly consistent under mild
regularity conditions given in [7]. Therefore the gradient of
the ML objective function (1a) can be well approximated via
a first order Taylor series expansion about θf :

θ̂ (x)
a.s.→ θf −

[
∂2 ln f (x;θf )

L∂θ∂θT

]−1
∂ ln f (x;θf )

L∂θ
, (2a)

which, in the limit of large sample support, yields:

θ̂ (x)
a.s.→ θf −W (θf )

−1 ∂ ln f (x;θf )

L∂θ
,

W (θ) = Ep

[
∂2 ln f (xl;θ)

∂θ∂θT

]
, (2b)

1The value θf is called the pseudo-true parameter of θ for the model
fθ (xl) when p (xl) is the true p.d.f..

following from similar argument given by Cramér [1, pp. 500-
503][7]. Hence θ̂ (x) is asymptotically normal [7, Th. 3.2]:

θ̂ (x)
A∼ N

(
mθ̂,Cθ̂

)
, (3a)

mθ̂ → θf −W (θf )
−1
Ep

[
∂ ln f (xl;θf )

∂θ

]
, (3b)

Cθ̂ → C (θf ) = W (θf )
−1

Cζ (θf )W (θf )
−1
, (3c)

where Cθ̂ = Ep

[(
θ̂ (x)−mθ̂

)(
θ̂ (x)−mθ̂

)T]
, mθ̂ =

Ep

[
θ̂ (x)

]
, ζ , ζ (x;θ) = ∂ ln f(x;θ)

L∂θ and:

LCζ (θ) = Ep

[
∂ ln f (xl;θ)

∂θ

∂ ln f (xl;θ)

∂θT

]
− Ep

[
∂ ln f (xl;θ)

∂θ

]
Ep

[
∂ ln f (xl;θ)

∂θT

]
. (3d)

In the particular case of the MMLE (1a-1b) and under the
regularity conditions summarized in [11, Section II.A], θf is
an interior point of Uθ, i.e. a local minimum of divergence
D (p||fθ) which satisfies:

θf = arg
θ

min {D (p||fθ)} = arg max
θ

{Ep [ln (fθ (xl))]}

= arg
θ

{
Ep

[
∂ ln f (xl;θ)

∂θ

]
= 0

}
. (4a)

Then:

Ep

[
∂ ln f (xl;θf )

∂θ

]
= 0, mθ̂ = Ep

[
θ̂ (x)

]
= θf ,

Cθ̂ = Ep

[(
θ̂ (x)− θf

)(
θ̂ (x)− θf

)T]
, (4b)

and the asymptotic covariance matrix (3c) can be further
simplified and reduces to the Huber’s ”sandwich” covariance:

CH (θf ) =
W (θf )

−1

L

× Ep
[
∂ ln f (xl;θf )

∂θ

∂ ln f (xl;θf )

∂θT

]
W (θf )

−1
. (4c)

Last, since any covariance matrix satisfies the covariance
inequality [2], that is ∀η (x):

Cθ̂ ≥ Ep
[(
θ̂ (x)− θf

)
η (x)

T
]
Ep

[
η (x)η (x)

T
]−1

× Ep
[
η (x)

(
θ̂ (x)− θf

)T]
, (5a)

consequently, according to (3c), almost surely ∀η (x):

CH (θf ) ≥ Ep
[(
θ̂ (x)− θf

)
η (x)

T
]

× Ep
[
η (x)η (x)

T
]−1

Ep

[
η (x)

(
θ̂ (x)− θf

)T]
, (5b)

which is referred to as the Huber’s ”sandwich” (covariance)
inequality in the literature on misspecified models.
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III. CRB FOR MISSPECIFIED MODELS IN THE BARANKIN
SENSE

When the true parametric model p (x; δ) is known and
assumed to be correctly specified, all the lower bounds intro-
duced in deterministic estimation [12] have been derived from
the seminal work of Barankin. In [9] Barankin established
the general form of the greatest lower bound on any sth
absolute central moment (s > 1) of a uniformly unbiased
estimator with respect to p (x; δ), generalizing the earlier
works of Cramér, Rao and Battacharayya on locally unbiased
estimators. Barankin showed [9, Section 6], among other
things, that the definition of the CRB can be generalized to
any absolute moment as the limiting form of the Hammersley-
Chapman-Robbins bound (HaChRB). The general results in-
troduced by Barankin require not only the knowledge of the
parameterization of the true distribution p (x; δ) but also the
formulation of a uniform unbiasedness constraint of the form:

Eδ [ĝ (x)] = g (δ) , ∀δ ∈ Uδ, (6a)

if one wants to derive lower bounds on the MSE of an unbiased
estimate ĝ (x) of the vector g (δ) of functions of δ. Since the
MMLE θ̂ (x) (1a-1b) is in the limit of large sample support an
unbiased estimate of θf (4b), and since there exists an implicit
relationship between θf and δ (4a):

θf (δ) = arg
θ

{
Eδ

[
∂ ln f (xl;θ)

∂θ

]
= 0

}
, (6b)

the form of (6a) of interest is therefore:

Eδ

[
θ̂ (x)

]
= θf (δ) , ∀δ ∈ Uδ. (6c)

Then, according to [9] and in the particular case of the MSE
(absolute moment of order 2), the misspecified CRB (MCRB)
for unbiased estimates of the pseudo-true parameter θf is
defined, for any selected value δ0, as the limiting form of the
HaChRB obtained from the covariance inequality (5a) where
[13]:

η (x)
T

=

(
1,
p
(
x; δ0 + u1dδ

)
p
(
x; δ0

) , . . . ,
p
(
x; δ0 + uPδdδ

)
p
(
x; δ0

) )
,

Eδ0

[(
θ̂ (x)− θ0f

)
η (x)

T
]

=[
0 θf

(
δ0 + u1dδ

)
− θ0f . . . θf

(
δ0 + uPδdδ

)
− θ0f

]
,

θ0f = θf
(
δ0
)
, up is the pth column of the identity matrix IPδ

and dδ → 0, leading to Cθ̂ ≥MCRBδ0 where:

MCRBδ0 =
∂θf

(
δ0
)

∂δT

× Eδ0

[
∂ ln p

(
x; δ0

)
∂δ

∂ ln p
(
x; δ0

)
∂δT

]−1
∂θf

(
δ0
)

∂δT
. (7)

∂θf (δ) /∂δT can be easily obtained using the following
implicit function theorem [14, Theorem 9.28]. Let h (θ, δ) =
(h1 (θ, δ) , · · · , hPθ (θ, δ))

T be a function of RPθ × RPδ →

RPθ . Let us assume the following: A1) hp (θ, δ) for p =
1, . . . , Pθ are differentiable functions on a neighborhood of
the point

(
θ0, δ0

)
in RPθ × RPδ , A2) h

(
θ0, δ0

)
= 0, A3)

the Pθ × Pθ Jacobian matrix of h (θ, δ) with respect to θ
is nonsingular at

(
θ0, δ0

)
. Then, there is a neighborhood ∆

of the point δ0 in RPδ , there is a neighborhood Θ of the
point θ0 in RPθ , and there is a unique mapping ϕ : ∆ → Θ
such that θ0 = ϕ

(
δ0
)

and h (ϕ (δ) , δ) = 0 for all δ in ∆.
Furthermore, ϕ (δ) is differentiable at δ0 and satisfies:

ϕ (δ)−ϕ
(
δ0
)

=

−

(
∂h
(
θ0, δ0

)
∂θT

)−1
∂h
(
θ0, δ0

)
∂δT

(
δ − δ0

)
+ o

(∥∥δ − δ0∥∥) .
In the case addressed (6b): h (θ, δ) = Eδ

[
∂ ln f(xl;θ)

∂θ

]
and

ϕ (δ) = θf (δ). Then:

∂θf
(
δ0
)

∂δT
= −W

(
θ0f
)−1

× Eδ0

[
∂ ln f

(
xl;θ

0
f

)
∂θ

∂ ln p
(
xl; δ

0
)

∂δT

]
,

and (7) becomes:

MCRBδ0 =

W
(
θ0f
)−1

Eδ0

[
∂ ln f

(
xl;θ

0
f

)
∂θ

∂ ln p
(
xl; δ

0
)

∂δT

]

× 1

L
Eδ0

[
∂ ln p

(
xl; δ

0
)

∂δ

∂ ln p
(
xl; δ

0
)

∂δT

]−1

× Eδ0

[
∂ ln p

(
xl; δ

0
)

∂δ

∂ ln f
(
xl;θ

0
f

)
∂θT

]
W
(
θ0f
)−1

. (8)

Clearly the Barankin approach provides a simpler alternative
derivation of (8) than the one earlier proposed by Vuong
[8] (Theorem 3.1), under a general probabilistic formalism
involving regular and semi-regular parametric models, and
somewhat difficult to follow. Moreover, by the covariance
inequality:

Eδ0

[
∂ ln f

(
xl;θ

0
f

)
∂θ

∂ ln f
(
xl;θ

0
f

)
∂θT

]
≥

Eδ0

[
∂ ln f

(
xl;θ

0
f

)
∂θ

∂ ln p
(
xl; δ

0
)

∂δT

]

× Eδ0

[
∂ ln p

(
xl; δ

0
)

∂δ

∂ ln p
(
xl; δ

0
)

∂δT

]−1

× Eδ0

[
∂ ln p

(
xl; δ

0
)

∂δ

∂ ln f
(
xl;θ

0
f

)
∂θT

]
(9a)
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with equality iff [2]:

∂ ln f
(
xl;θ

0
f

)
∂θ

= Eδ0

[
∂ ln f

(
xl;θ

0
f

)
∂θ

∂ ln p
(
xl; δ

0
)

∂δT

]
×

Eδ0

[
∂ ln p

(
xl; δ

0
)

∂δ

∂ ln p
(
xl; δ

0
)

∂δT

]−1
∂ ln p

(
xl; δ

0
)

∂δ
. (9b)

Therefore, when p (x; δ) is known, one can assert that in most
cases:

Cθ̂ → CH

(
θ0f
)
>MCRBδ0 , (10)

in other words, in most cases, θ̂ is no longer an efficient
estimator of θf (in comparison with the correctly specified
case [1]). Furthermore, if p (x; ) and f (x; ) share the same
parameterization, i.e. p (x;θ) and f (x;θ), then the MSE of
θ̂ is:

MSEθ̂

(
θ0
)

= Epθ0

[(
θ̂ (x)− θ0

)(
θ̂ (x)− θ0

)T]
,

(11a)
and, in the limit of large sample support, is given by:

MSEθ̂

(
θ0
)
→ CH

(
θ0f
)

+
(
θ0f − θ

0
) (
θ0f − θ

0
)T
. (11b)

Therefore, when the true parametric model is known, one
can assert that in most cases, the MMLE is not a consistent
estimator of θ, and whenever it is consistent, it is not an
efficient estimator of θ, which contrasts with the behavior of
MLEs, since, if the MLEs are consistent then they are also
asymptotically efficient [3].

IV. LEAST-UPPER CRB FOR MISSPECIFIED MODELS IN THE
BARANKIN SENSE

If the true model is unknown, i.e., we do not have prior
information on the particular parameterization of the true
distribution p (xl), the formulation of uniform unbiasedness
(6c) is no longer possible. However, the Barankin approach
can still be used by building on Vuong’s work where it is
shown [8, Theorem 4.1] that, under mild regularity conditions
summarized in [11, Section II.A], the following surrogate
parametric model:

p̃θ (xl) , p̃ (xl;θ) =
p (xl)

c (θ)

(
1 + exp

(
1− f (xl;θ)

f (xl;θf )

))
,

(12)
where c (θ) is a normalizing constant, is a locally least
favorable true parametric model in the MSE sense. Indeed, the
minimization of the KLIC D (p̃θ||fθ) (1b) at the vicinity of
θf yields a locally unbiased estimator of θf , allowing for the
derivation of the MCRB (8) associated with p̃ (xl;θ), which
satisfies (9b) at θf since [8, (A.62)]: ∂ ln f (xl;θf ) /∂θ =
α∂ ln p̃ (xl;θf ) /∂θ, α = −2. Thus the MCRB associated
with p̃ (xl;θ) coincides at θf with the Huber’s ”sandwich”
covariance CH (θf ) (4c). Therefore, by reference to (5b),
the Huber’s ”sandwich” covariance appears to be the least-
upper MCRB (LUMCRB) for locally unbiased estimates of
the pseudo-true parameter θf :

LUMCRB (θf ) = CH (θf ) , (13)

both in Vuong and Barankin senses. Another noteworthy point
stressed in [10, Section VII.C] is that, since in the limit of large
sample support the MMLE satisfies [10, (57)]:

Ep

[(
θ̂ (x)− θf

) ∂ ln f (x;θf )

L∂θT

]
=
−W (θf )

−1

L

× Ep
[
∂ ln f (xl;θf )

∂θ

∂ ln f (xl;θf )

∂θT

]
,

CH (θf ) (4c) is also obtained from (5b) where the score
function η (x) is defined as η (x) , ∂ ln f (x;θf ) /∂θ.
Finally, the so called MCRB under ML constraints [10, (42)]
and the so called MCRB for misspecified-unbiased estimators
[8, Theorem 4.1 ][11, (5)] appear to be, in the Barankin sense,
the LUMCRB (13).

A. Quasi-efficiency

Interestingly enough, if the true parametric model p (xl;θ)
is known, the parametric model (12) can still be defined as:

p̃θ (xl) =
p
(
xl; δ

0
)

c (θ)

(
1 + exp

(
1− f (xl;θ)

f
(
xl;θ

0
f

))) ,
where θ0f = θf

(
δ0
)
, and all the results mentioned above

still hold as well. Then the covariance matrix of a locally
unbiased estimator of θf may be either equal to the MCRB
or to the LUMCRB. In the Barankin sense, the former case
defines an efficient estimator. Hence the need to introduce
a new denomination for the latter case. We propose to call
such an estimator a quasi-efficient estimator. Finally, one can
assert that in most cases, the MMLE is not a consistent
estimator of θ, and whenever it is consistent, it is only a quasi-
efficient estimator of θ. As expected, both the MCRB and the
LUMCRB reduce to the usual CRB when the model is known
to be correctly specified, i.e. f (xl;θ) , p (xl;θ), since then
θf = θ and p̃ (xl;θ) = p (xl;θ), leading to:

MCRBθ = LUMCRB (θ) =

1

L
Eθ

[
∂ ln p (xl;θ)

∂θ

∂ ln p (xl;θ)

∂θT

]−1
= CRBθ,

and, in the limit of large sample support, any quasi-efficient
estimator becomes an efficient estimator. And last but not least,
since the MMLEs asymptotic covariance matrix CH (θf ) is
available (4c), the derivation of additional lower bounds via
the Huber’s sandwich inequality (5b) may seem questionable.
It is probably the reason why misspecified lower bounds have
received little consideration in the literature [8][15], except
very recently [10][11].

V. AN ILLUSTRATIVE EXAMPLE

We revisit the problem of the estimation of the variance
of Gaussian data in the presence of misspecified mean value
proposed in [11, Section III]. Let us assume to have a set
of L i.i.d. scalar observations x = (x1, . . . , xL)

T , distributed
according to a Gaussian p.d.f. with a known mean value
mx and an unknown variance σ2

x , θ, i.e. p (x; θ) =
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pN (x;mx1L, θIL). Suppose now that the assumed Gaussian
p.d.f. is f (x; θ) = pN (x;m1L, θIL), so we misspecify the
mean value. Then, (1a-1b) become [11, Section III]:

θ̂ (x) =
1

L

L∑
l=1

(xl −m)
2
, θf = θ + (mx −m)

2
,

where Ep
[
θ̂ (x)

]
= θf , and the LUMCRB is given by [11,

(22)]:

LUMCRB (θf ) =
2θ2

L
+

4θ (mx −m)
2

L
+ (mx −m)

4
.

(14)
According to (7), since ∂θf (θ) /∂θ = 1, the MCRB is simply:

MCRBθ =
1

Eθ

[(
∂ ln p(x;θ)

∂θ

)2] = CRBθ =
2θ2

L
, (15)

which exemplify that the MMLE is only a quasi-efficient
estimator of θ, as predicted in most cases when the true
parametric model is known (10).
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