

Optical System

The TolTEC optical design simultaneously couples a 4 arcminute diameter FOV onto its three single-band focal The silicon lenses are AR-coated with diced subplanes. wavelength features (Datta et al. 2013)

Figure 1: ToITEC cold optics layout, top schematic view.

A rapidly-rotating ambient-temperature metamaterial halfwave plate (Pisano et al. 2008) is attached to the cryostat just skyward of the vacuum window.

LEKID Detectors

The camera uses three arrays of single-band polarized LEKID detectors fabricated at NIST.

Figure 2: An individual LEKID detector (top) and a prototype detector and feedhorn array (bottom).

The prototype 1.1 mm (280 GHz) array has promising sensitivity, passband, and polarimetric performance.

Figure 3: Measured spectrum and polarization efficiency.

The TolTEC Camera on the 50 meter LMT Telescope Sean Bryan UMASS AMHERST MICHIGAN Arizona State University, USA (For the ToITEC Team)

sean.a.bryan@asu.edu

A New View of the Millimeter-Wave Sky

High-Redshift Galaxies

TolTEC on the LMT will conduct a wide 100 \deg^2 and an ultradeep 1 \deg^2 survey to detect a large number of highredshift dusty star-forming galaxies, and characterize their star formation rates.

To study the role of magnetic fields in star formation, ToLTEC will conduct polarimetric surveys at intermediate angular scales between the all-sky coverage of Planck and the sub-arcsecond resolution of ALMA.

Figure 4: 1.1 mm map made with the LMT and AzTEC towards Epsilon Erdani. This image shows the debris disk around the star, as well as several distant dusty sub-millimeter galaxies (SMGs). ToITEC will make dramatically deeper and wider field maps for new surveys of SMGs.

Figure 5: Millimeter-wave maps of magnetic fields and dust on all-sky (Planck), intermediate (ToITEC and BLAST), and sub-arcsecond (ALMA) scales.

• 6x 100 hour survey periods dedicated for the community

Magnetic Fields & **Star Formation**

 Table 1: Calculated instrument performance for ToITEC on the
LMT during a median weather day from December to February.

 $d\nu/\nu$ At-de

Detec Tota Mappi AzT

We incorporated detector performance, optics, filters, and atmospheric conditions to forecast the mapping speed of TolTEC on the LMT. After atmospheric common-mode subtraction, AzTEC achieved a mapping speed 7 times slower than indicated by its white noise level. We apply this same factor in our noise model.

TolTEC Website: toltec.astro.umass.edu Sign up on the website for science working groups! **TolTEC Detector Development** Austermann et al., JLTP, Submitted (2017) Polarized LEKID Detectors Dober et al., JLTP 184, 173-179 (2016) Hubmayr et al., APL 106, 073505 (2015) Bryan et al., ISSTT 2015, arXiv/1503.04684

Mapping Speed Forecasting

	2.1 mm	1.4 mm	1.1 mm	
Passband	128-170	195-245	245-310	GHz
Bandwidth	28%	23%	23%	
et. Loading	4.8	7.2	10.7	pW
t-det. NEP	50	72	95	aW/\sqrt{Hz}
$\operatorname{NET}_{\operatorname{CMB}}$	646	1979	4466	$\mu K \sqrt{s}$
NEFD	0.59	1.01	1.46	mJy√s
ctor Count	900	1800	3600	
al NET _{CMB}	18.5	46.7	74.4	$\mu K \sqrt{s}$
otal NEFD	19.5	23.8	24.3	$\mu Jy\sqrt{s}$
ping Speed	74.4	22.0	13.4	$deg^2/mJy^2/hr$
ng Speed				
Scaled by	10.5	3.1	1.9	$\mathrm{deg}^2/\mathrm{mJy}^2/\mathrm{hr}$
EC Atm.				

Figure 6: Passbands and Atmospheric Model

More Information