

Galactic Science with CCAT-prime

Peter Schilke University of Cologne With input from

Doug Johnstone, René Plume, Erik Rosolowsky, Robert Simon, Friedrich Wyrowski

Cerro Chajnantor at 5600 m

Chajnantor Site opens up THz Windows

blue: pwv 0.6 mm (ALMA 25%), green: pwv 0.28 mm (CCAT 25%), red: pwv 0.20 mm (CCAT 10%)

Cosmology/Early Universe

Talk by Dominik Riechers

Galactic Science

What is the unique science we do with a 6 m telescope?

Large Surveys!

If it is on a good site?

Large Submm surveys!

Galactic Surveys in Continuum

ATLASGAL APEX 870 µm (Schuller et al. 2009) on GLIMPSE

Galactic Surveys in Lines

Galactic Longitude

ThrUMMS Mopra 12CO, ¹³CO, C¹⁸O(1-0) (Barnes et al. 2015)

Missing Ingredient: atomic C

Figure 6: Simulation of the ¹²CO J=2-1 (left) and [CI] ${}^{3}P_{1} - {}^{3}P_{0}$ (right) for a molecular cloud exposed to the interstellar radiation field in the inner Galaxy. In these models, the neutral carbon traces the cloud volume in both the dense regions detected with ¹²CO, and the extended diffuse regions at are free of ¹²CO. Simulations from Faviola Molina and Simon Glover.

Gives a more complete picture of molecular clouds than ¹³CO Traces cloud formation and PDRs (feedback)

Tracer of CO dark gas

Not contaminated by atomic gas like C⁺

Mapping with 64 element CHAI array (Talk Urs Graf)

Missing Ingredient: atomic C

Figure 6: Simulation of the ¹²CO J=2-1 (left) and [CI] ${}^{3}P_{1} - {}^{3}P_{0}$ (right) for a molecular cloud exposed to the interstellar radiation field in the inner Galaxy. In these models, the neutral carbon traces the cloud volume in both the dense regions detected with ¹²CO, and the extended diffuse regions at are free of ¹²CO. Simulations from Faviola Molina and Simon Glover.

Is it really that much more? Is it worth the effort?

Gives a more complete picture of molecular clouds than ¹³CO Traces cloud formation and PDRs (feedback)

Tracer of CO dark gas

Not contaminated by atomic gas like C⁺

Mapping with 64 element CHAI array (Talk Urs Graf)

Tracer of cosmic ray flux: CO dark gas

Bisbas et al., 2017

INDRIOLO ET AL. 2016

Is it really that much more? Is it worth the effort?

There are theoretical models predicting different distributions – is that observable?

Is it really that much more? Is it worth the effort?

There is observational evidence for very different distributions -

how widespread is that?

Maezawa et al. 1999

Mt. Fuji telescope

FIG. 2.—C I integrated intensity map of HCL2 (*color image*) superposed on the contour map of the C¹⁸O integrated intensity observed with the NRO 45 m telescope by Sunada & Kitamura (1999).

Magellanic Clouds templates for high-z galaxies

Lower metallicities lead to larger regions of CO dark gas traced best by atomic carbon

⇒ Atomic carbon traces the star-forming gas better than CO

Le Petit et al. 2006, http://ism.obspm.fr).

More GEco CCAT Science

- Turbulence dissipation in Molecular Clouds traced through high-J CO lines
- Multi-wavelength time variability due to episodic accretion (continuum, see talk by Doug Johnstone) with Prime-Cam

Predicted CO(6-5) emission from the simulation of Offner et al. (2014) for a molecular cloud observed by CCAT-p at 250 pc. (Simulation data courtesy of S. Offner)

GEco template surveys

See poster by Robert Simon

Survey	Line	Size (sq.deg)	rms (K)	∆v (km/s)	Beam ('')	Percentile	Time (h)	Days (8 h)
Gal. Plane	CI(1-0)	200	0.25	0.5	26	50	1000	125
	CO(4-3)	200	0.25	0.5	26	50	400	50
LMC	CI(1-0)	64	0.10	1	26	50	1000	125
	CO(4-3)	64	0.10	1	26	50	395	50
SMC	CI(1-0)	20	0.10	1	26	50	310	39
	CO(4-3)	20	0.10	1	26	50	125	16
Gould Belt	CO(7-6)	30	0.25	0.25	16	25	800	100
	¹³ CO(8-7)	30	0.25	0.25	14	25	485	61
Zoom-ins	CI(2-1)	50	0.25	0.5	16	25	610	76
	CO(11-10)	1	0.25	0.5	10	10	96	12
	CO(13-12)	1	0.25	0.5	8	10	63	8
Nearby galaxies	Line	Size (sq.arcmin)	rms (K)	∆v (km/s)	Beam ('')	Percentile	Time (h)	Days (8 h)
	CI(1-0)	10	0.01	1	26	50	4.5	
	CO(4-3)	10	0.03	1	26	50	1.7	
	CI(2-1)	10	0.006	1	16	25	30	
	CO(7-6)	10	0.02	1	16	25	3	