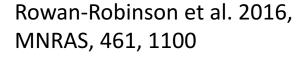
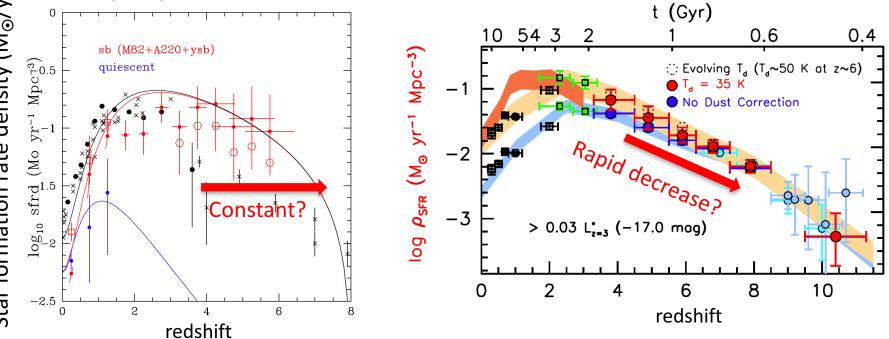
AtLAST workshop@ESO 17 – 19 January 2018

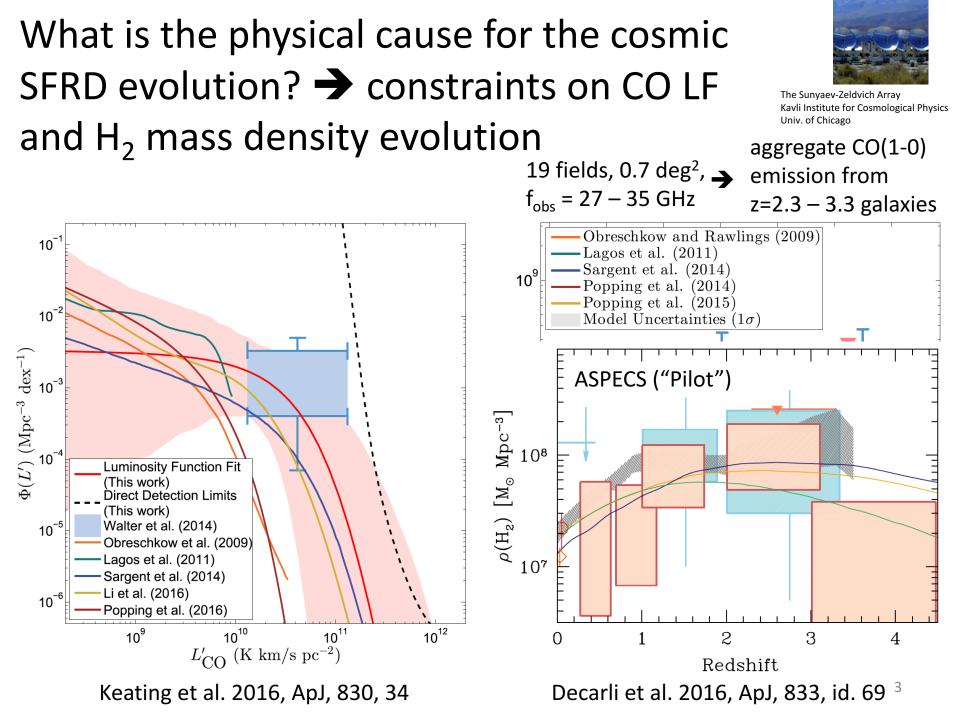

Blind spectroscopic galaxy surveys using an ultra-wide band imaging spectrograph or AtLAST and LST (and LMT)

Kotaro Kohno, Yuki Yamaguchi, Yuki Yoshimura, Bunyo Hatsukade (IoA/Univ. of Tokyo), Yoichi Tamura, Tsutomu Takeuchi (Nagoya Univ.), Ryohei Kawabe (NAOJ) and LST science WG + Akira Endo (TU Delft), Jochem Baselmans (SRON) and DESHIMA/MOSAIC collaboration


Ryohei David Yoichi

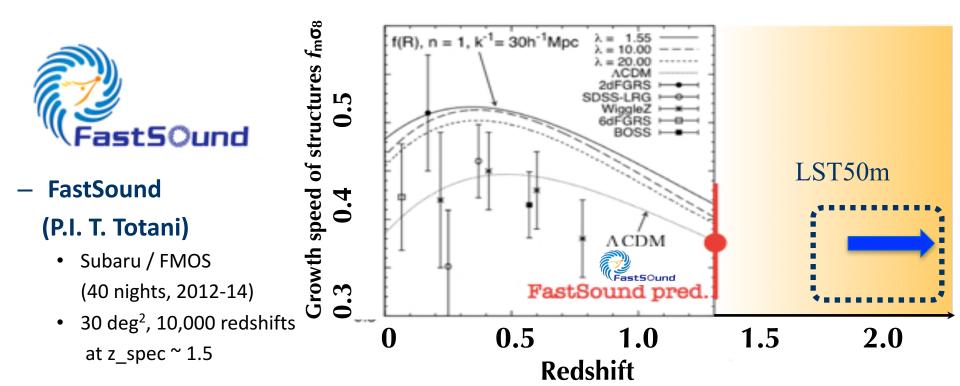


## What is the role of the dust-enshrouded starformation activities in z>3-6 and beyond?




Bouwens et al. 2016, ApJ, 833, id. 72



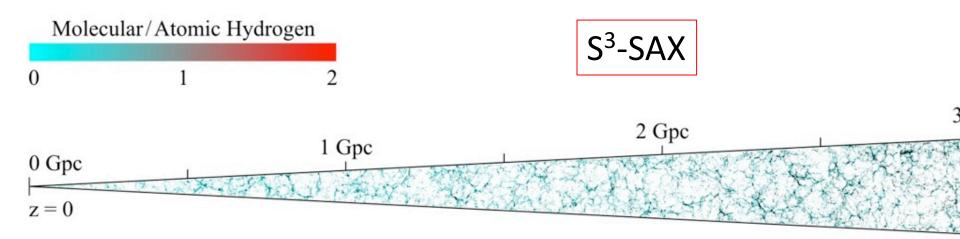

- Herschel wide area surveys of red submm sources → significant amount of dust-obscured star formation up to z~6?
- An ALMA deep survey @HUDF(ASPECS): Dust-observed starformation plays minor roles on the rest-frame-UV-selected galaxies

2



Does the growth rate of structures agree with the gravity theory (or require new physics)? → Redshift Space Distorsion

- To estimate the growth speed of structures in the universe → cosmological test of gravity theory (or dark energy)
- verification of gravity theory based on RSD: can be competitive to others even in a (relatively) small survey, if we go a unique redshift range → <u>Can LST detect >10,000 spec-z</u> <u>galaxies in CO (or [CII]) at z=2 and beyond?</u>




Large scale spectroscopic survey is really new:

# A feasibility study of blind spectroscopic survey:

How can we build a SDSS-like data set, >10<sup>6</sup> CO emitting galaxies and >10,000 [CII] emitting galaxies ?

# For a feasibility study of CO/[CII] tomography: SKA Design Studies – Virtual Hydrogen Cone

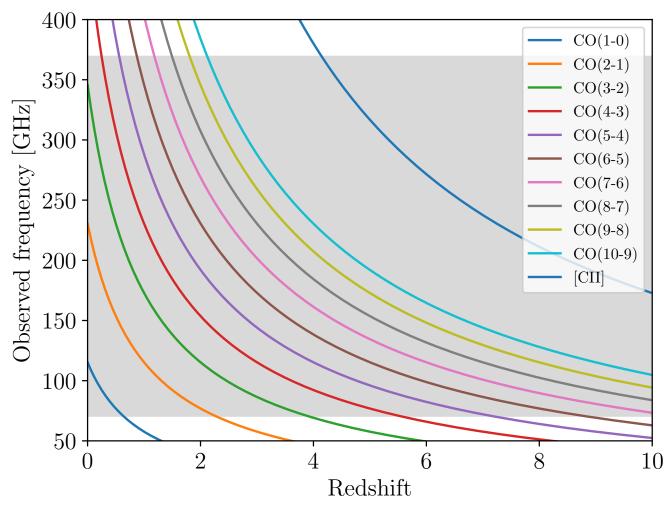


University of Oxford, D. Obreschkow et al., April 2009



Based on the Millennium simulation (Springel et al. 2005) and a semi-analytic galaxy simulation (Croton et al. 2006, De Lucia et al. 2007)

Obreschkow et al. 2009, ApJ, 702, 1321


**Unbiased spectroscopy survey** using **LST** (or a hypothetical) **50m** equipped with "**super-DESHIMA**" (or a hypothetical) imaging spectrograph

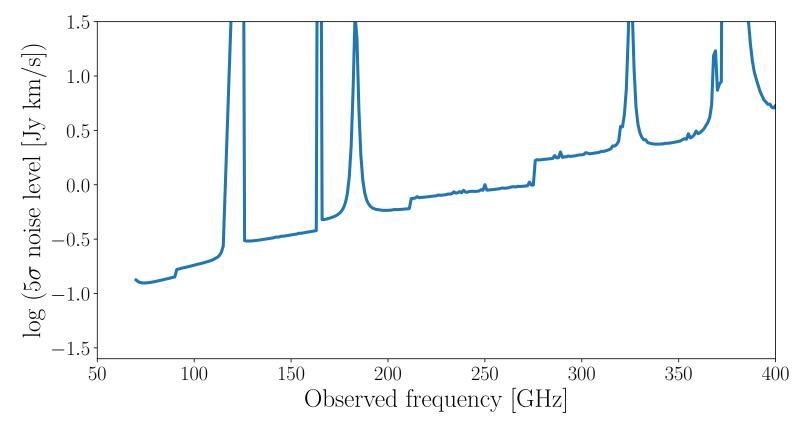
- 100 pix, dual-pol. receiver array which instantaneously covers the 70-370 GHz wavebands ("MUSE"-like instrument)
- t(on-source) = 1,000 hr (~several months)

Tamura, Y., + in prep.

- Area = 2 deg<sup>2</sup>
- extracting galaxies with at least 1 line detected at >4 $\sigma$ .
- Assumptions
  - $T_{\text{sys}}$  (PWV,  $T_{\text{receiver}}$ ,  $\eta_{\text{aperture}}$ ): same as the ALMA median condition.
  - scaling a result from the 45m OTF calculator (Sawada+08)
- Parent sample (retrieved from the S<sup>3</sup>-SAX/MySQL webpage)
  - 1.4M objects with  $S_{CO}\Delta V \ge 0.02$  Jy km/s for all transitions up to J =10 from the "Milli-Millennium" Simulation (1/64 of the full simulation)
  - [CII]158µm is considered using the scaling relation between
     L<sub>CO(1-0)</sub> and L<sub>[CII]</sub> of ~4,100 (Stacey+10)

## Mock observation




Observable redshift range

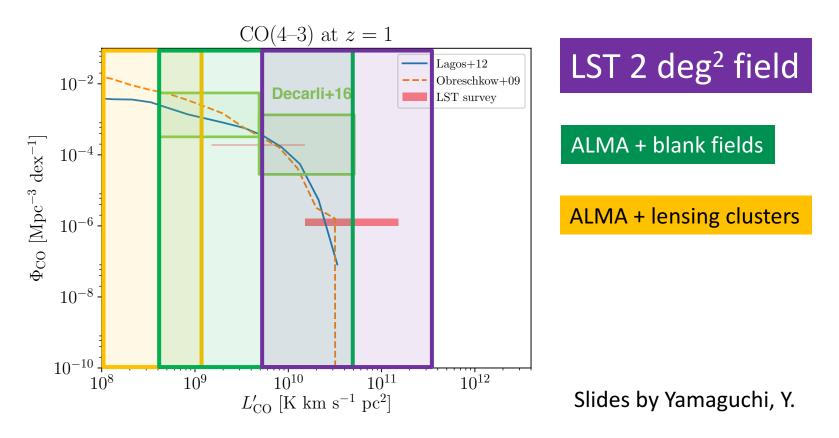
Slides by Yamaguchi, Y.

| line   | Z <sub>min</sub> | Z <sub>max</sub> |
|--------|------------------|------------------|
| CO1-0  | 0                | 0.65             |
| CO2-1  | 0                | 2.29             |
| CO3-2  | 0                | 3.94             |
| CO4-3  | 0.25             | 5.59             |
| CO5-4  | 0.56             | 7.23             |
| CO6-5  | 0.87             | 8.88             |
| CO7-6  | 1.18             | 10               |
| CO8-9  | 1.49             | 10               |
| CO9-8  | 1.80             | 10               |
| CO10-9 | 2.11             | 10               |
| [CII]  | 4.14             | 10               |
|        |                  |                  |

8

## Mock observation




- The 1σ noise level achieved in the 2 deg<sup>2</sup> survey is comparable to that obtained in a single track of ALMA, but the survey area is ~13,000 times larger than the ALMA FoV.
- The survey can detect MW-like galaxies at z ~ 2.

### Tamura, Y., + in prep. 2 deg<sup>2</sup> Light cone (Super-DESHIMA/LST 50m)



Kawabe+ 2016, SPIE

## **CO** luminosity functions



- The proposed 2 deg<sup>2</sup> survey will
  - Drastically improve the statistics of ALMA constraints
  - put a significant constraint on the bright-end of CO luminosity functions for the first time 
     essential for the formation of the massive galaxies

## Reference survey results (2 deg<sup>2</sup>, 1,000 hr, 100 pixels, $5\sigma$ )

- CO emitters: 21,776 galaxies (at least 1 CO line)
  - 17,481 of them will have >2 CO lines
- [CII] emitters: 1,217

➔ 10^6 CO emitters,

<sup>50,000 [</sup>CII] emitters

| line | ALL   | 2    | 3    | 4    | 5   | 6   | 7  | 8 |
|------|-------|------|------|------|-----|-----|----|---|
| 1-0  | 3489  | 788  | 2088 | 450  | 33  | -   | -  | - |
| 2-1  | 12158 | 3507 | 4454 | 1780 | 507 | 69  | 7  | 3 |
| 3-2  | 15479 | 5520 | 5394 | 2484 | 719 | 149 | 25 | 3 |
| 4-3  | 11277 | 2639 | 3890 | 2792 | 798 | 164 | 29 | 3 |
| 5-4  | 7219  | 1595 | 2217 | 2319 | 749 | 163 | 29 | 3 |
| 6-5  | 3447  | 197  | 746  | 1487 | 781 | 173 | 28 | 3 |
| 7-6  | 1250  | 11   | 258  | 416  | 359 | 170 | 26 | 3 |
| 8-7  | 420   | 1    | 26   | 86   | 159 | 112 | 29 | 3 |
| 9-8  | 130   | -    | 4    | 18   | 24  | 58  | 23 | 3 |
| 10-9 | 12    | -    | -    | -    | 1   | 4   | 7  | - |

Slides by Yamaguchi, Y.

<sup>100</sup> deg<sup>2</sup>, 5,000 hrs w/ 1,000 pixels

## Redshift Space Distorsion (RSD)

- Redshift z = expansion + peculiar velocity
- Peculiar velocity → speed of structue formation

   Linear regime → Kaiser effect (galaxies fall down to higher density region)
- Observable: "linear growth rate" *f* = dln D/dln a
- How to forecast parameter constraining the power of the LST blind survey?
- → Fisher forecast
- Feasibility study done by Yuki Yoshimura

## Fisher forecast

Solution Fisher information  $I(\hat{\theta}) := var[\frac{\partial \ln L(\theta)}{\partial \theta}], L$  is likelihood function

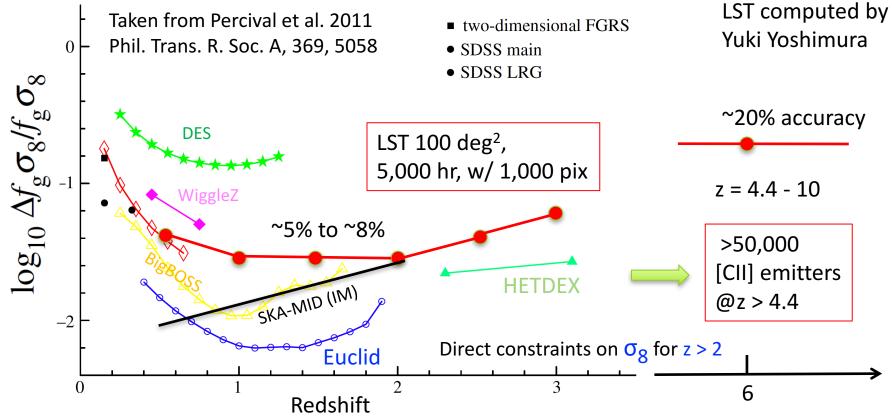
Statistics version of "uncertainty relation" var $(\hat{\theta}) \ge I(\hat{\theta})^{-1}$  (Cramer - Rao's relation)

 Often used for estimating statistical uncertainty of future cosmological mesurement (Tegmark 97; Seo & Eisenstein 03, Majerotto+12,...)

Approxmated Fisher matrix for cosmology (Tegmark 97)

$$F_{ij} = \int_{k_{min}}^{k_{max}} \frac{\partial \ln P(k)}{\partial p_i} \frac{\partial \ln P(k)}{\partial p_j} V_{eff}(k) \frac{dk^3}{2(2\pi)^3}$$

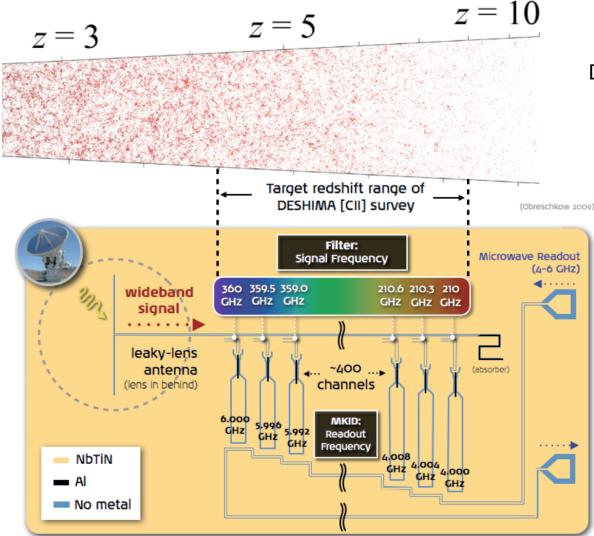
## Fisher Forecast for LST survey


- Total integration time per area (= 500 hr/deg<sup>2</sup>) is fixed
- fractional errer for  $f(z)\sigma_8(z)$ ,  $\Delta z = 0.5$

| z   | 2 deg <sup>2</sup> | 10 deg <sup>2</sup> | 20 deg <sup>2</sup> | <b>100 deg<sup>2</sup></b> |
|-----|--------------------|---------------------|---------------------|----------------------------|
| 0.5 | 43 %               | 19 %                | 13 %                | 6 %                        |
| 1.0 | 33 %               | 14 %                | 10 %                | 5 %                        |
| 1.5 | 38 %               | 15 %                | 10 %                | 5 %                        |
| 2.0 | 44 %               | 17 %                | 12 %                | 5 %                        |
| 2.5 | 45 %               | 20 %                | 14 %                | 6 %                        |
| 3.0 | 57 %               | 26 %                | 18 %                | 8 %                        |

Slides by Yuki Yoshimura

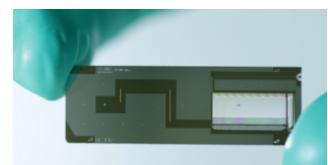
## Comparison to optical cosmology surveys


 $\sigma_8$ : The rms amplitude of density fluctuation with a comoving radius of 8/h Mpc



If we think a hypothetical super-DESHIMA (1,000 spatial pixel), the LST 100 deg<sup>2</sup> survey can be competitive to HETDEX (Lyα-based) → "multi-tracer" can defeat cosmic variance (e.g., Seljak+09) → RSD measurements by using mm/submm line emitters is still unique even z=2-3 and purely new at z>4.4

## Such a hypothetical (crazy?) imagingspectrograph can become available in ~N years (N>5) ?

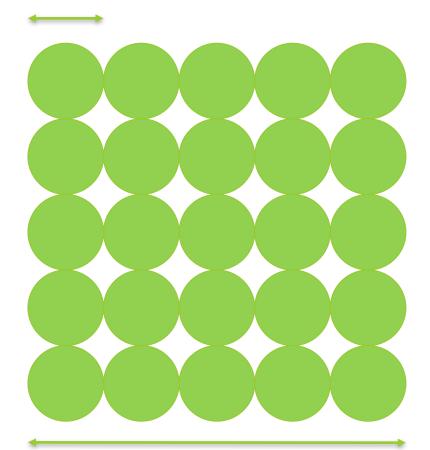

# On-chip superconducting See also Noroozian's talk Spectrograph DESHIMA (does exist)



Endo et al. 2012, JLTP, 167, 341

#### DESHIMA on ASTE 10m in Atacama

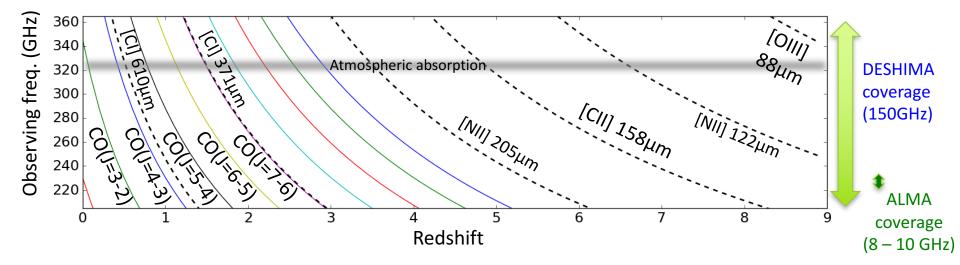





Small !! → large format multi-beam

# An imaging spectrograph on LMT versus ALMA

LMT beam @230GHz → 6" (HPBW)

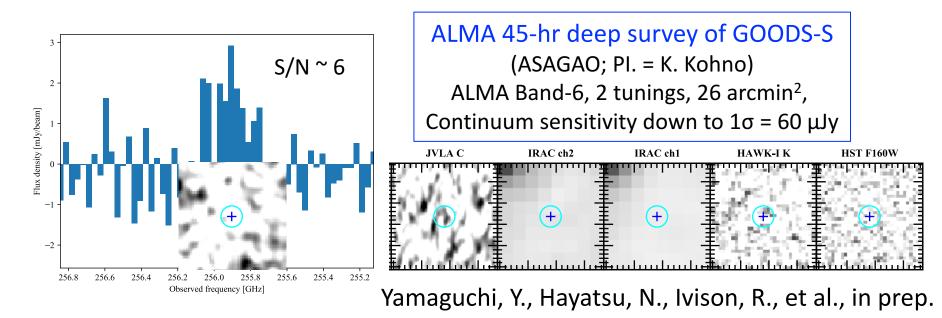

AI MA Band-6 FoV 24" diameter = **0.13** arcmin<sup>2</sup> @230GHz



30″ x 30″ → **0.25 arcmin<sup>2</sup>** @230GHz

# An imaging spectrograph on LMT versus ALMA

- It covers from 210GHz to 360GHz (df = 150GHz; >15 times wider than ALMA) with a moderate resolution (R=f/df~500)
- 25 spatial pixels, covering ~0.25 arcmin<sup>2</sup> (~2 times wider FoV than ALMA)
- → It results in (collecting area) 0.4 x (FoV) 2 x (bandwidth) 15 = 12 times more efficient than ALMA (equivalent to D = 70 m) when it resides on LMT 50m



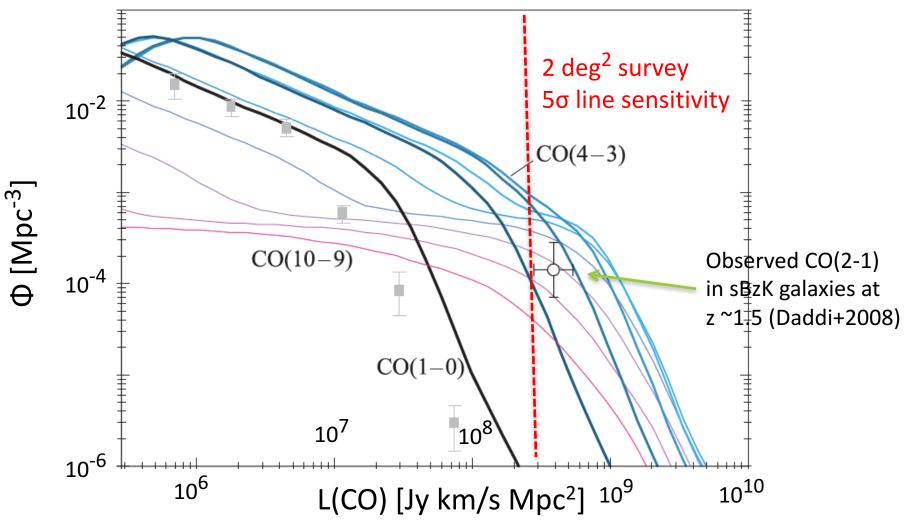

## Conclusions

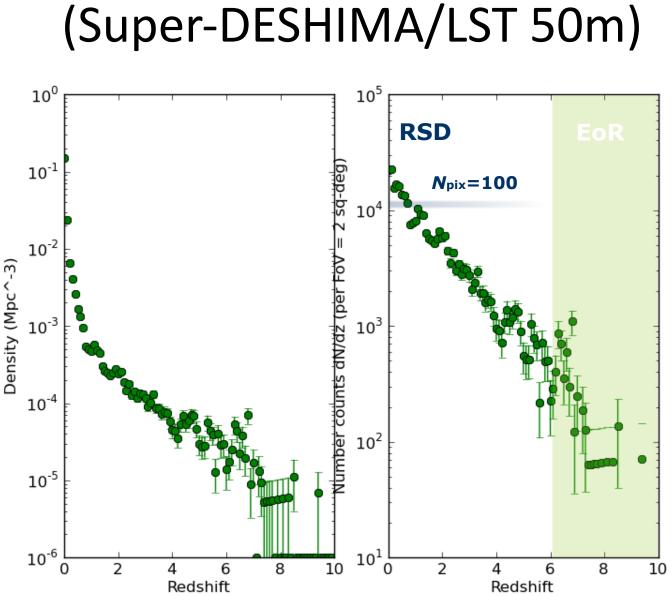
- Question: can we build a SDSS-like data set at mm/submm band, with 10<sup>6</sup> CO emitters and > 10,000 [CII] emitters?
- An answer: a 100 deg<sup>2</sup> survey (5,000 hrs) using a hypothetical 50m (LST 50m) equipped with a hypothetical imaging spectrograph (super-DESHIMA), covering 70 370 GHz in one shot having 1,000 spatial pixels within ~100 arcmin<sup>2</sup> FoV)
  - Assume ~600 channels (R = 600@300GHz) x 1,000 pix = 600,000 detectors (readout looks OK already; data rate and processing is ?)
- It yields ~10<sup>6</sup> CO emitters and ~50,000 [CII] emitters (z>4.4)
- Put unique constraints on the bright-end of CO and [CII] luminosity functions, which is inaccessible with ALMA
  - − Synergies with MIR missions like SPICA, OST, etc. → Spinoglio's talk
- Put unique constraints (~5%) on the growth rate of the universe (RSD) at z = 2-3 even after Euclid and a purely new constraint (~20%) on RSD at z = 4 - 6 and beyond
- Perhaps extremely wide FoV is not essential for this case (practically limited by the number of detectors) .. ?

### Unbiased surveys vs pre-selected spectroscopy?

- Do we really need unbiased surveys, rather than a targeted spectroscopy of pre-selected galaxies?
- On-going deep unbiased surveys using ALMA will tell us if a significant discovery space remains (such as new mm/submm emitters which are invisible in deepest optical/near-infrared surveys)
- May also depend on the progress of configurable multiobject spectrograph, in mm/submm, though




### Back-up slides


## Predicted CO luminosity functions: a case for z = 2

Obreschkow et al.

2009, ApJ, 702, 1321

http://s-cubed.physics.ox.ac.uk/s3\_sax





# Number countsTamura, Y., + in prep.(Super-DESHIMA/LST 50m)Kawabe+<br/>2016, SPIE

### Assumptions for this feasibility study

### Fiducial cosmology

- $\Omega_{m,0} = 0.25, h = 0.73, \sigma_8 = 0.84$
- $k_{max} = 0.2 h Mpc^{-1}$
- $b(z) = \sqrt{1+z}$  (~ normal SFG's bias)

### $\implies$ Alcock-Paczynski effect $\rightarrow$ neglect

- Incorrect assumption for  $D_A(z)$  and H(z) causes distortion
- Note that this effect can make constraint  $\sim$  facter looser

### Run HALOFIT code (Smith+03) for DM power spectorum

## Opt/NIR cosmological galaxy surveys

https://indico.cern.ch/event/617679/contributions/2567910/attachments/1478584/2292986/sanchez.pdf

| Project | Dates     | Area/deg2 | Data               | Redshift                                | Methods                           |
|---------|-----------|-----------|--------------------|-----------------------------------------|-----------------------------------|
| BOSS    | 2008-2014 | 10000     | Opt-S              | 0.3-0.7 (gal)<br>2-3.5 (Lyα Forest)     | BAO/RSD                           |
| DES     | 2013-2018 | 5000      | Opt-I              | 0.2-1.5                                 | WL/CL/BAO/SN                      |
| eBOSS   | 2014-2020 | 7500      | Opt-S              | 0.6-2.0 (gal/QSO)<br>2-3.5 (Lyα Forest) | BAO/RSD                           |
| SuMIRE  | 2014-2024 | 1500      | Opt-I<br>Opt-NIR-S | 0.2-1.5<br>0.8-2.4 (gals)               | WL/CL/<br>BAO/RSD                 |
| HETDEX  | 2014-2019 | 300       | Opt-S              | 1.9-3.5 (gals)                          | BAO/RSD                           |
| DESI    | 2019-2024 | 14000     | Opt-S              | 0-2 (gals)<br>2-3.5 (QSO/Lyα Forest)    | BAO/RSD                           |
| LSST    | 2020-2030 | 20000     | Opt-I              | 0.2-2                                   | WL/CL/BAO/SN                      |
| Euclid  | 2020-2026 | 15000     | Opt-I<br>NIR-S     | 0.2-2<br>0.7-2.2 (gals)                 | WL/CL/BAO/RSD                     |
| WFIRST  | 2024-2030 | 2200      | NIR-I<br>NIR-S     | 1.0-3.0 (gals)                          | WL/CL/SN/BAO/RSD<br>From PDG 2016 |