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Before moving into the 'AtLAST era'...

Question : To what extent can we constrain the line luminosity function using existing ALMA archival data”

Estimation of Result of Patchy Line Survey using ALMA Archive Query
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In our previous study

Answer : We can constrain ‘normal’ luminosity range using existing ALMA (Hayatsu et al. 2017)

archival data. For brighter luminosity range, sub-square degree observation | e pjindly detected

taken from AtLAST would enable us to constrain it. two CO emitters at z = 0.7 and 3.1
and two [Cll] emitter candidates

Tests using a blind line-searching method (Hayatsu et al. in prep.) atz=6.2.

It is essential to develop a method to efficiently detect faint sources considering We plan to release our code

CASA task.
the completeness of source detection and contamination by false detections. a4 ° /

FOUR STEPS to detect faint sources:
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1. Spectral Smoothing 2. Generating 3. Contamination check 4. Completeness check
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