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Abstract—The connection of devices in a smart home should
be done optimally, this helps save energy and money. Numerous
optimization models have been applied, they are based on fuzzy
logic, linear programming or bio-inspired algorithms. The aim
of this work is to solve an energy management problem in a
domestic environment by applying an artificial immune system.
We carried out a thorough analysis of the different strategies that
optimize a domestic environment system, in order to demonstrate
the ability of an artificial immune system to find a successful
optima that satisfies the problem constraints.

I. INTRODUCTION

Over the last decade, domestic buildings equipped with
communication channels (commonly termed smart homes)
have been involved in electrical grids as active players [1].
They constitute the building blocks -or prosumers (i.e. both
consumers and producers)- in smart grids (SGs), and have
an important role in the optimization of electrical energy
scheduling [1], [2]. A Domestic Energy Management System
(DEMS) is a crucial element in a smart home that improves
the economy necessary through automation technologies.

There is a number of different strategies that optimize the
scheduling of home power usage. Several approaches used
different statistical models to improve DEMS problems. In
particular, [3] models the controllable loads and the loads that
depend on weather conditions using a Markovian approach. In
[4], a demand response program that pursues classical methods
has been applied automatically to the controllers used and the
appliances controlled under uncertainty of outdoor temperature
and electricity price. In [5], three methods of DEMS have been
solved by applying an observable Markovian decision process
which reduces the domestic energy costs in the time-varying
electricity price market.

Due to the limitations of classical approaches, different
paradigms have been developed to solve optimization prob-
lems. One of the most successful approaches is based on bio-
inspired algorithms. Bio-inspired algorithms imitate biological
behavior to find solutions, otherwise too expensive to be
obtained through classical computing in terms of time and
resources. Among them, artificial neural networks, genetic

algorithms and swarm intelligence are widely known [6]. In
smart grids optimization, several works have been proposed.
[7] addresses an energy service modeling method based on the
Particle Swarm Optimization (PSO) algorithm. [8] proposes a
multi-objective genetic approach to domestic load scheduling
in an energy management system. [9] presents an Artificial
Neural Network with a Genetic Algorithm (ANN-GA) smart
appliance scheduling approach for optimized energy manage-
ment in the domestic sector.

The application of one bio-inspired method such as the
artificial immune system (AIS) has also brought good results
in different contexts. There are some preliminary achievements
in energy management, such as the energy dispatch problem-
solving [10], or electrical reconfigurations [11]. In [12] an
AIS is used to control thermal units in residential buildings
and in [13] the authors optimize a wind-thermal generating
system also with an AIS. However, AIS has never been
applied to domestic environments to optimize profit and energy
consumption.

Drawing on the positive results obtained with the AIS in
similar problems, we present a new approach to optimize a
domestic energy management problem using this algorithm.
We demonstrate that AIS can be successfully applied to elec-
tric management problems in domestic environments. Among
the different AIS variants, we selected Opt-aiNet [14], which
has been used for function optimization successfully [14] in
different contexts.

We present a preliminary electrical context in which the
following different devices are found; a PV panel, a battery
system, a space heater, a storage water heater, as well as must-
run services. They all are connected to each other in a smart
home, forming a domestic electricity system. Our main goal is
to optimize the schedule for the next 24 hours to maximize the
electrical profit between the energy sold and the energy that
we have to buy in order to maintain all these devices running
correctly.

To validate the application of an AIS, we propose two
strategies representing two different electrical situations. In
Strategy 1, the DEMS manages electrical energy with power
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grid without considering any strict inside constraint. In other
words, maintaining the home’s electrical load through electri-
cal energy produced by the PV system is not considered as
a concern in Strategy 1. Thus, this strategy only pursues to
optimize its energy profit.

However, in Strategy 2, the main goal of the DEMS is to
supply the electrical demand autonomously whenever possible.
Therefore, the surplus of the PV power generation is stored
in the battery. Then, the DEMS will sell power to the grid
if the battery is charged completely. Likewise, the battery
is discharged if the electrical demand is more than power
generation of the PV. Additionally, if the battery cannot supply
all the electrical load, the DEMS will buy the electricity from
the power grid.

We have adapted the opt-aiNet algorithm to include complex
constraints in the optimization problem and to work efficiently
with a large number of variables. We developed three different
case studies, comparing AIS with a classical genetic algorithm
(GA), comparing both strategies, and analysing different situ-
ations when the battery is involved in the grid. All the results
validate the AIS as a proper algorithm for DEMS optimization.

This paper is structured as follows. Section II describes the
technical details of the electrical problem addressed herein.
Section III presents an overview of the AIS structure and
design. The selected AIS is configured and applied to the
concrete electrical problem in Section IV. In Section V we
summarise our results. Finally, the conclusions from our
research are presented in Section VI.

II. DOMESTIC ENERGY MANAGEMENT PROBLEM

The considered electrical context represents a domestic
electrical system, where some appliances are connected. The
proposed domestic electrical system is shown in Figure 1.

Fig. 1: Schematic image of domestic electrical system.

Our domestic grid considers appliances that can be classified
into two parts: PV system, that contains the PV generator and
the battery and Electrical Loads, which includes the space
heater or air conditioner, the storage water heater, and the
must-run services, representing loads that have to be supplied
at any time. The appliances are connected to a power grid
which can provide electrical load when the system requires so.
The scheduler is responsible for balancing the profit of energy
services, considering the PV, the power grid and the battery

as providers of energy, and the rest of devices connected as
consumers.

The objective of this problem is to maximize the profit of
energy services provided in a domestic energy management
system. Equation (1) expresses the term, OF , that is the
objective function to optimize.

OF =
∑
t

(λsoldPsoldt − λboughtPboughtt (1)

−
∑
jεELs

V OLLjL
shed
jt − V spvSpvt)

This function consists of four parts. First part, λsoldPsoldt ,
represents the revenue of selling energy produced by PV
panels to the power grid. The total cost of electrical energy that
is bought from the network, λboughtPboughtt , is represented in
the second term. The value of electrical energy which is not
served is stated in the third part,

∑
jεELs V OLLjL

shed
jt

,. Fi-
nally, the spillage costs of PV panels, V spvSpvt , are represented
in the last term of the equation.

The power balance equation is presented in (2). The power
flow limitation through the distribution line is stated in (3).

Pboughtt + Ppvt + Pb,outt =
∑
jεELs

(Ljt − Lshedjt ) + Pb,int

(2)
− fmax ≤ Pboughtt − Psoldt ≤ fmax (3)

Additionally, the specific definitions for all domestic appli-
ances are described in the following subsections.

A. PV System

The power output of PV system, Ppvt , is obtained through
(4).

Ppvt = Ppv,pt − Spvt (4)

P predpvt − σ
down
pv ≤ Ppv,pt ≤ P predpvt − σ

up
pv (5)

0 ≤ Spvt ≤ Ppv,pt (6)

Here, Ppvt is the power output of the PV system. Equation
(5) represents the maximum and minimum power limitations
of PV system. Spvt is the spillage power of the PV system.
The potential power generation for the PV system is limited
to maximum and minimum bands due to the prediction of
the PV power generation as represented in (5). Here, σdownpv

and σuppv are down and up prediction variances for PV system,
respectively. Also, P predpvt is the predicted power generation for
PV system. The spillage power is the amount of PV power
generation that is spilled. In other words, the PV system can
potentially generate it but DEMS cannot operate it because of
the economic and technical constraints. This amount is positive
or equal to zero, and is limited to the actual power generation
of PV, Ppv,pt , as represented in (6).
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B. Electrical Loads

Electrical loads include loads that can be controllable and/or
shiftable. In this paper, three types of loads are modelled.
Space heater, Lsht

, which is a controllable load , storage
water heater, Lswht

, which is a shiftable load, and must-run
services, Lmrst , which are non-controllable-shiftable loads.
Equations (7) and (8) define total electrical load and total
load shedding, respectively. These loads are described in the
following subsections.∑

jεELs

Ljt = Lsht
+ Lswht

+ Lmrst (7)∑
jεELs

Lshedjt = Lshedsht
+ Lshedswht

+ Lshedmrst (8)

1) Space Heater: The space heater provides the desired
indoor temperature. There is a differential equation between
the indoor temperature and the electrical demand of the space
heater device. Equation (9) represents the performance of
the space heater based on the relationship of the indoor
temperature with its electrical load. In (9), θ0 is the initial
indoor temperature which is assumed to be equal to the desired
temperature. Equation (10) represents the indoor temperature
that is limited to 1◦C more or less than the desired temperature.
Also, the maximum and minimum constraints of the space
heater load are stated in (11). Besides, the load shedding
limitation of the space heater is represented in (12).

θint+1 = θint
e−1/RC + Lsht

R(1− e−1/RC) (9)

+ θpredoutt (1− e
−1/RC), t ≥ 2

θint = θ0 = θdes, t = 1

− 1 ≤ θint − θdes ≤ 1 (10)

Lminsht
≤ Lsht

≤ Lmaxsht
(11)

0 ≤ Lshedsht
≤ Lsht

(12)

2) Storage Water Heater: Storage water heater is in charge
of storing the heat in the water tank. The maximum and
minimum limitations of the storage water heater’s load and
energy consumption are stated in (13) and (14), respectively.
The load shedding constraint related to the storage water heater
is represented in (15).

Lminswht
≤ Lswht

≤ Lmaxswht
(13)

Nt∑
t=1

Lswht = Uswht (14)

0 ≤ Lshedswht
≤ Lswht

(15)

3) Must-run Services: Must-run services consist of loads
that should be provided quickly - e.g. lighting, entertainment,
etc. In this paper, it is assumed that there is no uncertainty in
predicting the electrical loads of must-run services. Also, the
load shedding constraint is stated in (17).

Lmrst = Lpredmrst (16)

0 ≤ Lshedmrst ≤ Lmrst (17)

C. Battery System

The battery system can be used to apply the charge and
discharge strategies in the DEMS. The proposed strategy
for the operation of the battery in the DEMS, follows the
algorithm shown in Fig. 2. Based on this strategy, the main
purpose of the system is to provide the domestic electrical
demand locally. In this case, the surplus of the PV power
generation is stored in the battery. Then, the DEMS will sell
the power to the grid if the battery is charged completely. On
the other hand, the battery system discharges if the electrical
demand is more than the power generation of the PV. Besides,
if the battery cannot provide all the required electrical load, the
DEMS will buy the electricity from the power grid as depicted
in Fig. 2.

Fig. 2: Flowchart modelling the Battery parameters

III. ARTIFICIAL IMMUNE SYSTEMS

The immune system (IS) is present in the organisms of many
species, protecting them from harmful external agents. In the
case of vertebrates, case of vertebrates, the immune system is
composed of diverse molecules, cells and organs distributed
in the body, however, they are not controlled by any central
entity. All the elements found in the immune system are called
antigens. When the antigen originates from within the internal
organism, it protects the body and is called a self-antigen (or
simply self). Antigens from external environments can provoke
different diseases and are denominated as non-self -antigens.
The immune system is responsible for distinguishing between
self-antigens and non-self-antigens, by a pattern recognition
process and attacking the harmful non-self antigens [15].

Inspired by the natural immune system behavior, [16]
presents the CLONALG algorithm, a clonal selection proce-
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dure that performs pattern recognition. This algorithm allows
to mutate some antibodies according to their affinity to an
external antigen. To do so, it generates copies of the antibodies
according to their affinity with the antigen. The copies are
mutated with a rate δ inversely proportional to their affinity
with the antigen, based on the Equation (18).

δ =
efi

β
(18)

where β is a constant obtained empirically to normalize the
effect of the fitness rate fi obtained by each cell. These
new individuals are added to the general population and re-
evaluated to be reproduced and mutated again. Thus, based
upon an evolutionary-like behavior, CLONALG learns how to
recognize patterns [16].

In order to adapt the immune behavior to optimization
problems, a new formulation is developed by [14], called
opt-aiNet. The information provided is represented through
the antigens to be recognized by the antibodies. We define
fitness as the the affinity between the antigen and the antibody.
Hence, high fitness values reflect high affinity. Also, fitness
can be compared with a distance metric between antigen and
antibody. Small distances represent high affinity, while long
distances mean low affinity.

In the first stage, the antibodies are randomly generated.
The antibodies are presented to the antigens to calculate the
affinity between them. The affinity is measured with a distance
metric such as the Euclidean distance, so opt-aiNet is capable
of optimizing functions in RN . Those with high affinity are
selected and reproduced based on their fitness value according
to the CLONALG algorithm. In order to preserve diversity,
antibodies whose affinity is lower than a given threshold ts are
removed from the population. The corresponding pseudocode
is presented in Alg. (1).

Algorithm 1 Optimization Process Applying Artificial Im-
mune System

1: procedure OPT-AINET
2: N ← MaxNumberOfIndividuals
3: Nc ← MaxClonesPerCell
4: δ ← ParameterOfMutation
5: ts ← SuppressionThreshold
6: Ab ←GENERATEPOPULATION(N )
7: repeat
8: CALCULATEFITNESS(Ab)
9: MUTATEPOPULATION(Ab,δ,Nc)

10: fitm ←CALCULATEMEANFITNESS(Ab)
11: if fitm ≤ fitmold + error then
12: Ab ←SUPRRESSINDIVIDUALS(Ab,ts)
13: Ab ←GENERATEPOPULATION(Ab,0.3Ṅ )
14: end if
15: fitmold ← fitm
16: until Stopping Criterion is met
17: end procedure

The most important features of opt-aiNet are:

• Its ability to find several optima of the objective function
in parallel, meanwhile preserving diversity of the solu-
tions. This means that opt-aiNet can find a set of good
candidates for the solution of the optimization problems
which are different from one another.

• Its ability to memorize to preserve those individuals
that are good enough to be reproduced and mutated in
consecutive iterations

Opt-ainet was applied in different contexts with positive re-
sults [17], [18], [19]. In former applications, opt-aiNet worked
with a low number of variables (each individual contains
about 6 variables as much) and without constraints encoded
as mathematical functions. In the present work, we adjust this
algorithm to be applied to an electrical problem. To this end,
opt-Ainet was modified to admit up to 336 variables and 25
linear constraints (inequalities and equations).

IV. EXPERIMENTAL SETTING

To assess the performance of the proposed DEMS, the
physical system from [7] is applied. However, some modi-
fications of the system parameters are made. The maximum
power produced by the PV system is 2-kW. The battery can
store between 0.48 and 2.4 kWh. Maximum heating power
of the Space Heater (SH) equals 2 kW to maintain the
temperature of the house within ±1 of desired temperature
(23◦C). The thermal resistance, R, of the building shell is
equal to 18◦C/kW, and C equals 0.525 kWh/◦C . The energy
capacity of the Storage Water Heater (SWH) is 10.46 kWh
(180 L) which has 2 kW heating element. Table I displays the
predicted data that has been used in [20]. Table II gives the
price data of the system. Moreover, VOLL, and spillage costs
of PV power generation are shown in Table III.

All this information is integrated into the main system
and considered by the AIS to maximize the function given
in Equation (1). This objective function allows the AIS to
evaluate, mutate or suppress the individuals. Following the opt-
aiNet procedure, the initial population is randomly generated,
always accomplishing the constraints modelled in the electrical
management problem. The steps to follow by our specific AIS
are detailed below:

1) Initiate N population following the linear constraints
and the flowchart if it is the case.

2) Evaluate each individual according to the optimization
function given in Equation 1.

3) Create Nc clones of each individual. The elements of
each clone should be slightly changed according to the
mutation equation (Equation 18). This mutation proce-
dure should guarantee that all the clones accomplish the
linear constraints and the flowchart.

4) For each cell or antibody, select the best clone with the
highest fitness value.

5) If the mean fitness of the last iteration and the present
one are below a limit, then we suppress similar individu-
als, according to the similarity threshold ts that measures
distances between two antibodies.
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TABLE I: Predicted Data of Uncertain Variables

t P pred
pvt σup

pv σdown
pv θpredoutt

Lpred
mrst

1 0 0.03 0.01 5.5 0.3
2 0 0.03 0.01 5.5 0.3
3 0 0.03 0.01 5.2 0.3
4 0 0.03 0.01 5.2 0.3
5 0 0.03 0.01 4.8 0.4
6 0 0.03 0.01 5.5 0.6
7 0.25 0.03 0.01 6.5 0.8
8 0.75 0.03 0.01 7.5 0.8
9 1.25 0.03 0.01 9.8 0.7
10 1.75 0.03 0.01 10.1 0.55
11 1.9 0.03 0.01 11.5 0.5
12 1.9 0.03 0.01 12 0.5
13 1.9 0.03 0.01 12.5 0.5
14 1.75 0.03 0.01 12 0.5
15 1.25 0.03 0.01 11.5 0.6
16 0.75 0.03 0.01 10 0.8
17 0.25 0.03 0.01 9 1.5
18 0 0.03 0.01 8.5 1.8
19 0 0.03 0.01 8 1.7
20 0 0.03 0.01 7.5 1.1
21 0 0.03 0.01 7 0.9
22 0 0.03 0.01 6.5 0.7
23 0 0.03 0.01 6.2 0.6
24 0 0.03 0.01 6 0.4

TABLE II: PRICE DATA OF THE SYSTEM

Price ($/MW)

Time
(hour)

λi λnet

23-7 2.2 0.0814

8-14 2.2 0.1408

15-20 2.2 0.3564

21-22 2.2 0.1408

TABLE III: VOLL AND SPILLAGE COSTS

VOLL ($/MW) Spillage Cost ($/MW)

Time
(hour)

SH SWH MRS PV

22-7 1 1 2.2 4

8-21 1 1 2.2 4

6) If we suppressed some individuals, then we have to
add new random population. These new solutions are
generated following the constraints and the flowchart if
that is the case.

7) This work flow is repeated until convergence criterion
(maximum number of iterations gen). The result is one
or more individuals with an optimum objective value.

AIS needs some parameters to be set beforehand in order to
optimize a problem correctly. These parameters are related to
the clonation and mutation process, the suppression algorithm
and the convergence criterion. For each iteration, a number of

clones Nc are generated per each cell. This number Nc is set
empirically, and can influence the final results. Generally, if
we set Nc with a very low value, we can delay the convergence
criterion, as we are not able to find enough diversity to select
better individuals for each cell. Otherwise, if we generate too
many clones, the time upon convergence might be longer than
expected.

The mutation process (Equation (18)) depends on the mu-
tation constant β, which measures the influence of the fitness
value on the mutation of different clones. If β is set to a
very high value, the individuals can be randomly mutated, as
the fitness values are not influenced by the mutation process.
Otherwise, if β is very low the individuals are very strongly
mutated, which can make our final results biased.

The suppression constant ts is related to the minimum value
for similarity between two individuals. If it is set to a very low
value, the list of similar individuals can be largely reduced and
the population can augment exponentially, which influences
the time upon convergence. Otherwise, if ts is very high,
the population can decrease exponentially and render a false
convergence upon a false optimum value.

Finally, the convergence criterion depends on the number
of maximum iterations gen and the population N . If we set
a few iterations or if the initial population N is very low, the
algorithm might not converge correctly and give false optima
values. Otherwise, the time cost can be very high and not
desirable for our problem.

As we stated in the Introduction, two different strategies
have been followed. On the one hand, we optimize the profit
when the battery is not considered (Strategy 1). On the other
hand, we consider the whole system with the battery, following
the flowchart of Figure 2 (Strategy 2). In this strategy, two dif-
ferent situations can happen: the battery is available, meaning
that it can be filled and used when necessary, or unavailable,
when the battery is full and cannot be charged or discharged
under any circumstances. Given both scenarios, we measure
how the most important parameters of the AIS can influence
the optimization process considering the time elapsed to find
the optima and the maximum fitness value, and adjust them to
obtain the best results. In order to obtain an efficient system,
we need to find a balance between time and fitness.

To this end, we gradually change the different parameters
between an interval. N oscillates between 10 and 350, and Nc
between 4 and 20. The maximum number of generation is set
between 10 and 500. The suppression and mutation parameters
depend on the fitness values, so they would be adjusted to the
range of fitness values retrieved. Therefore, in Strategy 1 ts
changes from 5 to 20 and β takes values from 10 to 100, while
in Strategy 2, ts goes from 1 to 15 and β oscillates between
0.5 and 5.

We finally set the AIS parameters according to Table IV,
which gave the optima performance in terms of fitness and
time following the discussion above.

Once we have described the AIS configuration with all the
data integrated, the results of the different simulations will be
provided in Section V.
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N Nc gen ts β
Strategy I 250 12 250 10 100
Strategy II 250 18 300 3 10

TABLE IV: Optima values set for N , Nc, gen, ts and β in
both strategies.

V. SIMULATION RESULTS

The evaluation is twofold. On the one hand, we aim to
demonstrate that AIS obtains positive results for optimization
problems in smart grids. To this end, a comparative study
between a classical genetic algorithm and AIS is performed.
On the other hand, we aim to analyze the impact of the
energy management strategy when the flowchart in Figure 2
is accomplished. Finally, we want to demonstrate the impact
that the battery can have in getting a maximum profit from a
the domestic environment. Thus, we distinguish three different
case studies:

• Case Study I: Comparative Study between GA and AIS
in Strategy 1.

• Case Study II: Comparison between Strategy 1 and
Strategy 2.

• Case Study III: Analysis of Strategy 2 when the battery
is disconnected or connected.

In Case Study I, we aim to compare the results between GA
and AIS. In this case, the model considered does not involve
parameters corresponding to the battery charge, neglecting the
flowchart shown in Figure 2.

In Case Study II, we optimize the parameters related to the
PV system, the space heater, the water heater and the must-
run services. Just as in Case Study I, the parameters related
to the battery charge are not considered. We aim to optimize
all the parameters stated in the previous section for 24 hours,
thus, each individual of the AIS will consist of a vector of 264
elements with equality and inequality constraints. In order to
analyze the impact of the energy management strategy, this
optimization method is then compared with the Strategy 2
when the battery is disconnected.

Finally, in Case Study III, individuals in the AIS have 336
elements because the parameters corresponding to the battery
charge and load are set as elements of optimization. Each
individual will be constructed following the linear constraints
and the flowchart before being plunged into the population.
We performed two different analysis: when the battery was
disconnected, meaning that the parameters related to the
battery charge and the battery load are set to 0 in all cases
(although the flowchart is followed in any case), and when
the battery was connected, meaning that all the variables are
considered and their value can change.

A. Comparison between GA and AIS

In order to demonstrate the efficiency of the Artificial
Immune System in the energy management optimization prob-
lem, we performed a comparative test with a classical genetic
algorithm. The goal is to predict the optimum values for each
variable during 24 hours, following Strategy 1. We applied

TABLE V: Results of the Objective Function for three different
configurations of the GA.

Parameters GA1 GA2 GA3

Mutation Rate 0.2 0.3 0.35
Cross-over Rate 0.7 0.8 0.75

Selection Function Roulette Tournament Tournament
Number of generations 2000 2800 3000

Objective Value 22.92 23.55 23.06
AIS Obj. Value 23.86

the linear constraints proposed in the electrical model, and we
measured the objective function for the optimized variables.

The GA contains some parameters that can be set for an op-
timal operation. In this preliminary study, we set the mutation
and cross-over rates, the selection function and the number of
generations. Table V shows three different performances with
three different configurations of the GA.

As we can see from the objective value obtained, GA2

gets the best results. However, in any of the configurations,
the results improve when AIS with its best configuration
is applied. However, more parameters of the GA could be
modified to improve the current performance and make the
comparison more realistic. For future work, we believe that a
more in-depth analysis of the GA is necessary.

B. Impact of Energy Management Strategy

In this section, two proposed strategies for domestic energy
management problem are evaluated. As putlined before, max-
imizing the home’s energy profit is the main goal of the first
strategy. However, the main purpose of the second strategy is
to maximize energy profit and act as an autonomous energy
system. In this section, the battery system is not considered.
As shown in Table VI, the value of the objective function in
Strategy 1 is more that of Strategy 2. However, the transacted
energy between home and power grid is less in Strategy 2,
because we pursue the autonomous management of energy at
home.

TABLE VI: Impact of energy management strategies on the
amount of sold/ bought electrical energy to/from power grid
and OF.

Strategy 1 Strategy 2

OF 23.8613 5.11

Esold 14.22 4.64

Ebought 45.66 26.53

C. Impact of Battery

The impacts of a battery system on the objective function
and exchanged energy are assessed based on strategy 2. From
the data in Table VII, we can see that the battery system
can improve the value of the objective function. Table VII
also considered a situation in which the battery increases the
amount of electrical energy sold from the smart home to the
grid, and it decreases the amount of home’s electrical energy
bought from the network.
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TABLE VII: impact of battery system on the amount of sold/
bought electrical energy to/from power grid and OF.

Strategy 2
with battery without battery

OF 12.31 5.11

Esold 6.22 4.64

Ebought 10.47 26.53

VI. CONCLUSION

Residential buildings in smart grids have an important role
in the optimization of energy scheduling. In order to optimize
such problems, here we applied an Artificial Immune System
based on Opt-aiNet, an optimization version of an AIS used in
different contexts [14]. In this work we show how an AIS can
be used to solve a power system optimization problem effi-
ciently. To this end, we have adapted the opt-aiNet algorithm
to include complex constraints in the optimization problem
and to work with a large number of variables efficiently.

From an electrical point of view, we analyze two different
strategies. While maximizing the energy profit of a home is
the main goal of the first strategy, the main purpose of the
second strategy is to maximize its energy profit and act as an
autonomous energy system simultaneously and independently
of whether the battery variables are considered or not. In
both cases, the parameters applied to the AIS to manage the
mutation, clonation or convergence criteria are fully analyzed
in order to optimize the performance of the algorithm. Once
the best parameters are set, the final results show that the
application of the battery increases the efficiency of the
model. We performed three different case studies. Firstly, we
demonstrated of the AIS by comparing it with three different
configurations of a genetic algorithm. Secondly, we compare
both strategies to highlight the advantages of including a
battery in our system. Finally, we analyze the impact of the
battery considering two different situations: when the battery is
available (can be filled and used in our system) or unavailable
(the battery is full and cannot be used). This last comparison
shows the importance of using a battery for improving the
general profit of our residential electrical system.

Future work will consist of improving the results of the
optimization problem with the GA and presenting a more com-
plex case with non-linear constraints as well as considering
the uncertainty of predicted variables to encourage the use of
evolutionary computing.
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