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1 Introduction 

The study of sound change is foundational to traditional historical linguistics, particularly the linguistic 

comparative method. As such, it is well established that the phonology of modern languages encodes useful 

data for studying the history of those languages, and their genetic relationships to one another. However, the 

utility of phonological systems for computational phylogenetic study has been more restricted. Phonology 

has typically been the means to the end, as traditional analysis enables coding for lexical cognacy in a dataset. 

Once coded for lexical cognacy through the comparative method, the particular sounds involved, indeed the 

phonology entirely, no longer factor into the analysis. 

This study examines whether the phoneme inventories and phonotactic profiles of a set of languages 

themselves contain phylogenetic signal detectable using established statistical tests. This adds to the small 

but growing body of work on the use of phonological traits in computational phylogenetics for linguistics, 

including Macklin-Cordes (2015) and Macklin-Cordes and Round (2015). These two works explore 

phylogenetic signal contained in the phonotactics of the Ngumpin-Yapa languages, a 10-language subgroup 

of the Pama-Nyungan language family, spoken in the Pilbara region of Western Australia. The present study 

confirms and extends the findings of that work, using a set of data from 20 lects of the Tai branch of the Kra-

Dai language family. The study confirms several findings from that previous work, including a strong degree 

of signal in the more high-resolution continuous traits drawn from phoneme frequency and biphone transition 

probabilities. New findings from this study include a relatively strong phylogenetic signal detected in even 

coarse-grained phoneme and biphone presence/absence, which previous work was unable to do. 

2  Data 

The data for this study come from Hudak 2008. Compiled from extensive mid-20th century fieldwork 

by William J. Gedney, this source consists of 1,159 cognate sets covering 19 languages from the Tai subgroup 

of the Kra-Dai family.1 One language, Saek, is also subdivided in the dataset into younger generation Saek 

and older generation Saek, for a total of 20 lects.2  The total Tai dataset from Hudak is 14,609 lexical items, 

giving an average lexicon size of about 750 items. The fact that the data consist entirely of posited cognate 

sets, as opposed to raw lexicons, could be argued to be sampling bias that will predispose the dataset to a 

positive result. However, given that these methods are still in need of validation using phonological traits to 

begin with, a noise-free dataset gives the best chance at detecting phylogenetic signal. This dataset essentially 

puts the tests used in this study on equal footing with a linguist using the traditional comparative method: 

building a historical analysis around a group of cognate sets. And indeed, if signal cannot be found in such a 

subset of the lexicon, then it is quite unlikely that the results would prove fruitful on full lexicons, either. 

Data that can be extracted from the raw lexical material falls into two broad types: binary data on the 

presence or absence of phonological traits in the languages, and continuous data on the distribution or 

probability of those traits in their languages. Each of these two categories is further divided into phoneme 

                                                        
1 The definition of ‘cognate’ used by Gedney and Hudak requires remark: they have included all forms believed to be 

modern reflexes of a particular form in Proto-Tai, and not just modern forms that coincide precisely in modern lexical 

meaning. This usage aligns with what Michael et al (2015) term ‘quasi-cognates’. They also argue that for quantitative 

phylogenetic applications, the use of quasi-cognates better hews to the assumptions of the traditional comparative 

method. 
2 See Appendix for a full list of languages in the datasets. 
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data, which looks at individual segments, and biphone data, which looks at how those segments combine. 

These traits were extracted from the lexicons using Python scripts that I modified from ones developed for 

Gasser and Bowern (2014), in conjunction with my own Python and R scripts.3 

 

2.1    Binary data    The first type of binary data records the presence or absence of phonemes in each 

language within its respective family dataset, encoded as a matrix of ones and zeroes. Of the 54 phonemes in 

the Tai data, 41 showed variation. When necessary for the nature of one of the phylogenetic tests, phonemes 

found in every language of a given family were pruned from the dataset, as there is no phylogenetic signal in 

a trait that exhibits no variation. The binary data are summarized in Table 1. 

  

Lects 
Phonemes 

Total w/Variation 

20 54 41 

 

Table 1: Variation in Tai phoneme data (binary). 

  

The second type of binary data regards the presence/absence of segmental transitions between each 

phoneme found in a given language. This is thus a rudimentary representation of the phonotactics of the 

language. Binary data are only generated for attested transitions, as the probability of any unattested transition 

is always zero. These data are summarized in Table 2. 

 

Lects 
Biphones 

Total w/Variation 

20 555 526 

 

Table 2: Variation in biphone transition data (binary). 

  

2.2    Continuous data    The first type of continuous data that is extracted from the lexicons for this study 

is frequency data for phonemes found in each language. The hypothesis underlying this type of data is that 

two identical languages would share both the same phonology and the same lexicon, and thus the closer two 

languages are in both phonemes present and the distribution of those phonemes across their lexicons, the 

closer those languages are to each other genetically. Distribution of a phoneme across the dataset would be 

expected to be more phylogenetically informative than simple binary data, as two languages may share a 

phoneme, but it may be a core phoneme with high functional load in one language, but a marginal phoneme 

found only in a few loanwords in the other language. 

Phoneme frequencies are calculated language by language. As discussed in Gasser and Bowern (2014), 

there are two methods to measure phoneme frequency in a lexicon: (a) the quotient of the occurrences of a 

phoneme in a language and the total number of segments in that language, and (b) the quotient of the number 

of lexical items that a phoneme occurs in and the total number of lexical items in that language. Given the 

variable length of items in the lexicon and the potential for multiple instances of a phoneme within a lexical 

item, the first method is used here, and is also the method used by Macklin-Cordes (2015). 

The second type of continuous data is phoneme transition probabilities. These are computed as Markov 

chain transition probabilities, according to the formula in Ching & Ng (2006:3): 

 

Pij = P(xn+1 = j | xn = i) 

The probability of the transition ij is the probability that the system will next transition to 

state (i.e. segment) j, given the current state (i.e. segment) i. 

 

Markov chain transition probabilities provide a more robust representation of the phonotactics of a language 

than either phoneme probability, which does not consider the environment in which phonemes appear, or 

simple binary presence/absence information about the transitions, which does not take into account their 

                                                        
3 Thanks to Aidan Kaplan for assistance with scripts. 
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likelihood of appearing in a given lexicon. Thus, similar to the discussion of phoneme probability data above, 

it is hypothesized that the closer two languages are in sharing a profile of Markov chain transition 

probabilities, the genetically closer those two languages are. 

3  Methods 

This study uses three tests to examine phylogenetic signal in different types of data: D statistic, 

NeighborNet, and Blomberg’s K. These are described below. 

 

3.1    D statistic    First developed by Fritz & Purvis (2010), this test measures phylogenetic signal in binary 

traits. The formula for the D statistic is as follows (Fritz & Purvis 2010:1044): 

 

D = (Σdobs – Σdo) / (Σdb – Σdr) 

 

Macklin-Cordes provides a succinct explanation of this formula (2015:37): “D is calculated by summing 

the differences between sister tips and sister nodes together across the phylogeny… This sum of differences 

is then deducted from its expectation if the trait were distributed according to a Brownian model of evolution 

(Nunn 2011:111), and then divided by the expected sum under Brownian evolution less the expected sum of 

the phylogenetically random distribution… The resulting D statistic is then tested for statistical significance 

against two null hypotheses—one where tip values are phylogenetically ‘clumped’ (D = 0), and one where 

they are dispersed randomly (D = 1).” And as also noted, while 0 and 1 are the null hypotheses, these are not 

the limits of the D statistics, which can exceed those two values if the nodes in the phylogeny are clumped 

even more conservatively or distributed even more evenly (Fritz & Purvis 2010: 1045). 

 

3.2    NeighborNet    A NeighborNet analysis (Bryant & Moulton 2004) is a graph of the connectedness of 

data in the dataset, though it does not distinguish between horizontal (contact) and vertical (genetic) signal. 

It does allow us to derive two additional statistics, however: the delta-score, introduced by Holland et al 

(2002), and the mean Q-residual (Gray et al 2010). These tell us about how “treelike” a given dataset is, and 

are calculated by considering all of the taxa in a dataset in groups of four. Each combination of four taxa is 

considered by its possible pair-wise combinations (i.e. with four taxa a, b, c and d, we can combine them as 

ab+cd, ac+bd, and ad+bc). The distances between the taxa is then summed according to these combinations 

and ordered largest to smallest. If we label these summed combinations as Σ1, Σ2, and Σ3, where Σ1 

represents the largest sum and Σ3 the smallest, then we can express the delta statistic and the Q-residual as 

follows (Gray et al 2010:3926): 

 

  (Σ1 – Σ2) / (Σ1 – Σ3)  delta-score 

  (Σ1 – Σ2)2    Q-residual 

 

For both statistics, they will equal zero if the data is perfectly tree-like. Gray et al argue for the Q-residual 

as obscuring less of the signal than the delta-score (2010:3926). 

  

3.3    Blomberg’s K    While both D statistic and NeighborNet test binary data, the K statistic is a test for 

phylogenetic signal in continuous data proposed by Blomberg et al (2003), based on variances of 

phylogenetically independent contrasts (PICs). The PICs for a given trait are calculated by considering all 

values of the phylogeny tips for that trait pairwise, and taking the contrast of two tips divided by the square 

root of the branch length distance that separates those tips (Felsenstein 1985:8). These are then compared 

against the expected distribution under Brownian evolution. 

4 Results and discussion 

4.1    D statistic results    This study calculated a D score for two types of binary Tai data (phonemes and 

biphone transitions) using the phylo.d function of the R package caper (Orme et al 2013). The density plot of 

D values for the first type, Tai binary phoneme data, is presented in Figure 1. 
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Figure 1: Density plot of D values for Tai phonemes (binary). 

 

On binary phoneme data, Macklin-Cordes wrote that it is “unsurprising” that a list of present and absent 

segments is not phylogenetically informative, given the homogeneity of segmental inventories in Ngumpin-

Yapa, which only had three testable segments to begin with (2015:69). His D results are given in Table 3. 

 

 

 

 

 

 

 

Table 3: Ngumpin-Yapa phoneme D scores and p values (Macklin-Cordes 2015:69) 

 

The difference between the Tai data and the Ngumpin-Yapa data is striking. All three D scores from 

Ngumpin-Yapa are well above 1, the threshold indicating clustering characteristic of random distribution, 

yielding a mean D of 2.29. Contrast this with the D scores in Table 4. 

 

 

Table 4: Tai phoneme D scores and p values, ordered by D. 

 D p (D=0) p (D=1) 

i: 2.659 0.113 0.735 

u: 2.218 0.106 .0734 

rR~ 1.994 0.465 0.398 

Mean D 2.29   

SD 0.33   

 D p (D=0) p (D=1)  š 0.372692 0.3994 0.1517 

ɣ -6.02706 0.9496 0  i: 0.392216 0.3822 0.1697 

ʔy -3.36769 0.6626 0.103  e: 0.397467 0.3835 0.166 

ʔd -3.3493 0.6708 0.0992  u: 0.402494 0.3739 0.1692 

ɤ -3.12975 0.9512 0  s 0.503545 0.4719 0.1407 

ʔb -3.01933 0.6591 0.097  ch 0.504791 0.3575 0.1413 

θ -2.38469 0.858 0.0104  ɔ: 0.549171 0.3264 0.1323 

th -2.31074 0.8556 0.0103  ɲ 0.636984 0.3037 0.1445 

kh -1.60053 0.9656 0  ɛ: 0.733751 0.2674 0.1902 

ă -1.54586 0.7805 0.0263  ɤ: 0.777366 0.2406 0.2204 

r -1.32693 0.8592 0.0039  o: 0.986454 0.151 0.4283 

ɔ -1.22613 0.8612 0.0019  ɯ: 0.997876 0.1492 0.4253 

ph -1.13276 0.861 0.0059  b 1.087499 0.1805 0.4069 

ɬ -0.73393 0.8379 0.0022  e 1.420117 0.2461 0.4974 

ɰ -0.72056 0.8483 0.002  d 1.495991 0.0934 0.6163 

ɯ -0.35617 0.6508 0.0406  c 1.517884 0.042 0.7487 

u -0.3087 0.6433 0.0375  k 2.460614 0.2287 0.3501 

f -0.24027 0.5792 0.0645  o 2.474653 0.229 0.3529 

x -0.23395 0.7031 0.0166  ð 2.506732 0.2301 0.352 

v -0.10507 0.618 0.045  sh 4.94437 0 0.7052 

ʔw 0.184971 0.5429 0.1177  Mean D -0.11911   

ɛ 0.18923 0.4991 0.046  SD 1.98   
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As Table 4 shows, approximately half of the phonemes have D statistics below zero, and the mean D 

score for the Tai data is also negative. The dataset on average scores slightly better even than the null 

hypothesis that the trait distribution is the result of Brownian evolution. We can conclude from this that there 

is a strong phylogenetic signal in the Tai binary phoneme data alone. Now let us compare this with the D 

statistic for Tai biphone transitions, given as a density plot in Figure 2. 

 

 

Figure 2: Density plot of D values for Tai biphone transitions (binary) 

 

By comparison, Ngumpin-Yapa data showed a mean D for biphone transitions of 0.79 with standard 

deviation of 2.8 (Macklin-Cordes 2015:80), showing no significant detectable phylogenetic signal (2015:79). 

To provide a more granular look at the data from the Tai side, the twenty largest and smallest D scores for 

Tai biphones, from the total of more than 500 traits, are given in Table 5. 

 

 

 

Table 5: Twenty largest and smallest D scores for Tai biphone transitions, ordered by D. 

 

From Table 5 we can again see that as with the binary phoneme data, the binary biphone transition data 

has a mean D value less than zero and (if we look at the ellipsed set of D scores) that fully 267 of the 526 

observed biphone transitions are below zero, with many more above zero but very close to it. This test would 

 D p (D=0) p (D=1) 

rɤ: -6.15479292 0.9522 0 

hă -5.977343211 0.953 0 

ɣa: -5.955821874 0.9483 0 

re: -5.925654008 0.9488 0 

ɛl -5.919286765 0.8326 0 

wɤ: -5.8423661 0.9517 0 

rɯ: -5.81630465 0.9468 0 

#ɣ -5.812017916 0.9491 0 

u:l -5.675415323 0.8366 0 

ă# -5.672371502 0.9479 0 

ɣɔ: -5.654050941 0.9467 0 

ɲi: -5.636265478 0.947 0 

xe: -5.594470499 0.9492 0.0068 

a:l -5.579237163 0.8313 0 

xo: -5.56562961 0.9524 0.0074 

xi: -5.546468993 0.9491 0.0062 

il -5.494735837 0.8331 0 

ɔ:l -5.39947864 0.8344 0 

al -5.387467228 0.8361 0 

sɤ: -5.378904613 0.9472 0.0058 

… … … … 

… … … …  

ɤɰ 2.541741 0.2326 0.3496  

ʔa: 2.55298 0.2327 0.356  

iŋ 2.559538 0.2364 0.3498  

at 2.567858 0.2328 0.3538  

ya: 2.583812 0.2273 0.3543  

#y 2.586476 0.235 0.349  

#ð 2.623106 0.2288 0.3532  

pa 2.682555 0.228 0.3621  

#t 2.695217 0.231 0.3606  

#k 2.742947 0.2306 0.3603  

oʔ 4.466114 0 0.696  

aʔ 4.554462 0 0.7024  

ɤp 4.572078 0 0.6949  

eʔ 4.637947 0 0.6944  

#sh 4.673463 0 0.7015  

shɯ 4.814715 0 0.6994  

shɤ 4.876179 0 0.6996  

shi 4.899288 0 0.7051  

ɤʔ 4.905214 0 0.7  

bɤ 4.933594 0 0.7016  

Mean D -0.23937   
SD 1.86   
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suggests strong phylogenetic signal in the binary biphone transition data, which raises the question of whether 

there was simply insufficient variation in the language sample used by Macklin-Cordes, rather than a general 

lack of useful signal in this type of data. 

 

4.2    NeighborNet results    In the next test, three types of NeighborNet graphs were produced from nexus 

files of the Tai data. These three NeighborNet graphs are for Tai phonemes, Tai biphone transitions, and 

more traditional Tai cognate analysis, since the Hudak data is already organized into proposed cognate sets. 

The delta-scores and Q-residuals for each dataset are presented in Table 6. 

 

Dataset Delta Q-residual 

Tai phonemes 0.3115 0.03942 

Tai biphone transitions 0.2988 0.02615 

Tai cognates 0.2808 0.04088 

 

Table 6: Variation in segmental transition data (binary). 

 

The proper interpretation of delta-scores and Q-residuals is not an entirely straightforward matter, but 

for comparison, Gray et al describe a dataset with delta-score of 0.29 and Q-residual of 0.05 as “moderately 

tree-like” and delta-score of 0.41 and Q-residual of 0.02 as “strikingly non-tree like” (2010:3926-3927). 

Given these characterizations, all three of the NeighborNet graphs produced here for Tai data fall close to the 

“moderately tree-like” category. The first of the NeighborNet graphs is given in Figure 3. 

 

 

Figure 3: NeighborNet graph of Tai phoneme segments (binary). 

 

For comparison, a traditional Tai family tree, modified from Hudak (2008), is given in Figure 4.4 Figure 

3 above picks out some clusters that closely match the tree, including five of the seven languages from the 

Central Tai branch in one cluster, five of the eight languages of Southwestern Tai mixed in another cluster 

with three Northern Tai languages. The other three Southwestern Tai languages, Black Tai, White Tai and 

Shan, are also close together, together with two other languages from Northern Tai. Assuming that the tree 

in Figure 4 is accurate, this would seem to indicate two subgroups each for Southwestern and Northern Tai, 

with horizontal transmission between the two groups. 

                                                        
4 While this tree certainly does not represent the state of the art in Tai subgrouping, something still very much in flux, 

the three-branch Northern, Central, and Southwestern Tai tree, and variations on it, have been the most commonly cited 

classification for several decades. A new lexical phylogenetic subgrouping is currently in preparation by the author. 
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Figure 4: Traditional family tree of Tai languages (modified from Hudak 2008). 

 

Next, compare the tree in Figure 4 against Figure 5, a NeighborNet graph of Tai segmental transitions. 

 

  

 

Figure 5: NeighborNet graph of Tai segmental transitions (binary). 

 

In Figure 5 the NeighborNet has some clusters that more closely resemble the portions of the Tai tree, 

but in many ways picks out the same groupings as the binary phoneme data. For instance, Thai, Chiang Mai, 

and Lao Nong Khai cluster most closely together, which is expected given they are not only all from the 
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Southwestern branch, but are all in intense contact with one another due to all being spoken in Thailand and 

each having millions of speakers. The two Lue varieties, also Southwestern Tai, are not far from the Thai-

Lao-Chiang Mai cluster, but are much more clearly grouped distinctly as a pair than in the previous graph. 

Once again five of the seven Central Tai languages are clearly clustered together at the bottom of the graph. 

And the same set of five languages spanning both Southwestern Tai (Shan, White Tai, Black Tai) and 

Northern Tai (Yay, Wuming) are also grouped closely together. 

Finally, the NeighborNet graph for shared lexical cognate data is given in Figure 6. 

 

Figure 6: NeighborNet graph of Tai lexical cognates. 

 

Here we see perhaps the best representation of at least the Southwestern Tai branch of our reference tree 

yet. Seven of the eight Southwestern Tai language form an obvious cluster, with Chiang Mai being the 

surprising outlier, though the fact that it does not cluster with anything else may indicate lexical innovation 

in that language, but at the very least it is not misgrouped with anything else. Yet again five of the seven 

Central Tai languages cluster together, but of the two missing, Western Nung and Bac Va, neither seems to 

cluster with any other language, either. The fact that we don’t see Northern Tai languages grouping with 

Southwestern Tai languages in the way we saw before would seem to indicate that there has been horizontal 

phonological transfer between different Southwestern and Northern Tai languages, but often without lexical 

replacement. 

 

4.3    Blomberg’s K results    The final tests performed dealt not with binary data, but with continuous Tai 

data of both subtypes: phoneme segment frequency and Markov chain transition probabilities. K statistics 

were calculated using the multiPhylosignal function of the R package picante (Kembel et al 2010). 

The K test requires at least some variation in each trait examined, so traits which showed no variation 

across their respective datasets were dropped for this test. The mean K for each language family and data 

type are given in Table 7. 

 

 Probabilities 

 Phonemes Transitions 

Tai 0.71 0.68 

 

Table 7: Mean K values for four sets of continuous data. 
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Density plots for the K values of these two datasets are presented in Figure 7. 

 

 
Figure 7: Density plot of K statistics for Tai phoneme frequency (left) and biphone transitions (right). 

 

In testing with Blomberg’s K, a score of zero indicates a fully random trait distribution, while a score of 

one indicates trait distribution as expected under Brownian evolution. For comparison, Ngumpin-Yapa phone 

probabilities had a mean K of 0.9, and biphone transitions 0.87 (Macklin-Cordes 2015:89). The tests on the 

Tai data return a lower K  on average, but still a strong indication of phylogenetic signal over, and indeed 

many individual traits have very high K scores. 

5 Conclusion 

The preceding three tests for phylogenetic signal in Tai data produced a variety of positive results. In 

some areas, such as the D test on binary data, data from Ngumpin-Yapa proved too homogeneous to identify 

a phylogenetic signal, whereas with the Tai data the presence of signal was clear. In other areas, like the K 

test of continuous phoneme frequency and biphone transition probabilities, Ngumpin-Yapa produced K 

values indicating a stronger phylogenetic signal on average than the corresponding Tai data, but the set overal 

still showed signal, and many individual Tai traits had very strong signal. 

For NeighborNet tests, the two types of Tai phonological data were compared against data coded for 

lexical cognacy. Better performance of the cognate data is to be expected, given that that kind of data is the 

core of traditional language classification generally. However, there were some clusters, notably Central Tai 

and parts of Southwestern Tai, that were found across all three NeighborNet analyses, indicating that contra 

Macklin-Cordes’ dismissal of binary phoneme and transition data, given sufficient phonological variation in 

a set of related languages, some language clusters are recoverable from both coarse- and fine-grained binary 

phonological data. 

Additional tests are available to be performed to test for phylogenetic signal in this data, including 

Abouheif’s (1999) Cmean and Pagel’s lambda (1999) among other possibilities. In some cases these tests are 

still being refined themselves, and both their statistical power and the correct interpretation of their output is 

still also under development. As such, comparing and contrasting results from multiple tests on novel datasets 

in the manner done in this study is an important part of the process of methodological refinement. 

This study confirms findings of e.g. Macklin-Cordes (2015) of phylogenetic signal in the phonotactics 

of language, but also affirms the presence of detectable signal in some areas where other studies have been 

unable to do so. By applying these methods to a Tai dataset, the results of these tests are made more robust, 

as they are shown to be useful for data from additional language families. As such, the results of the present 

study are of interest to linguists generally in the ongoing work of developing and testing phylogenetic 

methods of linguistic analysis. While the relative difficulty of using the traditional linguistic comparative 

method with Australian languages makes phylogenetic tools especially attractive and useful, the 

demonstrated results with the Tai data also shows the potential utility of these methods in other language 

families where traditional methods already have significant traction. The Tai clade thus serves as a model for 

the application of these tests to language families and geographical regions in need of improved language 

classification throughout the world. 
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6 Appendix: List of Tai lects used in the study 

Black Tai 

Lao dialect of Nong Khai 

Lue of Chieng Hung 

Lue of Muong Yong 

Saek (Old Generation) 

Saek (Young Generation) 

Shan 

Tai of Bac Va 

Tai of Chiang Mai 

Tai of Lei Ping 

Tai of Lungchow 

Tai of Lungming 

Tai of Ning Ming 

Tai of Piang Siang 

Tai of Po-ai 

Tai of Western Nung 

Tai of Wuming 

Thai 

White Tai 

Yay
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