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ABSTRACT
This paper aims to optimize model inference in interactive appli-
cations by reducing the infrastructure costs. It seeks to improve
resource utilization, lower costs, and enhance the scalability and
responsiveness of model serving systems. The focus is on achieving
efficient inference in computer vision but has potential applications
in other domains. The study involved experiments using a single
GPU to analyze the impact of input image size and mini-batch
size on request delivery time for image classification. Key findings
include a model to estimate GPU warm-up time based on four pa-
rameters, the ratification of the existence of a linear relationship
between mini-batch size and inference given one particular model,
and the need to consider input size when selecting mini-batch size
to avoid GPU crashes. Additionally, two mathematical models are
proposed for further exploration using optimization algorithms.
We also motivate the need to develop a more comprehensive math-
ematical model for soft and relaxed inference model serving.
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1 INTRODUCTION
Effective model inference has evolved into a crucial element in
numerous interactive applications [1, 4, 8].

In deep learning applications, up to 90 percent of the infrastruc-
ture cost for developing and running an ML application is spent on
inference — making the need for high-performance, low-cost ML
inference infrastructure critical1. Examples in the image processing
domain include (i) E-commerce and retail such as Amazon and
1https://aws.amazon.com/ec2/instance-types/inf1/
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Pinterest that use images for product search, discovery and recom-
mendation, (ii) Social media – Instagram employs image inference
to suggest filters and enhancements for photos and to identify and
filter out offensive content, (iii) Autonomous vehicles use image
inference from cameras, radar, and other sensors to detect objects,
pedestrians, and lane markings for safe navigation, (iv) Health-
care applications use image inference for pathology and radiology,
diagnosing diseases and conditions from medical images like X-
rays, MRIs, and pathology slides [5] and (v) Precision Agriculture –
drones equipped with cameras are used to monitor crops, assess
plant health, and optimize farming practices [13].

Model serving systems, thus need to be scalable, guarantee high
system goodput, and maximize resource utilization across com-
pute units. This work is intended to set the foundations for model
inference serving that is carried out in serverless computing en-
vironments, for the dynamic allocation of resources according to
the load of inference requests and their deadline guarantees. There
are many factors to be taken into account in such scenarios, so we
will try to analyze independently what are the basics to consider
and build up from there a generalizable optimization model able
to assist in making scheduling decisions with deadline guarantees
looking for the optimal use of the available resources.

2 BACKGROUND AND RELATEDWORK
2.1 Types of Inference
There are several types of inference that can be categorized based
on their speed requirements:

• “Hard” Real-time Inference requires the fastest response
time possible, often in real-time or near real-time. It is com-
monly used in applicationswhere instant decisions or actions
are safety critical, such as autonomous vehicles, real-time
fraud detection systems, or high-frequency trading algo-
rithms.

• “Soft” Real-time also requires a quick response time. How-
ever, it allows for a certain degree of latency or delay in the
output without compromising the overall system reliability
or safety. Soft inference is useful in applications like voice
assistants or recommendation systems, where a slight delay
in response is acceptable as long as the system maintains
smooth interactions and user satisfaction.

• Relaxed Inference refers to the scenario where the time
allowed for inference is large, typically in hours. It prior-
itizes accuracy over response time and is typically found
in applications where either the computational complexity
of the underlying models is high (such as complex deep-
learning models or large-scale simulations) or in situations
like invoice processing where SLAs are not very strict.

https://doi.org/10.1145/3631295.3631401
https://aws.amazon.com/ec2/instance-types/inf1/
https://doi.org/10.1145/3631295.3631401


WoSC ’23, December 11–15, 2023, Bologna, Italy Aurora González-Vidal et al.

• Best-effort Inference refers to cases where there are no
resources dedicated for inference and is typically seen in
peer-to-peer systems and in community settings where in-
ference happens over a wide area network.

In this work, we will focus on soft real-time and relaxed infer-
ence.

2.2 Equipment: TPU, GPU, CPU, etc.
The composition of computing systems typically encompasses a di-
verse array of components, each contributing uniquely to the overall
functionality. These components often include high-performance
hardware such as Tensor Processing Units (TPUs) [10], Graphics
Processing Units (GPUs), and Central Processing Units (CPUs),
which serve as the computational backbone of these systems. More-
over, the inclusion of smaller devices such as system-on-a-chip
ones (SoC) and specialized peripherals can further enhance their
capabilities. As a matter of fact, the current trends to use mobile
devices as inference machines are opening new possibilities for
computation on the edge[16].

2.3 Related Work
Existing inference model serving systems also support dynamic
batching and replica auto-scaling [7, 18], inference buffering, and
auto-selection of model variants [3, 14]. The recently proposed
white-box model serving systems [8] enable model-specific opti-
mizations with model layer sharing and fine-grained GPU sched-
uling. Others sample a small number of configurations in order
to make the selection process faster [17]. To delve a bit more into
some of these works, INFaaS [14] uses an optimization algorithm
to select the best model-variant for each inference query. The algo-
rithm is based on an Integer Linear Programming (ILP) formulation
that takes into account various constraints and objectives, such
as minimizing cost, maximizing throughput, and meeting Service
Level Objectives (SLOs), therefore it could also focus on time. Since
ILP is computationally expensive, INFaaS uses a heuristic algorithm
that approximates the ILP solution in a more efficient manner. The
heuristic algorithm is based on a model autoscaler that estimates
the current headroom in capacities of running model variants, and
selects the best scaling action (replicate or upgrade/downgrade) to
satisfy the constraints and minimize the objective cost function.
Other approaches focus on using multiple GPUs and try to ensure
bounded latency for each request and serve multiple heterogeneous
ML models in a system [2].

There exists literature focusing on the input difficulty and the
complexity and optimality of the scheduling problem rather than
the specific system, GPU and inference parameters [12] and works
that tackle both aspects of the problem at the same time [19].

3 METHODOLOGY
In this work, we have studied the inference time for image clas-
sification tasks in order to propose a preliminary mathematical
model that is able to optimize the computing resources available
when performing soft and relaxed inference. For that purpose, we
have used a system with a single GPU to run the experiments
and a single deep-learning model as well. The model was Efficient-
Net [15]. EfficienNet has emerged as a benchmark in the field of

computer vision. This innovative family of convolutional neural
network architectures employs a principled approach to scale net-
work depth, width, and resolution, optimizing the balance between
computational efficiency and model accuracy. EfficientNet identi-
fies the ideal scaling coefficients, enabling its top-tier performance
on various tasks, including image classification, object detection,
and semantic segmentation. In the original paper, they introduced
a coefficient named 𝜙 that uniformly scales network width, depth,
and resolution. Giving different values to such 𝜙 , they create differ-
ent variants of the network, from B0 to B7. As we move from B0 to
B7, the models become progressively deeper, wider, and capable of
handling higher-resolution images. EfficientNet-B0 was pre-trained
on the ImageNet dataset and will be used in this work.

3.1 Measuring memory usage
The torch.cuda.memory_allocated() function is a method provided
by the PyTorch library for Python, and it is used to determine the
amount of GPU memory currently allocated by your PyTorch ten-
sors and variables. This function specifically reports the amount
of memory allocated in bytes on the GPU device you are currently
using for your PyTorch operations. In deep learning, the data that
is processed by neural networks is often stored in tensors (multi-
dimensional arrays) on the GPU. When creating those tensors and
performing operations on them, PyTorch allocates GPU memory
to store these tensors. This memory allocation is necessary for
computation. In order to monitor GPU memory during the infer-
ence process, we have computed the prior and posterior allocated
memory.

3.2 General system profiling
GPU warmup was originally proposed in 2017 [6]. Besides the GPU
being in a power-saving state, there can be a number of other rea-
sons why the first launch of a kernel could be slower than further
runs because the GPU starts from a cold state. GPUs have startup
overhead [11], including memory allocation and driver initializa-
tion. Accounting for these delays is fundamental when a deadline
needs to be achieved: just-in-time compilation, transfer of kernel
to GPU memory, and cache content are some things to be taken
into account.

All those parameters can be profiled. For such a purpose we
have used the single file implementation of a hardware monitor
from one of the authors [9]. Such a script includes 164 features
obtained making use of psutil that enables tracking of network
bandwidth, disk read/write bandwidth, disk read/write counters,
context switches, average CPU load (1,5,15 min), memory utiliza-
tion and process memory (resident, virtual, lib, etc.). And if a GPU
is available, over pynvml and torch: framebuffer memory, bar1 mem-
ory, gpu/memory utilization, temperature, power, throttle reasons,
statistics retrieved by torch.cuda.memory_stats(), average (small,
large, all) segment size, average block size, average inactive block
size, allocation rounding overhead, memory fragmentation.

4 EXPERIMENTS AND RESULTS
The experiments were conducted on a system running the Debian
6.1.0-10-amd64 Linux distribution with kernel version 6.1.38-1. The
hardware platform was x86_64 and the system was equipped with
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(heigth x width pixels)

Figure 1: Memory usage using different image input sizes
and mini-batch sizes

Figure 2: Inference time using different image input sizes
and mini-batch sizes (up) and its zoom (down)

an NVIDIA A100 GPU with 40 GB of VRAM, and computations
were performed using CUDA version 11.0.

4.1 Input size influence on memory and time
The relationship between input size and GPU performance needs to
be investigated. We have systematically varied the input size while
keeping other parameters constant and measuring key performance
metrics, including inference time and GPU memory utilization. As
can be seen in Figure 1, the allocated memory grows depending on
the mini-batch size but it is indifferent to the input size. Something
similar happens with the inference time according to the input size
(see Figure 2), except that from a certain moment, the inference

time explodes. It seems that the GPU is handling the smaller mini-
batch sizes effectively. However, when the mini-batch size is very
large, the GPU may experience bottlenecks due to the need to
store and process a large number of samples at the same time,
leading to increased latency and longer inference times. Given that
circumstance, in the following subsection, we will take a single
input size and test on further mini-batch sizes.

4.2 Mini-batch size influence on time and other
parameters

We have measured inference time with different values of mini-
batch size repeated 10 times. The upper part of Figure 3 shows
the results of performing inference. It can be seen that there is a
certain linear trend only disturbed by a few points. Those points
correspond to the first time that a mini-batch size inference time
is measured. In that sense, we understand that the GPU needs to
be warmed up for every mini-batch size in order to present its
regular behavior and, we noticed as well that from a certain point,
the GPU warm-up inference time explodes, which can be related
as well to getting close to its maximum mini-batch size. Taking
out the first measurement for every mini-batch size, that could be
considered warming up, we obtain an almost perfect regression fit,
with a 𝑅2 = 0.9998 (see below part of Figure 3), therefore we can
think that the time after warming up is highly predictable.

f(x) = 5.53x + 1

Figure 3: Inference time using differentmini-batch sizeswith-
out considering warm-up (above) and considering warm-up
(below)

In order to estimate the time that the GPU would take to warm
up, we have collected information about the system prior to the
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inference in each step making use of the already introduced reposi-
tory [9] in Section 3.2. We have applied Random Forest in order to
estimate such a value. One of the key advantages of Random Forest
is its ability to assess the importance of features in making predic-
tions. In Figure 4 we see how much the most important features
contribute to the overall predictive performance and we selected
the 4 most important that are related to the system in general, the
mini-batch size and the memory of the GPU:

• process/involuntary_proc_ctx_switches: number of involun-
tary context switches that occur within the operating system.
A high number of involuntary context switches can indicate
potential performance bottlenecks or contention for CPU
resources,

• Mini-batch size,
• 03_gpu_mem/requested_bytes.all.current: current or real-
time number of bytes of GPU memory that have been re-
quested or allocated, and

• 03_gpu_mem/allocated_bytes.large_pool.current: By creat-
ing large memory pools, the memory manager reduces the
number of calls to the CUDA memory APIs, improving run-
time performance. This metric indicates the current amount
of GPUmemory, in bytes, that has been allocated or reserved
within a specific large memory pool on a GPU.

With these 4 variables, we have trained a Random Forest al-
gorithm that estimates the warm-up time with a Coefficient of
Variation of the Root Mean Square Error (CVRMSE) = 22 %, and a
Mean Absolute Percentage Error (MAPE) = 12.5 %.

Figure 4: 15 most important features to determining first
inference time / warm up

5 MATHEMATICAL MODELS
Given the results that have helped in understanding how themodels
can work, two different optimization models are proposed.

5.1 Soft Real-time Inference
In this use case, our goal is to minimize the number of GPUs that are
needed to deliver a response within a certain time considering again
the constraints of available GPUs, warm-up times, and linear batch
size-latency relationships. The decision variables are as follows:

• 𝑡𝑖 : The number of times GPU𝑖 is used (an integer).

• 𝑚𝑏𝑠𝑖 : The mini-batch size chosen for GPU GPU𝑖 (an integer).
• 𝑁𝐺 : The number of GPUs to be used (an integer)

The constants:
• 𝑇 : The total available time. This should not be exceeded by
any of the GPUs, given that they work in parallel (a decimal
number).

• 𝑁 : The number of images that need to be processed in total
in the given time (an integer).

• 𝑁𝐺𝑃𝑈 : The maximum number of GPUs available (an inte-
ger)

• 𝑀𝑖 : The maximum number of times GPU𝑖 can be used (a
constant)

• 𝑆𝑖𝑧𝑒𝑖 : The images’ input size for GPU𝑖
Before the optimization process, it is imperative to understand

the relationship between the latency, denoted as 𝐿𝑖 , for GPU𝑖 given
a minibatch size denoted as mbs𝑖 . According to our experiments,
this latency exhibits a linear dependence on the minibatch size, and
the relationship can be expressed as 𝐿𝑖 (mbs𝑖 ) = 𝑎𝑖 ·mbs𝑖 +𝑏𝑖 . Here,
𝑎𝑖 and 𝑏𝑖 are coefficients representing the slope and intercept of
the linear relationship for GPU𝑖 , respectively.

Furthermore, the determination of the warm-up time, denoted
as𝑊𝑖 , for GPU𝑖 needs to be investigated as well. Unlike the latency,
the warm-up time does not adhere to a strictly linear relationship
and can deviate based on the current system parameters. Therefore,
the warm-up time𝑊𝑖 is influenced by various factors beyond the
minibatch size.

To comprehensively model the warm-up time𝑊𝑖 as a function
of mbs𝑖 and additional system parameters, a detailed analysis of the
specific system characteristics and their impact on𝑊𝑖 is required.
The analysis we realized showed that by profiling 4 main elements
of the system, we can estimate the warm-up time.

The functions:
• 𝐿𝑖 : Latency per mbs𝑖 for GPU𝑖
• 𝑊𝑖 : Warm-up time for GPU𝑖
• 𝑀𝐵𝑖 : The maximum mini-batch size for GPU𝑖 (a function of
𝑆𝑖𝑧𝑒𝑖 ).

Then, the optimization problem can be formulated as follows:

min 𝑁𝐺

s.t. Maximum𝑖 (𝑊𝑖 (mbs𝑖 ) + 𝑡𝑖 · 𝐿𝑖 (mbs𝑖 )) ≤ 𝑇∑︁
𝑖

(𝑡𝑖 + 1) ·mbs𝑖 ≥ 𝑁

1 ≤ mbs𝑖 ≤ 𝑀𝐵𝑖 for all 𝑖
0 ≤ 𝑡𝑖 ≤ 𝑀𝑖 for all 𝑖
1 ≤ 𝑁𝐺 ≤ 𝑁𝐺𝑃𝑈

(1)

5.2 Relaxed inference
In a relaxed inference use case, our goal is to maximize the num-
ber of images processed in a given time while considering the
constraints of available GPUs, warm-up times, and linear batch
size-latency relationships. The definitions with regard to decision
variables, constraints, constants and functions are almost the same
as in 5.1, except that we do not need to minimize the number of
GPUs that are used in this scenario. We are considering that a num-
ber of GPUs are reserved for this task and we are interested in the
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operation of the system in order to maximize the throughput. The
optimization problem can be formulated as follows:

max 𝑁𝐺𝑃𝑈 ×
∑︁
𝑖

(𝑡𝑖 + 1) ·mbs𝑖

s.t. Maximum𝑖 (𝑊𝑖 (mbs𝑖 ) + 𝑡𝑖 · 𝐿𝑖 (mbs𝑖 )) ≤ 𝑇

1 ≤ mbs𝑖 ≤ 𝑀𝐵𝑖 ∀𝑖
0 ≤ 𝑡𝑖 ≤ 𝑀𝑖 ∀𝑖

(2)

Solving this optimization problem will give us information about
how to use the available GPUs optimally, meaning with what mini-
batch size and how many times, according to our limits.

6 CONCLUSIONS AND FUTUREWORK
The purpose of this research was to establish a foundation for
exploring an optimal way of serving AI models for inference in
different scenarios. We have performed an analysis of how the
input of the images and the mini-batch size influence the time of
delivery in the task of image classification using a single GPU and
1 deep learning model and provided a mathematical formulation as
a starting point.

We are currently exploring several research directions. The first
involves determining the optimal and maximum mini-batch size,
considering both the system’s status and the input size of the images.
This determination is crucial for efficient and effective processing.
Additionally, the inclusion of model and image load times is essen-
tial to better manage the system’s resource allocation.

Handling multiple models within a single GPU tackling issues
related to concurrency is another future work line. There will also
be a focus on incorporating limits related to cost and energy con-
sumption, ensuring that the system operates within predefined
constraints. Furthermore, extending the system’s capabilities to
handle immediate hard inference and no-limit inference scenarios
is part of the future work.

Finally, we will explore diverse scenarios, such as heterogeneous
serving, combining TPU, GPU, CPU, and other devices, to improve
versatility. Another important aspect to be considered is the in-
tegration of a model that estimates workflow, providing insights
into process optimization. The research will also delve into scenar-
ios where GPUs operate in a "sequential" manner, rather than in
parallel, to address specific needs.

To further augment the system’s capabilities, there will be an
emphasis on integrating it with another system that can select
deep learning models based on user requirements, like delivery
time, data distribution, and signal-to-noise ratio. Lastly, the project
will explore adapting its outcomes to serve Large Language Models
effectively. These proposed enhancements collectively aim to create
a inference serving system that is more versatile, efficient, and
adaptable to a wide range of applications.
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