
Control and Management of a Connected Car Using
YANG/RESTCONF and Cloud Computing
Ricard Vilalta, Selva Via, Fermı́n Mira, Luis Sanabria, Ricardo Martı́nez, Ramon Casellas,

Raul Muñoz, and Jesus Alonso-Zarate
Centre Tecnologic de Telecomunicacions de Catalunya (CTTC/CERCA), Spain

ricard.vilalta@cttc.es

Abstract—This paper describes the implementation of an
innovative proof-of-concept (PoC) for a connected car, modeled
with YANG, which can be remotely controlled using SDN/NFV
technologies. In particular, the remote control of the car is based
on a service application running on a remote data center. The
demonstration is performed using a RESTCONF server installed
in a Raspberry Pi aboard of a small car. This server is responsible
for the sensors and actuators of the car and allows for its remote
control from a user terminal (e.g., a smartphone, tablet, or laptop)
and through the cloud, running a control application as a service.

Index Terms—Connected Car, 5G, SDN, NFV, YANG

I. INTRODUCTION

It is foreseen that in the near future all vehicles will be
connected. Vehicles may be connected to the Internet, to their
peers (V2V), pedestrians (V2P), the road infrastructure (V2I),
or the communication network (V2N). The communication
between two entities where at least one of them is a vehicle
is typically referred to as Vehicle-to-Anything (V2X) com-
munications. This type of communications will improve road
safety, increase traffic efficiency, and enhance user comfort.
New services will be created on top of this connectivity, thus
extending the automotive ecosystem to new players entering
into this business domain [1]. However, many challenges are
still unsolved. One of the key open questions to be solved
is how communication networks should be tailored for V2X
communications. It is clear that networks of the future should
deal with at least 3 of the key challenges posed by the Internet
of Things (IoT): 1) need for interoperability, 2) coexistence of
a wide variety of sometimes opposite requirements defined by
different applications, and 3) need to support high scalability
[2]. Indeed, 5G technologies are being designed to cope with
all these requirements.

In view of this, and understanding the connected car as a
complex cyber-physical system (CPS), many of the commu-
nication techniques which have been designed for the Internet
of Things (IoT) can be applied and adapted (i.e., redesigned)
to those networks which will handle the connected vehicle.
This includes, among others, optimized wireless communi-
cation protocols, data formatting protocols, cloud computing,
Software-Defined Networking (SDN), Network Function Vir-
tualization (NFV), etc. Cloud computing can help processing
the data gathered by billions of smart things interacting with
each other. Further, the SDN paradigm enables a global
orchestration of all network resources including, for example,

the management of distributed clouds and the coexistence of
heterogeneous networks combining different types of com-
munication technologies. In its turn, NFV has introduced a
novel paradigm where services can be deployed on demand
in order to fulfill the end user needs. These three techniques
are intertwined: in new communication networks, services are
deployed over a cloud computing infrastructure, where the
necessary connectivity is provided by an SDN controller. The
authors have previously proposed in [3], the usage of a service
orchestrator for IoT applications.

Under this context, the SDN orchestrator must carry out the
following 3 key functions: i) facilitate the transport of the huge
amount of data generated at the terminals, sensors, machines,
nodes, etc., to any distributed computing node, edge, or core
data center; ii) allocate computing and storage resources in
distributed data centers, and iii) process the collected data
(Big Data) to make proper decisions, leading to the concept
of cognition [3].

Beyond connectivity, the ultimate key element here is the
data, from which real value can be obtained. In the end,
connectivity is just the means to gather and obtain the data. So,
when it comes to processing and operating the data, formatting
this data becomes a key design decision. Indeed, the adoption
of a common, flexible, and powerful data and information
modeling language to define all sensors, actuators, gateway
facilities and services is a first important step towards the
standardisation of IoT frameworks across multiple vendors
beyond the existing ones. The automotive sector is not an
exception to this.

Service Orchestrator

Cloud 

Controller

YANG Data Model + 

RESTconf server

OVS 

Bridge Control 

App

SDN 

Controller

Client

Fig. 1. Connected Car demonstration architecture



Among other options, over the last years, YANG has been
steadily growing in the IT and networking communities as
a data modeling language suitable for the IoT [4]. For such
purpose, YANG data models need to be complemented with
NETCONF/RESTCONF protocols [5]. These protocols enable
the control and management of YANG data models.

Motivated by all this context, this paper describes the first
proof-of-concept of a remotely-controlled car through and
SDN/NFV-enabled communications network where YANG
and NETCONF/RESTCONF have been used to model, man-
age, and control the data associated to the car. The remote
control is based on an application running on a cloud infras-
tructure which can be accessed from any user terminal, e.g.
smartphone, tablet, laptop, etc. In particular, the demonstration
is performed using a small toy car equipped with an on-board
Raspberry Pi which runs a RESTCONF server responsible for
the interaction with the sensors and actuators of the car.

The remainder of the paper is organized as follows. The
proposed architecture is described in Section II. Section III
is devoted to describe the demo set-up and discuss the key
demonstrated results. Finally, Section IV provides conclusions.

II. PROPOSED ARCHITECTURE

Figure 1 shows the proposed architecture for the control and
management of the connected car.

The Service Orchestrator acts as a generalized NFV Man-
ager and Orchestrator (NFV MANO), and is responsible for:
1) Triggering the necessary flows in the SDN controller in
order to interconnect the OpenVSwitch (OVS) bridge, 2)
requesting the necessary resources and deploying the requested
services on top of them, and 3) deploying services, which
are independent from each other, using the Cloud Controller.
In our particular case, the control application is a service
that the Service Ochestrator deploys. The Cloud Controller
(e.g., based on OpenStack) acts as a Virtualized Infrastructure
Manager (VIM) in the proposed NFV architecture. The VIM is
responsible for the creation/migration/deletion of virtual ma-
chine (VM) instances (computing service), disk images storage
(image service), and the management of the VM network

Fig. 2. Example of Connected Car UI and JSON command

interfaces (networking service). The computing service (e.g.,
Nova in OpenStack) is responsible for the management of the
VM into the compute hosts. A compute service agent is run-
ning in each host and controls the computing hypervisor (e.g.,
KVM) responsible for the creation/deletion of the VMs. The
Control Application is stored as an image, which is deployed
on demand, when requested by the Service Orchestrator. An
SDN controller (e.g., ONOS) is the responsible for the control
of the network resources (such as the OVS bridge). The SDN
controller translates high level connectivity intent requests into
OpenFlow (OF) protocol commands, in order to configure the
necessary underlying network resources for the establishment
of the requested connection.

The connected car offers a RESTCONF server which can be
accessed through a control application being accessed from a
user terminal, i.e. the client. The graphical user interface (GUI)
of this control application is shown in Figure 2.

The connected car data model is described in YANG
modeling language. RESTCONF is used as transport protocol
which uses JavaScript Object Notation (JSON) encoding for
data transmission. RESTCONF is an HTTP-based protocol for
configuring data defined in YANG. It uses HTTP methods (i.e.,
POST, PUT, PATCH, and DELETE) to provide Create Read
Update and Delete (CRUD) operations on a conceptual data-
store containing YANG-defined data. RESTCONF combines
the simplicity of HTTP with the predictability and automation
potential of a schema-driven API.

In the implementation described in this paper, the connected
car data model is composed of three main parameters (shown
in Fig. 2): 1) robotId, 2) speed, and 3) command. The allowed
commands are: FORWARD, STOP, BACKWARD, LEFT, and
RIGHT, indicating the direction of motion of the car.

III. DEMO SET-UP AND RESULTS

The demo toy-car is composed of a metal chassis and 4
wheels each driven by 4 DC motors powered with dedicated
5 AA batteries in series, providing 7.5V. The car is equipped
with a Raspberry Pi Zero W (RasPiZW) [6]. RasPiZW is
a basic computer consisting of a single-core 1GHz ARM11
processor (Broadcom SoC BCM2835), with 512MB of RAM.
This version offers 802.11n wireless LAN and Bluetooth 4.1
and BLE wireless connectivity with a Cypress CYW43438
chip and a 2.4GHz PCB antenna. It needs constant 5V power
supply via a micro USB connector. Power consumption in Idle
state is about 120mA. The RasPiZW in the car is supplied
with a battery pack. The operative system, based on Debian
Jessie, is Raspbian Jessie Lite. This minimal image suits the
functionality of the car, where no graphical interface is needed,
allowing more efficient operation of the RasPiZW. To control
the motor, a commercial add-on for raspberry Pi has been
used, MotoZero. MotoZero is based on two Texas Instruments
motor driver ICs, LD293D, to allow control of each wheel
independently.

The OVS bridge is implemented using a Raspberry Pi 3,
including various Ethernet to USB adapters. OpenVSwitch is
setup in order to control the data plane Ethernet connections.



Control App

GET index.php?command=FORWARD

Client

A

Connected

Car
OVS Bridge

PUT /RESTCONF/CONFIG/ROBOTAPP

HTTP 200 OK

HTTP 200 OK

GET index.php?command=STOP

PUT /RESTCONF/CONFIG/ROBOTAPP

HTTP 200 OK

HTTP 200 OK

GET index.php?speed=8

HTTP 200 OKB

C

Fig. 3. Proposed Message exchange workflow

The Cloud Controller has been simplified in the demonstra-
tion, being a server running an HTTP Apache server with PHP
extensions. In further demonstrations a full OpenStack Cloud
Computing service will be demonstrated.

The RESTCONF server has been autogenerated with Open-
SourceSDN.Org project EAGLE YANG to code tools [7].
These tools allow for the rapid prototyping of RESTCONF
servers using the feed from YANG data models.

Figure 3 presents the suggested workflow for the control and
management of the connected car using YANG/RESTCONF.
The Control Application is a PHP application, which shows
the Control UI, and translates the pressed commands into the
necessary HTTP RESTCONF commands for the control of the
connected car. At least three scenarios are envisioned:

• Scenario A: Move the connected car. A Forward com-
mand is sent from the client to the Control Application.
The Control Application issues the RESTCONF HTTP
PUT operation, including the received command, the se-
lected robotId, as well as the previously configured speed
for the motors. The OVS bridge forwards the command,
and the Connected Car RESTCONF server processes
the command and activates the necessary motors. Once
activated, the HTTP 200 OK command is answered to the
Control Application which, in its turn, notifies the client.

• Scenario B: Speed selection. In this scenario, the client
selects the speed for a certain robotId. This information
is received by the Control Application and it is stored
in a local MySQL database. No interaction with the
Connected Car is performed in this case.

• Scenario C: Stop the connected car. Finally, the client
requests the stop command to the Control Application.
As in Scenario A, the Control Application issues the
RESTCONF HTTP PUT operation, including the re-
ceived command and the selected robotId.

Figure 4 shows the captured Wireshark traces for the
presented use cases. These Wireshark traces demonstrate the

A

B

C

Fig. 4. Captured message exchange with wireshark

feasibility of the proposed approach, based on using YANG-
based services for Connected Car applications. Latency results
have been obtained through a WiFi network. It is foreseen that
latency will be significantly reduced when new radio access
networks, such as 5G, will be use instead of WiFi.

IV. CONCLUSION

In this paper, we have described the first implementation of
a proof-of-concept for a remotely-controlled car using YANG
modeling for the data associated to the car, and operating
an SDN/NFV network with dynamic service provisioning. A
user can interact with the car through an application with a
user interface which is served by a network orchestrator and
can be operated from any handheld or desktop device. This
proof-of-concept has demonstrated: first, the feasibility of the
proposed approach of using YANG modeling language for
the description of IoT services, and second, the suitability of
unifying the NFV paradigm together with IoT services.

ACKNOWLEDGMENT

Part of this work has been performed in the framework of
the H2020 project 5GCAR co-funded by the EU. Authors
would like to acknowledge the contributions of their col-
leagues from 5GCAR although the views expressed are those
of the authors and do not necessarily represent the views of the
5GCAR project. This research also has been partly funded by
Spanish MINECO projects DESTELLO (TEC2015-69256-R)
and CELLFIVE (TEC2014-60130-P).

REFERENCES

[1] B. Martinez de Aragon, J. Alonso-Zarate, A. Laya, “How Connectivity
is Transforming the Automotive Ecosystem,” Wiley Internet Letters, in
press 2017.

[2] NGMN Alliance, “NGMN 5G White Paper,” NGMN Alliance, February
2015, Tech. Rep.

[3] R. Vilalta, I. Popescu, A. Mayoral, X. Cao, R. Casellas, N. Yoshikane,
R. Martı́nez, T. Tsuritani, I. Morita, and R. Muñoz, “End-to-end sdn/nfv
orchestration of video analytics using edge and cloud computing over
programmable optical networks,” in Optical Fiber Communications Con-
ference and Exhibition (OFC), 2017. IEEE, 2017, pp. 1–3.

[4] M. Yannuzzi, F. van Lingen, A. Jain, O. L. Parellada, M. M. Flores,
D. Carrera, J. L. Pérez, D. Montero, P. Chacin, A. Corsaro et al., “A new
era for cities with fog computing,” IEEE Internet Computing, vol. 21,
no. 2, pp. 54–67, 2017.

[5] A. Bierman, M. Bjorklund, and K. Watsen, “Restconf protocol,” 2017.
[6] E. Upton and G. Halfacree, Raspberry Pi user guide. John Wiley &

Sons, 2014.
[7] OpenSourceSDN.org, “EAGLE Project,”

https://github.com/OpenNetworkingFoundation/EAGLE-Open-Model-
Profile-and-Tools/, 2017.


