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A Continuum Model for Housing Allocation and

Transportation Emission Problems in a

Polycentric City
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Kowloon, Hong Kong, China
2Department of Civil and Structural Engineering, The Hong Kong Polytechnic
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ABSTRACT

The effect of vehicle emissions on the global climate has prompted increasing
concern in the past few decades. Housing development patterns determine
people’s travel behavior and related vehicle emissions. In this study, we consider
a hypothetical city with several central business districts (CBDs) serving several
classes of road users, which are continuously distributed over the city. The road
network is relatively dense and can be approximated as a continuum. We establish
a bi-level model to describe the relationships among housing allocation, traffic vol-
ume, and CO2 emissions with a continuum modeling approach. At the lower level,
the model achieves the user equilibrium condition of a transport system. At the
upper level, it optimizes housing allocation to achieve minimum CO2 emissions.
The finite element method, Newton-Raphson algorithm, and convex combination
approach are applied to solve the constrained optimization problem established in
the bi-level model. A numerical example is then given to illustrate the effectiveness
and efficiency of the proposed bi-level approach and solution algorithm in
modeling transport demand, traffic intensity, and CO2 emissions with an
optimized housing development pattern.
Key Words: bi-level programming, continuum modeling, finite element method,

housing allocation pattern, transport emission
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1. INTRODUCTION

Because of its negative effects on ecosystems, economies, and health, global
warming has become one of the most acute problems of our time. Human activi-
ties, mainly those involving the combustion of fossil fuels, have caused an increase
in greenhouse gases (GHGs), particularly CO2, which has resulted in a rise in glo-
bal temperatures. It is reported that the transport sector was responsible for about
a quarter of global CO2 emissions in 2003, and this proportion is even higher in
developed countries (ECMT 2007). About three quarters of transport-related
CO2 emissions are generated by road surface transport (IEA 2006).

Applying advanced technologies in the design of vehicles to increase the level of
fuel efficiency is one way of reducing traffic-related emissions. However, regulating
the emission rate alone may not be effective in reducing overall emissions, because
the number of cars on the road and length of driving periods may increase rapidly.
Transport policies such as changing land use, managing transport demand, and
improving transit systems can have a significant effect on the behavior of travelers,
and thereby on transport-related emissions (Nagurney and Ramanujam 1998;
Nagurney 2000a, 2000b; Poudenx 2008; Harwatt, Tight, and Timms 2011). In
our study, we focus on such emissions.

Many studies have attempted to analyze the effect of travel patterns and trans-
portation system design on transport emissions. Congestion charges, the topology
of transport networks, traffic control methods, the road environment, signal
intersections, and the design and maintenance of road networks are all essential
influencing factors (Rakha et al. 2000; Nagurney 2000a, 2000b; Yin and
Lawphongpanich 2006; Chiou and Chen 2010; Nagurney, Qiang, and Nagurney
2010; Chen, Zhou, and Ryu 2011; Li et al. 2012). An analytical framework has been
established to decompose the transportation emissions problem into the dimen-
sions of population, transport intensity, energy intensity, and carbon intensity. This
approach allows the aggregate effect of traveler activities, vehicle design, and fuel
technologies on transport emissions to be estimated for different transport subsec-
tors (Yang et al. 2009). Land-use patterns influence residential density, mixed land
use, car ownership levels, commuting distance, and household travel demand and
associated emissions (Cervero 1989; Nowlan and Stewart 1991; Messenger and
Ewing 1996; Cervero 1996; Cervero and Radisch 1996; McNally and Kulkarni
1997; Badoe and Miller 2000; Boarnet and Crane 2001; Bento et al. 2003; Bhat
and Guo 2007; Brownstone and Golob 2009); thus, they have diverse and
significant effects on traffic-related emissions (Norman, McClean, and Kennedy
2006). Once a land use pattern is established, it is difficult to change, so the initial
planning phase is highly important for minimizing transport-related emissions.

To better understand the relationship between land use and travel demand,
more research is needed (Boarnet and Sarmiento 1998). Previous studies have
been implemented in a discrete manner, focusing on a specific road network,
which requires a detailed understanding of the study’s objectives. Such an appro-
ach also makes it difficult to determine the interactions among urban form, land
use, transport policies, transport systems, and transport-related emissions=energy
consumption. Integrated models offer an alternative for improving our under-
standing of these issues and allow us to consider aggregate effects. A case study
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was carried out in Seattle to determine such interactions (Frank, Stone, and
Bachman 2000). It offered an effective model that integrated land use, transpor-
tation, and vehicle emission patterns, and reduced the complexity of the problem
through the use of indirect discrete models.

In this study, we apply the continuum modeling approach (Sasaki, Iida, and
Yang 1990; Wong 1998; Wong et al. 1998) to study the interactions among land
use, transport, and emissions. In contrast to the discrete modeling approach, it
focuses on the general trends and patterns of distribution and the travel choices
of road users at the macroscopic rather than microscopic level. There are many
benefits to using a continuum modeling approach, especially in the initial plan-
ning stage. We use some smooth mathematical equations to describe the travel
behavior of road users, which makes the problem more manageable (compared
with the actual number of links required for discrete modeling) and can reveal
how the characteristics of the road network are influenced by several parameters,
such as the perceptions of road users. In addition, the continuum model does not
require such intensive data collection, which is often labor intensive and some-
times infeasible, especially in the initial phase of planning. Ho and Wong estab-
lished a continuum model to reveal the relationships among transport demand,
urban form, and travel behavior, which satisfies the user equilibrium principle
(Ho and Wong 2005), and then extended it to a bi-level model with housing allo-
cation optimized to obtain the minimal negative utility, which included housing
and transportation costs (Ho and Wong, 2007). Based on earlier studies (Wong
and Yang 1999; Yang and Wong 2000; Ho, Wong, and Loo 2006; Ho, Wong, and
Sumalee Forthcoming), we extend the existing bi-level continuum transportation
modeling approach to incorporate the multi-CBD problem and try to minimize
transport-related emissions in the upper level. We first review some typical emis-
sion modeling approaches in Section 2. In Section 3, we describe the formulation
of the proposed bi-level continuum model, with user equilibrium achieved in the
lower level and housing allocation optimized in the upper one. The finite element
method (FEM) and convex optimization method are applied in this section. In
Section 4, we present a numerical example to demonstrate the effectiveness and
efficiency of the proposed model given a multi-class commuter scenario. Finally,
concluding remarks are given in Section 5.

2. EMISSION MODELING APPROACHES

The models currently used to estimate transport emissions can be classified into
three categories. In the first category are emission factor models, which consist of
two parts, the baseline emission rate and correction factors. Both are derived from
the mean value of repeated measurements following a standard method, such as
the Federal Test Procedure (FTP). Correction factors incorporate the influence
of factors such as vehicle speed, temperature, fuel type, and vehicle age. The emis-
sion rate is obtained by multiplying the baseline emission rate and correction fac-
tors together. The widely used MOBILE and EMFAC models fall into this category
(EPA 1994; CARB 2006). These models can be used to estimate the emissions of
large-scale areas. However, they do not take into consideration either the vehicle
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operation state or the driving environment. The second category includes the
physical power-demand models, which provide a more accurate way of estimating
the second-by-second emissions for different driving conditions and vehicle types
as they consider both the vehicle’s operational conditions and the driving environ-
ment. A research group at the University of California, Riverside, established the
comprehensive modal emission model (CMEM) (Barth et al. 1996; An et al.
1997; Scora and Barth 2006), which defines the vehicle emission rate as a function
of vehicle operation characteristics, such as engine power, engine speed, air=fuel
ratio, fuel use, engine-out emissions, and catalyst pass fraction, for each of six
vehicle operation moduli. However, the difficulty of obtaining detailed infor-
mation on operational characteristics at different vehicle speeds and acceleration,
and for different vehicle types, hinders its application. The third category consists
of the acceleration and speed-based models, in which the emission rate is defined
as a function of the vehicle type, instantaneous speed, and acceleration. Earlier
versions of these models derived the average emission rate based on estimates of
fourteen typical driving moduli (Joumard et al. 1995). Then, based on the data
obtained from the ORNL (Oak Ridge National Laboratory), the emission rate is
denoted as a function of a combination of linear, quadratic, and cubic transforms
of both the instantaneous speed and acceleration (Ahn et al. 1999; Ahn et al. 2002;
Rakha, Ahn, and Trani 2004). This microscopic model can also be extended to a
mesoscopic model to estimate the influence of signal intersections and the num-
ber of stops during driving (Rakha et al. 2000; Dion, Van Aerde, and Rakha
2000). This modeling approach is promising, as less detailed engine operation
and driving environment information is required, compared with the physical
power-demand models, and the influence of vehicle movement is controlled,
which it is not in the emission factor models.

We apply the acceleration and speed-based modeling approach to estimate the
transport emission rate with a bi-level continuum transportation model given opti-
mized housing allocation, user equilibrium, and minimized CO2 emissions. This
model provides a bridge between travel behavior and traffic-related emissions.
The use of this emission modeling approach in a continuum transportation system
is appealing. By applying the continuum modeling approach, we can describe
the interactions among the road network, urban form, travel behavior, and
transport-related emissions in a simple way. The integrated model can then reveal
how the global road network characteristics influence transport demand, travel
intensity, and traffic-related emissions.

3. METHODOLOGY

We formulate the problem as a bi-level program as follows.

3.1. Lower-Level Subprogram

3.1.1. Model Formulation

In this section, we study a city of arbitrary shape with more than one central
business district (CBD), as shown in Figure 1. The road network outside the
CBDs is assumed to be relatively dense and can be approximated as a continuum.
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Transport demand and housing provision are continuously distributed outside the
CBDs, and all employment occurs within them. People travel between their homes
and the CBDs along the least costly route during peak hours. Their choice of des-
tination is determined by their perception of the travel cost and the externalities of
the CBDs. Several classes of road users with different types of travel behavior,
perceptions of the travel cost, and housing costs are considered in the housing
allocation model, and the number of each class of road users is fixed. We denote
the region of the city as X, the outer boundary of the city as C, the location of CBD
n as On, and the boundary of CBD n as Ccn. We assume that road users will not
travel across the outer boundary (C) of the city.

At location(x, y), we define fmn(x, y)¼ (fxmn(x, y), fymn(x, y)) as the flow vector of
class m road users heading to CBD n (expressed as the number of commuters that
cross a unit width), where fxmn(x, y) and fymn(x, y) are the flow flux in the x and y

directions, respectively. fmnðx; yÞj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fxmnðx; yÞ2 þ fymnðx; yÞ2

q
is the corresponding

flow intensity. At a particular location(x, y) and for a given flow pattern
fmn(x, y), we define the speed as a monotonic decreasing function of the total flow

intensity vðx; yÞ ¼ v
PNn

n¼1

PNm

m¼1 fmnðx; yÞj j
� �

.

Next, we define the travel cost potential. Let c(x, y) be the local travel cost, which
is related to the travel speed as

cðx; yÞ ¼ 1=vðx; yÞ; ð1Þ

where the travel cost is expressed in hours per unit length of movement at location
(x, y). As travel speed is a monotonically decreasing function of the total flow inten-
sity, we define a BPR-type relationship between local travel cost and traffic intensity
as follows.

cðx; yÞ ¼ 1=vðx; yÞ ¼ c0ðx; yÞ þ gðx; yÞ
XNn

n¼1

XNm

m¼1

fmnðx; yÞj j
 !hðx;yÞ

; 8ðx; yÞ 2 X; ð2Þ

Figure 1. The modeled city and the finite element mesh generated.
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where c0(x, y) is the free-flow travel time, and g(x, y) and h(x, y) are congestion
sensitivity parameters at location (x, y). Let pm be the value of time for class m com-
muters. The travel cost of class m commuters can be expressed in dollars per unit
length of travel at (x, y) as

cmðx; yÞ ¼ pmcðx; yÞ; 8ðx; yÞ 2 X;m 2 Nm : ð3Þ

For a given flow pattern fmn(x, y) and with the unit travel cost cm(x, y), we con-
sider the function umn(x, y), which is the transportation cost of class m commuters
at location (x, y) traveling to CBD n, and the following equation should be
satisfied:

cmðx; yÞ
fmnðx; yÞ
fmnðx; yÞj j þ rumnðx; yÞ ¼ 0; 8ðx; yÞ 2 X;m 2 Nm ;n 2 Nn: ð4Þ

Equation (4) is equivalent to equations (5) and (6), which are, respectively:

cmðx; yÞ
fxmnðx; yÞ
fmnðx; yÞj j þ

@umnðx; yÞ
@x

¼ 0; 8ðx; yÞ 2 X;m 2 Nm ;n 2 Nn; and ð5Þ

cmðx; yÞ
fymnðx; yÞ
fmnðx; yÞj j þ

@umnðx; yÞ
@y

¼ 0; 8ðx; yÞ 2 X;m 2 Nm ;n 2 Nn: ð6Þ

In equation (4), the flow vector is the direct opposite of the gradient of the scalar
function umn(x, y); that is,

�fmnðx; yÞ==rumnðx; yÞ; 8fmn 6¼ 0; ðx; yÞ 2 X; ð7Þ

where ‘‘==’’ means that the two vectors are in the same direction.
For each type of commuter, the flow vector and trip demand must satisfy the

flow conservation conditions in the region of the city.

rfmnðx; yÞ � qmnðx; yÞ ¼ 0; 8ðx; yÞ 2 X;m 2 Nm ;n 2 Nn; ð8Þ

where rfmn(x, y)¼ @fxmn=@xþ @fymn=@y is the gradient of the flow vector fmn(x, y),
and qmn(x, y) is the density of the demand of class m commuters at location (x, y)
that will travel to CBD n, which is expressed as the number of commuters per unit
area per unit time.

In addition to the transportation cost are the costs that are incurred in each
CBD, which are known as market externalities. An externality is specified as a func-
tion of the market share of the facility and represented as Smn (expressed in the
same unit as the transportation cost, HKD) for class m commuter perceptions of
CBD n. It can be decreasing, indicating a positive externality (economies of scale,
employment opportunities), increasing, showing a negative externality (conges-
tion), or convex, when the positive externality is small and the negative externality
is large. This is because some CBD costs are fixed (such as investment in infrastruc-
ture) and should be shared by all road users, so that the larger is the demand, the
smaller is the cost. However, greater demand causes severe congestion, which
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results in more delays and additional costs. In our model, Smn can be defined as a
function of Vn (the total demand for CBD n), where Vn ¼

PNm

m¼1

RR
X qmndX, and Vn

is the sum of all classes of road users that will travel to CBD n. Then, the perceived
cost of class m users traveling to CBD n can be denoted as Cmn:

Cmn ¼ hmn þ SmnðVnÞ; ð9Þ

where hmn is the biased component that represents the preference of class m users
for CBD n.

Then, the total perceived cost for each class of road users traveling to the CBDs
can be defined as pmn:

pmnðx; yÞ ¼ Cmn þ umnðx; yÞ; 8ðx; yÞ 2 X;m 2 Nm ;n 2 Nn: ð10Þ

For any used route p of class m from the location (H) to CBD n, the total perceived
cost (including the transportation cost and the CBD’s externalities) is

Cp ¼ Cmn þ
Z
p

cmds ¼ Cmnþ
Z
p

cm
fmn

jfmn j
ds

¼ Cmn �
Z
p

rumn ds ¼ Cmn � umnðOnÞ � umnðH Þð Þ ¼ Cmn þ umnðH Þ
ð11Þ

For any unused route �pp of class m from the location (H) to CBD n, the total per-
ceived cost (including the transportation cost and the CBD’s externalities) is

C�pp ¼ Cmn þ
Z
�pp

cmds � Cmnþ
Z
�pp

cm
fmn

jfmn j
ds ¼ Cmn

�
Z
�pp

rumn ds ¼ Cmn � umnðOnÞ � umnðH Þð Þ ¼ Cmn þ umnðH Þ ¼ Cp

ð12Þ

The inequality in equation (12) is due to the fact that for route �pp, the vectors
fmn=jfmnj and ds are not parallel, and thus ds� (fmn=jfmnj) �ds. Hence, for the
unused route, the total perceived cost is at least no less than that of the used
routes. The model thus guarantees that users will choose the least costly route
between their home and destination in a user-optimal manner.

For a particular class of users, the probability of a user choosing a CBD as his
destination depends on the total perceived cost from his home to his destination,
which is governed by a logit-type distribution:

qmnðx; yÞ ¼ qmðx; yÞ
expð�vmpmnðx; yÞÞPNn

i¼1
expð�vmpmiðx; yÞÞ

; 8ðx; yÞ 2 X;m 2 Nm ;n 2 Nn; ð13Þ

where vm is a positive scalar parameter that measures the sensitivity.
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Next, we define Pm(x, y) as a function of the log-sum cost of the users from the
location (x, y) to all of the CBDs.

Pmðx; yÞ ¼ � 1

vm
ln
XNn

i¼1

expð�vmpmiðx; yÞÞ; 8ðx; yÞ 2 X;m 2 Nm : ð14Þ

The interaction between housing allocation and traffic equilibrium is governed by
the demand distribution function, which is used to describe the way in which road
users choose their home location in the city. Ho and Wong (2005, 2007) identified
housing and travel costs as the basic variables that affect a commuter’s choice of
where to live; in this case, we also take the externalities of the CBDs into consider-
ation. The following equation is used to incorporate the housing allocation prob-
lem into the transportation equilibrium problem.

qmðx; yÞ � Qm
expð�cmUmðx; yÞÞRR

X expð�cmUmðx; yÞÞdX
¼ 0; 8ðx; yÞ 2 X;m 2 Nm ; ð15Þ

where Qm is the total demand of class m commuters, which is fixed in this model,
Um is the utility function perceived by class m commuters for all CBDs at the
location (x, y), and cm is a positive scalar parameter that measures the sensitivity.

The utility function Umðx; yÞ ¼ Pmðx; yÞ þ �rrmðx; yÞ consists of two components.
The log-sum cost is obtained in equation (14) and the housing cost, which
depends on the total demand density qðx; yÞ ¼

PNm

m¼1 qmðx; yÞ and the total housing
supply density H(x, y), in the following equation.

�rrmðx; yÞ ¼ amðx; yÞð1þ bðx; yÞqðx; yÞ=ðH ðx; yÞ � qðx; yÞÞÞ; ð16Þ

where am(x, y) represents different commuter perceptions of housing costs, and
b(x, y) are scalar parameters that represent the demand-dependent components
of the housing cost function at location (x, y).

By combining equations (13) and (15), we can find 8(x, y)2X, m2Nm, n2Nn:

qmnðx; yÞ � Qm
expð�cmUmðx; yÞÞRR

X expð�cmUmðx; yÞÞdX
� expð�vmpmnðx; yÞÞPNn

i¼1
expð�vmpmiðx; yÞÞ

¼ 0: ð17Þ

We also consider the boundary conditions that must be satisfied:

umn ¼ 0; 8ðx; yÞ 2 Ccn; 8m 2 Nm ; 8n 2 Nn; and ð18Þ

fmn ¼ 0; 8ðx; yÞ 2 C;Cck ; 8m 2 Nm ;n; k 2 Nn;n 6¼ k: ð19Þ

In equation (18), as users at Ccn are already at the boundary of CBD n, they will
incur no transportation cost in traveling to CBD n. In equation (19), we assume
that there is no flow across the city boundary and that class m road users do not
enter any CBD other than the one to which they are heading.
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3.1.2. Solution Algorithm

The problem can be written as a system of differential equations, including
equations (5), (6), (8), and (17), which is solved using the finite element method
(FEM) (Zienkiewicz and Taylor 1989). We first adopt the Galerkin formulation of
the weighted residual technique to transform the equations into the following
expressions, where W(x, y) is the weight function in the weighted residual tech-
nique and can take any value. For 8(x, y)2X, m2Nm, n2Nn, the following equa-
tions can be obtained.

ZZ
X
ðcmðx; yÞ

fxmnðx; yÞ
fmnðx; yÞj j þ

@umnðx; yÞ
@x

ÞWðx; yÞdX ¼ 0; ð20Þ

ZZ
X
ðcmðx; yÞ

fymnðx; yÞ
fmnðx; yÞj j þ

@umnðx; yÞ
@y

ÞWðx; yÞdX ¼ 0; ð21Þ

ZZ
X
ðrfmnðx; yÞ � qmnðx; yÞÞWðx; yÞdX ¼ 0; and ð22Þ

Z Z
X
ðqmnðx; yÞ �Qm

expð�cmUmðx; yÞÞRR
X expð�cmUmðx; yÞÞdX

� expð�vmpmnðx; yÞÞPNn

i¼1
expð�vmpmiðx; yÞÞ

ÞWðx; yÞdX¼ 0:

ð23Þ

After the region is discretized, we can set the local interpolation function N(x, y) to
W(x, y), because W(x, y) can be any value. For a specific node s, the governing
equations for all classes of commuters are given as follows.

rsmnðWÞ ¼ P
e2Ts

RR
Xe
ðcmðx; yÞ fxmnðx;yÞ

fmnðx;yÞj j þ
@umnðx;yÞ

@x ÞNsðx; yÞdXP
e2Ts

RR
Xe
ðcmðx; yÞ fymnðx;yÞ

fmnðx;yÞj j þ
@umnðx;yÞ

@y ÞNsðx; yÞdXP
e2Ts

RR
Xe
ðrfmnðx; yÞ � qmnðx; yÞÞNsðx; yÞdX

P
e2Ts

RR
Xe

 
qmnðx; yÞ � Qm expð�cmUmðx;yÞÞRR

X
expð�cmUmðx;yÞÞdX

� expð�vmpmnðx;yÞÞPNn
i¼1

expð�vmpmiðx;yÞÞ

!
Nsðx; yÞdX

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
ð24Þ

where Xe denotes the region of the elements e, Ts is the set of elements that con-
nects with node s, Ns(x, y) is the local interpolation function of the element that
connects with node s, and rsmn is the nodal residual vector for class m commuters
with a preference for CBD n at node s. rsmn¼ 0 means that the governing equations
(5), (6), (8), and (17) can be satisfied locally.

For the global satisfaction of the governing equations, we require that

RðWÞ ¼ ColðrsmnðWÞÞ ¼ 0: ð25Þ
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Boundary conditions (18) and (19) can be satisfied by forcing the specific variables
to take a known value, which is very common in FEM. For this system of nonlinear
equations, we can apply the Newton-Raphson algorithm with a line search to find a
solution, for which we derive the iterative equation

Wkþ1 ¼ Wk � kJ�1
k Rk ; ð26Þ

where Jk is the Jacobian matrix of vector Rk at iteration k, and k is the step size,
which is obtained by a line search to achieve the minimum jR(W)j. We compare
the relative error jR(W)j=jWj with the acceptable threshold e. If jR(W)j=jWj< e,
then it is assumed that the solution to equation (26) is found. The solution
procedure is summarized as follows.

Solution Procedure A
Step A1: Find an initial solution for W0. Set k¼ 0.
Step A2: Evaluate RðWkÞ and JðWkÞ.
Step A3: If the relative error RðWkÞ

�� ��= Wkj j is less than the accepted error e,
then stop, and take Wk as the solution.

Step A4: Otherwise, apply the line search method (with the smallest interval
of d) to determine the step size k� that minimizes the norm of the
residual vector jRðWkþ1 � kJ�1

k RkÞj. Then, Wkþ1 ¼ Wk � k�J�1
k Rk .

Step A5: Replace Wk with Wkþ 1. Set k¼ kþ 1, and go to Step A2.

3.2. Upper-Level Subprogram

3.2.1. Model Formulation

In this section, we estimate traffic-related CO2 emissions, and also try to mini-
mize emissions by optimizing the housing allocation. The minimization problem
of the upper level is modeled as follows.

Minimize
h

zðhÞ ¼
XNn

n¼1

XNm

m¼1

ZZ
X

f�mnðx; yÞ
�� ��ECO2

mn f�ðx; yÞ; a�mnðx; yÞ
� �

v�ðx; yÞ dX; ð27Þ

subject to

Hmaxðx; yÞ � ðh0ðx; yÞ þ hðx; yÞÞ � 0; 8ðx; yÞ 2 X; ð28Þ

hðx; yÞ � 0; 8ðx; yÞ 2 X; ð29Þ

B �
ZZ

X
Pðx; yÞhðx; yÞdX � 0; 8ðx; yÞ 2 X; ð30Þ

ZZ
X
hðx; yÞ þ h0ðx; yÞ � q�ðx; yÞdX � 0; 8ðx; yÞ 2 X; ð31Þ

where f�ðx; yÞ ¼ colðf�mnðx; yÞÞ; 8m 2 Nm ;n 2 Nn , and a�mnðx; yÞ is the acceleration
vector for class m road users traveling to CBD n under the user equilibrium
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conditions. The superscript (
�
) denotes variables that are the optimal solution

from the lower-level subprogram. h0(x, y) is the existing housing provision, and
h(x, y) is the additional housing provision at a particular location (x, y). Hmax(x,
y) is the maximum possible housing density at location (x, y), which is constrained
by topography, the existing transportation infrastructure, and the planned
land-use pattern. B is the budget available for additional housing provision, and
P(x, y) is the cost of building a housing unit at location (x, y). In terms of the con-
straints, equation (28) ensures that the total housing development will not exceed
the maximum possible housing density; constraint (29) means that there will not
be any demolition of the existing housing supply; constraint (30) states that the
total investment in housing provision cannot exceed budget B; and constraint
(31) guarantees that there is sufficient housing provision.

ECO2
mn is the CO2 emission rate function for class m users heading to CBD n,

which is derived using the acceleration and speed-based model. The emission
mode proposed by Ahn et al. (1999) is adopted to estimate the emission rate of
each class of user as follows.

Ek ¼ exp
X3
i¼0

X3
j¼0

xk
i;jn

iaj

 !
; ð32Þ

where a is the acceleration (km=h2), v is the speed (km=h), xk
i;j is the model

regression coefficient for speed power i and acceleration power j, and Ek is the
instantaneous fuel consumption and emission rate, with the superscript (k)
denoting different kinds of emissions, HC and CO (mg=s), and fuel consumption
(gal=h). The speed is determined by equation (2) with v(x, y)¼ 1=c(x, y), and the
acceleration can be evaluated from the continuum model as follows.

axmnðx; yÞ � vxmnðx; yÞ
@vxmnðx; yÞ

@x
¼ 0; 8ðx; yÞ 2 X;m 2 Nm ;n 2 Nn; and ð33Þ

aymnðx; yÞ � vymnðx; yÞ
@vymnðx; yÞ

@y
¼ 0; 8ðx; yÞ 2 X;m 2 Nm ;n 2 Nn; ð34Þ

where amn(x, y)¼ (axmn(x, y), aymn(x, y)) is the acceleration vector of class m com-
muters heading to CBD n, axmn and aymn are acceleration in the x and y directions,
respectively, vmn(x, y)¼ (vxmn(x, y), vymn(x, y)) is the velocity vector of class m com-

muters heading to CBD n, vxmnðx; yÞ ¼ vðx; yÞ fxmnðx;yÞ
fmnðx;yÞj j and vymnðx; yÞ ¼ vðx; yÞ fymnðx;yÞ

fmnðx;yÞj j
are respectively the velocity in the x and y directions for class m commuters travel-
ing to CBD n, Nm is the total number of user classes, and Nn is the total number of
CBDs. Under the route choice governed by the user optimal conditions, commu-
ters may accelerate or decelerate along their trajectory according to the spatial
variation in traffic conditions in the neighboring area. The acceleration in the
direction of movement is determined by

a ¼ ðaxfx þ ayfyÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2x þ f 2y

q
: ð35Þ
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Based on the limited parameters that we have, we cannot use this model directly,
as we have only the parameters for HC, CO, and estimated fuel consumption. How-
ever, the CO2 emission function, which is shown in equation (36), can be derived
based on the carbon balance between fuel consumption and emissions.

ECO2 ¼ 2458:29F � 3:17EHC � 1:57ECO; ð36Þ

where

F ¼ exp
X3
i¼0

X3
j¼0

x1
i;j v

iaj

 !
;ECO ¼ exp

X3
i¼0

X3
j¼0

x2
i;j v

iaj

 !
;

EHC ¼ exp
X3
i¼0

X3
j¼0

x3
i;j v

iaj

 !
; ð37Þ

in which F is the instantaneous fuel consumption (gal=h), and EHC, ECO, and ECO2

are the relative gas emission rates (mg=s). The parameters in the expressions of
equation (37) are summarized in Table 1. Also, we should make it clear that in this
study, we consider just one type of vehicle and road. However, the model can easily
be extended to incorporate different vehicle types and road classes.

3.2.2. Solution Algorithm

The minimization problem is nonlinear. To reduce the difficulty in solving it, we
first use the FEM to transform constraints (30) and (31) into linear ones.

B �
XNFN

n¼1

hn
X
e2Xen

ZZ
Xe

ðPeiNiNnþPejNjNn þ PekNkNnÞdX � 0; ð38Þ

Table 1. Parameters for the CO2 emissions estimation model.

k
(i,j) 1 2 3

(0,0) –6.79E–01 8.87E–01 –7.28E–01
(0,1) 5.34Eþ02 5.88Eþ02 0.00Eþ00
(0,2) 2.49Eþ05 4.77Eþ05 3.65Eþ05
(0,3) –7.34Eþ07 –8.32Eþ07 –5.73Eþ06
(1,0) 3.26E–02 7.79E–02 2.74E–02
(2,0) –3.37E–04 –9.51E–04 –2.53E–04
(3,0) 1.97E–06 6.10E–06 2.58E–06
(1,1) 2.08Eþ01 1.68Eþ01 4.40Eþ01
(2,1) –9.99E–02 4.43E–01 –4.76E–01
(3,1) 2.89E–04 –3.71E–03 3.23E–03
(1,2) 1.43Eþ03 –1.59Eþ04 –9.42Eþ03
(2,2) 1.76Eþ01 9.24Eþ02 7.06Eþ02
(3,2) –5.15E–01 –6.39Eþ00 –4.33Eþ00
(3,1) –3.18E–01 0.00Eþ00 –5.74E–01
(3,2) 6.27Eþ00 –2.27Eþ01 6.82Eþ01
(3,3) –3.66Eþ02 0.00Eþ00 –1.38Eþ03
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1

3

XNFN

n¼1

Dnhn þ
1

3

XNFN

n¼1

Dnðh0n � q�nÞ � 0; ð39Þ

where NFN is the total number of finite element nodes within the generated mesh,
Nj is the interpolation function of the FEM for node j, Pei is the cost of building a
housing unit at node i within element e, Dn is the area of the finite elements that
connect with node n, Xe is the region of element e, Xen is the region that connects
with node n, h0n and hn are respectively the existing and additional housing
provision at node n, and q�n is the total demand at node n, obtained from the
lower-level subprogram.

Also, the total emissions in equation (27) can be written as

zðhÞ ¼
PNFN

k¼1

PNn

n¼1

PNm

m¼1

RR
Xe

f�mnðx;yÞj jECO2
mn f�ðx;yÞ;a�mnðx;yÞð Þ
v�ðx;yÞ dXe in the FEM scheme.

Then, constraints (28), (29), (38), and (39) can be written as

Ah � C; ð40Þ

where h ¼ ðh1; h2; � � � ; hNFN
Þ is the vector of the additional housing provision.

However, in the process of converting the nonlinear constraints into linear ones,
we discretize the modeled city without considering the continuity of the housing
provision policy. To maintain the continuity of local housing provision, if we pro-
vide ti units of housing at location (xi, yi), then its adjacent location (xj, yj) is also
developed. Let the housing provision at location (xj, yj), induced by the develop-
ment at location (xi, yi), be hij, which is related to the development intensity at
(xi, yi) by hij¼ gijti in which gij is defined as

gij ¼
ð1� dij=IiÞ3RR

XIi
ð1� dij=IiÞ3dX

¼ 10

pI 2i
1�

dij
Ii

� 	3

; ð41Þ

where dij is the distance between (xi, yi) and (xj, yj), Ii represents the influencing
distance of the development at (xi, yi), and XIi represents the area of influence,
which is a circular region with radius Ii. Note that

RR
XIi

gijdX ¼ 1.
We first identify a certain number (K) of locations (l1, l2,. . ., lK) as potential

development areas with housing allocation as t¼ (t1, t2,. . ., tK). Then,

hj ¼
XK
i¼1

hij ¼
XK
i¼1

gij ti ; ð42Þ

or alternatively, in matrix form,

h ¼ Gt; ð43Þ

where G is a NFN�K matrix, and the jth row and ith column element is g(i, j).
Then, the optimization problem can be rewritten as follows.

Minimize
h

zðhÞ ¼ zðGtÞ ð44Þ
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subject to

AGt � C: ð45Þ

Next, we apply the convex method to solve this problem as follows.

Minimize
w

rzðtÞ � w ð46Þ

subject to

AGw � C; ð47Þ

where w¼ (w1,. . ., wK) is a feasible solution that falls into the region governed by con-
straints (47). Gw� h is the direction of descent for the minimization problem (27).
We use a line search method to find a step that will guarantee the largest descent.

However, to solve this problem, we must first find the gradient of the object
function z(h) and the sensitivity of the lower-level variables ðf �xmn; f �ymn ;u�

mn ; q
�
mnÞ to

the upper-level ones (h). By denoting the lower-level variables as W�
l and the

upper-level ones as W�
u , equation (25) can be modified to

RðW�
l ;WuÞ ¼ 0: ð48Þ

By taking a partial derivative of Wu on the left-hand side of equation (48), we have

rWu
W�

l ¼ �J ðW�
l ;WuÞ�1rWu

RðW�
l ;WuÞ: ð49Þ

Equation (49) is the matrix of the sensitivity of the optimized lower-level variables
ðW�

l Þ to the upper-level ones (Wu) (Wong et al. 2006), and can be found for each
solution of the lower-level subprogram. The following solution procedure is
adopted to solve the problem.

Solution Procedure B
Step B1: Set k¼ 1. Take the initial solution for the upper level to be

Wu1¼ h1¼ 0.
Step B2: With Wuk, solve the lower-level subprogram, which is based on

solution procedure A, to find the solution for the lower-level Wlk.
Step B3: Using Wlk, evaluate the sensitivity matrix according to equation

(49).
Step B4: Use the sensitivity matrix from the lower level to find auxiliary

vector wk.
Step B5: Apply the golden section method (with the smallest search interval

of d) to find the step size k�k 2 ½0; 1� that maximizes the objective
function zðhk þ k�kðGwk � hkÞÞ from equation (31). Then, set dk ¼
hkþ k�kðGwk � hkÞ.

Step B6: If z(dk)> z(hk), then set hkþ 1¼dk and k¼ kþ 1, and go to Step B2;
otherwise, stop and take hk as the solution to the upper-level sub-
program and Wlk as the corresponding solution to the lower-level
subprogram.
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4. NUMERICAL EXAMPLE

We now present a numerical example to illustrate the proposed bi-level model with
multiple user classes in a continuum network. The hypothetical city has two CBDs, as
shown in Figure 1. The city spans about 35km from east to west and 25km from
north to south. The CBDs are located at coordinates (14, 20) and (31, 26).

In this example, we consider two classes of road users. The total demand of class
1 road users is 45000 units=h, and that of class 2 road users is 65000 units=h. The
sensitivity parameters for the housing choice functions in equation (17) are 0.0015
and 0.0020 for class 1 and class 2 users, respectively. The sensitivity parameters in
equation (15) are 0.012 and 0.010 for class 1 and class 2, respectively. We assume
that all users will travel to one of the two CBDs during the morning peak hour. The
cost-flow relationship is specified as

cðx; yÞ ¼ 0:0167þ 1:0� 10�6
X2
n¼1

X2
m¼1

fmnðx; yÞj j
 !1:3

h=km:

The instantaneous speed function is then

vðx; yÞ ¼ 1=cðx; yÞ ¼ 1

,
0:0167þ 1:0� 10�6

X2
n¼1

X2
m¼1

fmnðx; yÞj j
 !1:3

0
@

1
Akm=h:

The value of time pm for class 1 and class 2 commuters is 25 HKD=h and 75 HKD=h,
respectively. The housing cost functions are

Class 1 commuter: �rr 1 ¼ 20� ð1þ 40q=ðH � qÞÞ HKD, and
Class 2 commuter: �rr 2 ¼ 1� ð1þ 40q=ðH � qÞÞ HKD.

Class 1 commuters are more sensitive to housing costs than are class 2 commu-
ters, which means that they place a greater value on such costs when making a
decision about where to live. In contrast, class 2 commuters value the time cost
of transportation more, and are thus more sensitive to time.

The perceived CBD cost function consists of biased and demand-related compo-
nents. The biased coefficients are set as h11¼ 70HKD, h12¼ 65HKD, h21¼ 250HKD,
and h22¼ 170HKD. The market externalities of the CBDs are defined as

Class 1 road users travel to CBD 1:S11(x, y)¼ 5.0� 10�9 (V1� 25000)2HKD,
Class 1 road users travel to CBD 2:S12(x, y)¼ 2.5� 10�9 (V2� 20000)2HKD,
Class 2 road users travel to CBD 1:S21(x, y)¼ 15.0� 10�9 (V1� 25000)2HKD, and
Class 2 road users travel to CBD 2:S22(x, y)¼ 7.5� 10�9 (V2� 20000)2HKD.

We assume that the existing housing unit h0n is taken as a constant of 250 units per
km2 over the whole city. The maximum possible housing development is assumed to
be 600units per km2, for all locations (x, y). The budget available for additional
housing units is assumed to be 1 billon HKD, and the unit provision cost function is

Pðx; yÞ ¼ 10000 1:4þ 0:010ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 14Þ2 þðy� 20Þ2

q þ 0:005ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 31Þ2 þðy� 26Þ2

q
0
B@

1
CAHKD=unit:
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This value varies with the distance to the CBDs, as it is assumed that the cost of
land acquisition is a function of this distance.

For housing development, we assume that the influencing distance is 5 km all
over the region, and thus gij ¼ 2

5p 1� dij=5
� �3

. To ensure simplicity, we assume
the potential housing development areas to be the same nodes on the generated
mesh.

We first consider the existing situation, in which the lower-level subprogram is
used to obtain the travel choice and emission pattern. Then, we assume an
uninformed scenario, in which the authority simply uses the budget to allocate
additional housing uniformly over the entire city (increasing the housing pro-
vision by about 120 units=km2). In this case, only the lower-level subprogram is
solved. Next, we consider the optimal housing allocation, in which the bi-level opti-
mization is fully utilized. By taking the acceptable error e¼ 10�5 for the lower-level
model and the smallest search interval d¼ 0.02 for the golden section method in
both the lower-level and the upper-level model, this numerical example can be
solved in five iterations. The convergence curve for the housing provision model
is shown in Figure 2.

Table 2 shows the attractions to the two CBDs and the total emission rate under
three different scenarios. For class 1 road users, there does not seem to be much
difference between CBD 1 and CBD 2, in contrast to class 2 road users. Apart from
the locations of the two CBDs, there are several explanations for this. First, for class
1 road users, the biased components of the CBD externalities, which serve as major
factors in influencing road user decisions, are almost the same, but for class 2 road
users, these components are much lower for CBD 2 than for CBD 1. Second, CBD
2 is less sensitive to the volume of demand, so congestion in CBD 2 will have less
influence on the travel pattern than will congestion occurring in CBD 1. After the
additional housing units are allocated, the attractions to the two CBDs do not vary

Figure 2. Typical convergence plot for the solution.
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much. Regarding CO2 emissions, if we allocate the housing units uniformly over
the entire city, ignoring the user behavior characteristics, then total emissions
may even be slightly worse, which reveals a ‘‘paradox’’ in that the system becomes
worse with additional development and inappropriate resource expenditure. Next,
we review the results for the optimal housing allocation.

Figure 3 shows the optimal distribution of housing units when total CO2 emis-
sions from the transportation sector are minimized. Understandably, almost all
of the additional housing units are allocated around the two CBDs. The factors
that most influence transportation emissions are speed and acceleration. CO2

emissions increase as acceleration changes from negative to positive, and both a
higher and a lower speed result in more emissions than does a moderate speed.
However, in our model, all road users must choose one of the two CBDs as their
destination with no other choices, so the flow intensity in the areas adjacent to
the CBDs is determined by the attraction to each CBD, which will not change
much during the optimization process. If most of the housing units are located
around the CBDs, then the speed around the CBDs will not change much but road
users will generally travel shorter distances, thus producing fewer emissions. So, in
this numerical example, the additional housing units are concentrated around the
CBDs. The key issue for reducing CO2 emissions in this model is to reduce the
commuting distance by allocating more housing units around the CBDs. We can
also consider another extreme condition: if the biased components of one CBD
(for example, CBD 2) are much larger than those of another (CBD 1), then almost
everyone will travel to the latter (CBD 1). In this case, CBD 2 acts like an obstacle,

Figure 3. Optimal distribution of housing units (units=km2).

Table 2. The attractions to the two CBDs (Qmn veh=h) and CO2 emissions

(E million g=h).

Q11 Q12 Q21 Q22 E

Original situation 22710 22290 23542 41458 493.89
Uniform housing allocation 22693 22307 23536 41464 494.00
Optimal housing allocation 22648 22352 23567 41433 484.74
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such as a hill or a lake, and all of the additional housing units will be allocated in
the west of the city, close to CBD 1. This scenario is similar to one that we imple-
mented in a previous study, in which the city had only one CBD.

Figure 2 shows that the reduction in CO2 emissions is not significant. There
are several factors that can influence the extent to which the level of these emis-
sions can be reduced, such as the maximum housing density, the budget for
housing development, and people’s sensitivity to housing costs. As discussed ear-
lier, the reduction in CO2 emissions is achieved by shortening the commuting
distance: if the maximum possible housing development increases, then the
areas adjacent to the CBDs can accommodate more people, thus resulting in a
greater reduction in commuting distance and CO2 emissions. As the budget
for housing development and people’s sensitivity to housing costs are determinis-
tic, sensitivity analysis is conducted to illustrate their influence on emission levels

Figure 4. Sensitivity analysis. (Figure appears in color online.)
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(see Fig. 4). In this numerical example, the budget is used up; however, this does
not mean that investing more in housing development will necessarily result in a
greater reduction in CO2 emissions, and sometimes, even if CO2 emissions are
reduced, the investment is not rewarded. First, increasing housing development
only in the areas adjacent to the CBDs (where this is possible) can reduce the
commuting distance, but if these areas are already developed, more investment
will not help, and this constraint will not be bounded in the upper-level optimiza-
tion problem. Second, for a certain budget, the closer is the development to the
CBDs, the greater is the reward, so the reduction in CO2 emissions will become
less sensitive to the budget as it increases. As shown in Figure 4a, when the hous-
ing allocation is optimized, the total emissions will decrease with the budget for
housing development. The sensitivity decreases as the budget increases, such that
budget increases beyond 1.02 billion make no difference. At the same time, if
road users are more sensitive to housing costs, then the provision of additional
housing will change the travel pattern to a greater extent, thus resulting in a lar-
ger reduction in traffic-related CO2 emissions. For those who are not influenced
by housing costs, such provision will have no effect. As shown in Figure 4b, total
emissions change only slightly when people’s sensitivity to housing costs
increases. In contrast, when total emissions are optimized, they decrease as peo-
ple’s sensitivity to housing costs increases. The results are relevant to decision
making about housing development.

Figure 5 shows the transportation costs for different road users with the optimal
housing distribution. We can see that, as road users live further from their
destinations, they pay greater travel costs; also, in the areas close to the CBDs,
the transportation cost becomes more sensitive to the commuting distance

Figure 5. Transportation costs (HKD).
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because of the relatively lower speed. Figures 5a and 5c indicate that if road users
heading to CBD 1 live to the east of CBD 2, then the pattern of change in the trans-
portation cost is slightly different and the transportation cost contours are not
particularly smooth. CBD 2 acts like an obstacle, because road users cannot travel
across CBD 2 directly. To travel to CBD 1, these people first need to travel around
CBD 2, where the congestion is severe, and thus their travel costs increase. The
actual situation regarding people’s travel behavior and routine choices might be
very sophisticated, but we do not cover the microscopic mechanisms of how
obstacles influence traffic flow in this study. The same situation occurs in
Figures 5b and 5d.

Figure 6 shows the demand of different classes of road users for different CBDs.
Commuter choices are determined by the perceived cost of transportation, CBD
externalities, and housing costs. We can see that class 1 road users consider housing
costs to be more important than do class 2 road users, so the pattern of demand
of the former differs more between the two housing development patterns. The

Figure 6. Demand contours (veh=h=km2).
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decisions of class 2 road users are largely determined by the transportation cost
and market externalities of the two CBDs, so their choices change only a little. By
comparing the eight figures, we can also see that the reduction in CO2 emissions
is mostly related to class 1 road users, which coincides with the earlier discussion:
the more sensitive people are to housing costs, the greater is the reduction that
can be achieved. Demand forecasts can give the government guidance regarding
infrastructure development.

Figure 7 shows the distribution of emission rates for class 1 road users heading
to CBD 1. For other types of road users, the emission rates are very similar but not
the same. This is because, although the speed is the same, the flow trajectories are
different, which affects the tangential acceleration in the emission rate estimation.
Figure 8 shows the distribution of total emissions across the city, which is obtained
by multiplying the flow intensities by the respective emission rates for all users. A
higher concentration of emissions occurs around the CBDs due to more severe
congestion, and because more people decide to travel to CBD 2, the emissions
there are higher. The emission rate will in turn affect people’s residential choice,
which will be studied in the future.

Figure 7. CO2 emission rate for class 1 commuters heading to CBD 1 (103mg=

veh=s).

Figure 8. Distribution of total traffic-related emissions (g=h=km2).
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5. CONCLUSION

In this study, the continuum modeling approach is extended to solve a bi-level
problem to optimize housing allocation to achieve minimum transport-related
emissions in an integrated land use and transportation modeling framework. At
the lower level, the interaction between housing provision and travel behavior is
described, with user equilibrium achieved. At the upper level, total CO2 emissions
are estimated, and the optimal housing allocation pattern that minimizes
traffic-related emissions is found. The FEM is applied to solve the system of differ-
ential equations and transform the nonlinear constraints into linear ones. Finally, a
numerical example is given to show the effectiveness and efficiency of the solution
algorithms.

There are several possible extensions of the current modeling approach. We
could, for instance, consider the housing provision problem with multiple housing
types, and different classes of road users with different levels of car ownership. So
far, we have studied the emission problem using a static continuummodel, in which
we can consider only the emission rate at peak hours. A dynamic continuummodel
will be established to incorporate multiple vehicle classes and time-varying trans-
port demand emission levels into a land-use transportation modeling framework.
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