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SUMMARY

The main contribution of this paper is to show, on the basis of empirical traffic data, that the distribution of
vehicle speeds on a road segment evolves with the occupancy in a simple manner. Under a critical
occupancy, the distribution is unimodal, with one peak (the high mode) close to the free-flow speed. When
the occupancy exceeds the critical occupancy, the distribution of speeds becomes bimodal. A second peak
(the low mode) appears, at a noticeably lower speed than the high mode. Empirical speed distributions are
well fitted when assuming a (appropriately scaled and translated) low “temperature” Maxwell-Boltzmann
distribution for the high mode and a high-temperature distribution for the low mode. The standard
fundamental diagram expresses the mean flow speed as a function of occupancy. The model proposed in this
paper expresses the distribution of vehicle speeds as a function of the occupancy. We believe this result to
be of great importance for both the theory of traffic flow and practical applications. Copyright © 2013 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The new generation of road traffic emission models is modal-based. They rely on a fine grain
description of the various modes a fleet of vehicles is operated on a network, an operating mode being
essentially characterized by a driving cycle. Preparing the necessary traffic activity data is a huge
challenge. Precise measurements of vehicle operation and location are expensive to collect. At the
same time, most road networks are equipped with traffic flow sensors. Point-based measurements of
macroscopic quantities (volume, occupancy, and speed) are available. But, to the authors’ knowledge,
no method has been proposed in the literature to disaggregate macroscopic flow variables into
statistical distributions of vehicle operating modes. By contrast, the kinetic theory of gases tells that,
in a volume of ideal gas at thermal equilibrium, the space average distribution of particles’ speeds
follows the Maxwell-Boltzmann distribution. The system is ergodic: the time average distribution
of speed along particles’ trajectories equates the space average distribution of speeds. Hence, a single
point-based measurement of a macroscopic quantity, the temperature, is needed to estimate the
distribution of particles’ speeds along their trajectories.

The main contribution of this paper is to show, on the basis of empirical 30-second traffic data, that
similar conclusions seem to be drawn for traffic flows. The distribution of vehicle speeds on a road
segment evolves with the occupancy in a simple manner. Under a critical occupancy, the distribution
is unimodal, with one peak (the high mode) close to the free-flow speed. When the occupancy exceeds
the critical occupancy, the distribution of speeds becomes bimodal. A second peak (the low mode)
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appears, at a noticeably lower speed than the high mode. Empirical speed distributions are well fitted
when assuming a (appropriately scaled and translated) low “temperature” Maxwell-Boltzmann
distribution for the high mode and a high-temperature distribution for the low mode. We believe this
intriguing result to be of great importance for both the theory of traffic flow and practical applications.

This paper concentrates on the latter and is organized as follows. Empirical traffic data are analyzed
at various time scales in Section 2. It provides the necessary inputs to Section 3, where the distributions
of vehicle speeds in congested traffic are shown to be well fitted, for various occupancy values, by a
simple bimodal model. Section 4 presents an application to fuel consumption (FC) estimates. The
conclusion follows.

2. EMPIRICAL DATA ANALYSIS

This section provides the necessary inputs to the other parts of the paper. It studies the distribution of
empirical traffic flow data at various time scales. The dataset contains 30-second occupancy-
volume-speed records from paired loop detectors, collected during 10 consecutive days. More details
are given in Section 2.1. When averaged over the study period (Section 2.2), simple relations appear
between the flow macroscopic variables. Peak periods are well identified. Then in Section 2.3, the
hourly variations of the distribution of 6-minute average speed are studied, with a particular attention
paid to the evening peak hour. No typical hourly distribution of 6-minute average speeds can be ob-
served. This will be of importance in Section 4, because some emission models do rely on this assump-
tion to model traffic activity data. Finally in Section 2.4 the dispersion of 30-second data (speed and
occupancy) is studied, during the study period as a whole, and also within 6-minute intervals. It is
shown that although 30-second occupancy values are asymmetrically scattered within 6-minute inter-
vals, 30-second speed values appear normally distributed with a small variance. This observation sup-
port the assumptions made in Section 3 to estimate the distribution of vehicle speeds from flow data.

2.1. The I-80 dataset

The data used in this section, and referenced hereafter as the I-80 dataset, have been collected during the
Next Generation SIMulation (NGSIM) program on eastbound I-80 in Emeryville, San Francisco Bay
Area, California. They are freely available at the NGSIM website.' The study area was approximately
500 meters in length. It comprised six lanes. The left-most lane, numbered 1, is a high-occupancy vehicle
(HOV) lane. Lane 6 is a merge/exit lane. The study area was equipped with eight equally spaced paired
loop detectors stations. Each station had one detector per lane. The data covers a period of 10 consecutive
days, starting from Thursday, April 7, with a record every 30 seconds, for a total amount of 28 800 records
per lane and per station. Given a lane and a station, a record contains the 30-second mean occupancy, the
30-second vehicle count, and the 30-second mean flow speed.

2.2. Mean day

When averaged over the 10 days of the study period, and projected on the occupancy-speed plane and
on the occupancy-flow plane, the mean values of 30-second data exhibit a well-known behavior
(Figure 1a). Following the seminal works of Greenshield, traffic engineers assume the existence of a
fundamental relation [1] between the mean speed (or mean flow) and the mean density (or occu-
pancy?). When averaging empirical traffic data, a smooth concave curve emerges in the density-flow
plane. The so-called fundamental diagram is the basis of hydrodynamic traffic models, where the flow
mean speed, the flow mean density, and the mean flow rate are continuous scalar variables. From the
fundamental diagram, traffic states are usually classified into two categories: free and congested. Free
traffic states are observed when the density is lower than a threshold called the critical density. The

'hitp://www.ngsim-community.org

2Strictly speaking, the density is the concentration of vehicles over space, whereas the occupancy is the concentration of
vehicles over time. For a point-based detector, density and occupancy are constant multiples of each other under the as-
sumption of constant vehicle lengths.
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Figure 1. (a) Variations of the 10-day average speed and flow, for lanes 1 to 5, as a function of occupancy. (b)
Normalized cumulative distribution of the volume during the study period, as a function of occupancy.

flow mean speed is high. The flow rate increases with the density. A contrario, congested traffic states
are characterized by a density that exceeds the critical density. The flow rate and the flow speed
decrease when the flow density increases. For the I-80 dataset, and for all lanes from 1 to 5, and
according to the fundamental diagram, the critical occupancy is between 16% and 18%, and the
maximum flow rate per lane is around 1,800veh. s~ ! (Figure 1a). The HOV lane (lane 1) has a
fundamental diagram very similar to that of the average of the other lanes.

It will be shown later on that congestion effects appear when occupancy exceeds 10%, below the
critical density identified from the fundamental diagram. The fraction of traffic volume observed when
occupancy exceeds 10% (i.e., in congested driving conditions) can be drawn from Figure 1b, where the
cumulative distribution of volume observed during the study period, as a function of occupancy, is
plotted for lane 1, lane 5, and all lanes. On average, for all lanes, more than 60% of the total traffic
volume was observed in congested driving conditions. This percentage varies with the lane. Lane 5
is above the average. Lane 1 is below the average, at around 50%.

2.3. Hourly variations of the distribution of 6-min average speed

The simple relations that appear in the fundamental diagram between the 10-day averages of the flow
speed, the flow rate, and the occupancy do hide a more complex behavior when analyzed at smaller
time scales. The speed profile (respectively, the occupancy profile) of the average day is plotted shown
in Figure 2a (respectively, Figure 2b). The plots represent the 10-day average value of speed and
occupancy, for all lanes from 1 to 5, for all stations, and for all 6-minute intervals during the day.
The speed clearly decreases when the occupancy increases. In the early morning and in the late
evening, the speed is close to the speed limit (65mph=104km. h~ ). The morning and evening peaks
are characterized by speed values below 80km. s~ ' and occupancy values above 15%. Between the
morning and the evening peaks, the traffic remains congested. The speed remains below 90km. h~ ',
and the occupancy above 10%. The grayed area around the speed curve (Figure 2a) illustrates how
the 6-minute average speeds are dispersed around the 10-day average speed. It represents the
interquartile range of the 6-minute speed values: 50% of the values are within the grayed area, 25%
are above its upper boundary, and 25% are below its lower boundary. The interquartile range is narrow
in free-flow conditions (i.e., when the occupancy is less than 10%). It widens when the occupancy
exceeds 10%. The dispersion of occupancy follows a very similar pattern (Figure 2b).

From Figure 2a, the distribution of average speeds during the evening peak period, that is between
03:00 and 06:00 PM, appears quite stable. The 10-day average speed varies around 50km.h~'. The
bounds of the interquartile range, at 40km.h~ ' and 60km.h~ ', are symmetric. But this apparent
regularity is misleading. In Figure 2c is plotted the range of variation of the 6-min average speed, as
a function of the 1-hour average speed, for each 1-hour time slot included in the evening peak. The
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Figure 2. Variations of (a) speed and (b) occupancy during the average day of the study period, as a function of
the time of the day. (c) Range of variation of 6-minute speed values, as a function of the hourly average speed in
the evening peak period, between 03:00 and 06:00 PM.

1-hour average speed values are almost regularly dispersed between 30km.h~ ' and 70km.h~ . The
nine values® above 55km.h~ ! correspond to the three-weekend days included in the study period
(one Sunday and two Saturdays). The 21 others, between 30km. s~ ' and 55km.h~ "', correspond to
weekdays. For weekdays, there is no apparent correlation between the 1-hour average speed and the
range of variation of the 6-minute average speed, nor between the average speed and a particular hour
within the evening peak period. If the latter was true, the symbols on the horizontal lines at the bottom
of Figure 2c would be clustered together on each line. In short, for any two distinct weekdays, and for a
given 1-hour time slot during the evening peak, the two distributions of 6-minute average speeds
during this particular time slot are more likely to be disjoint than equal.

2.4. Dispersion of 30-second data

In the occupancy-speed plane, 6-minute average data are far less dispersed than 30-second data.
Indeed, as illustrated at the top of Figure 3, 6-minute data are clustered around the fundamental
diagram, whereas 30-second data are far more dispersed. This is true for all lanes, although only the
plots for lane 1 (Figure 3a), lane 3 (Figure 3b), and lane 5 (Figure 3c) are shown here. If the dispersion
of 30-second data was explained by a zero-mean Gaussian noise, one would expect a symmetric dis-
persion of the minimum and maximum 30-second values around the mean 6-minute values. This is not
the case. At the bottom of Figure 3 are scatter plots of the minimum and maximum occupancy ob-
served during all the 6-minute intervals of the study period, as a function of the 6-minute average oc-
cupancy, for lane 1 (Figure 3d), lane 3 (Figure 3e), and lane 5 (Figure 3f). Although not shown here,
lanes 2 and 4 show very similar plots. Three comments can be made. First, the dispersion of 30-second
occupancy values within all observed 6-minute intervals is quite high. All points are far from the
diagonal. The few intervals during which the 30-second occupancy varies at a steady pace correspond

3Only seven appear on the plot; two are out of the plot’s range.
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Figure 3. Top: dispersion of 30-second data and 6-minute average data, in the occupancy-speed plane. Bottom:
scatter plot of the minimum and maximum occupancy observed during 6-minute intervals, as a function of the 6-
minute average occupancy.

to very low 6-minute mean occupancy, below 5%. Second, this dispersion increases while the 6-minute
average occupancy increases. The more congested the traffic, the more scattered is the 30-second
occupancy within 6-minute intervals. Third, the dispersion of values around the average is not sym-
metric. For lane 3, and a 6-minute average occupancy between 20% and 25%, the minimum values
vary between 5% and 10%, whereas the maximum values vary between 30% and 60%.

Figure 4a gives a better idea of the typical dispersion of 30-second occupancy values within 6-minute
intervals. The plot represents the cumulative distribution of the relative asymmetry index (RAI) of oc-
cupancy values, the RAI being defined as follows. Let X;,i=1...n denote the set of 30-second
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Figure 4. Dissymmetry index of 30-second data within 6-minute time slices. (a) Occupancy and (b) speed.
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measures contained in the i-th 6-minute interval during the study period, with X; the mean value. RAI
(X;) is defined by

max(X;)+min(X;) _ X

RAI(X;) = ——

i

The RAI measures the distance between the midpoint of the minimum—maximum range, relatively to the
mean point. If, on average, the 30-second values within each X; are symmetrically distributed, then the
distribution of RAI values during the study period can be expected to be zero-centered. As shown in
(Figure 4a), the RAI distribution of occupancy is far from being zero-centered. For a mere half of the
observed 6-minute intervals, the occupancy RAI is above 20%. Less than 10% of the 6-minute intervals
have the midpoint of their minimum—maximum range within 10% of the 6-minute mean occupancy.
Interestingly, the RAI distribution of speeds follows a very different pattern (Figure 4b). The distri-
bution is zero-centered, symmetric, with more than 60% values in the [-5% : + 5%] range and almost
all values within the [—10% : + 10%] range. This suggests that 30-second flow speeds are normally dis-
tributed within 6-minute intervals, with a small standard deviation proportional to the 6-minute speed.

3. BIMODAL DISTRIBUTIONS OF VEHICULAR SPEEDS IN CONGESTED TRAFFIC

The bimodal nature of the distribution of vehicle speeds is not new to microscopic traffic modelers, at
least for the cellular automata (CA) community. Indeed, the most simple traffic model one can possibly
imagine is CA-1 84.* Vehicles are distributed on an infinite one-dimensional grid of cells, with at most
one vehicle per cell. Vehicle speeds are taken in the set {0,1}. If the cell in front of a vehicle is empty,
the vehicle jumps in it. If not, the vehicle stays in its cell. The fraction of vehicles having a zero speed
increases when the occupancy increases. Similar patterns have been observed, although not modeled,
for more sophisticated CA models [3]. This section starts by studying the distribution of vehicle speeds
with a microscopic model (Section 3.1), when the free-flow speed and the mean occupancy vary. Then,
on the basis of the observations made at the end of Section 1, estimated distributions of vehicle speeds
are derived from the I-80 dataset (Section 3.2). Bimodal distributions are observed at various occu-
pancy levels, and a new model is proposed to capture those variations (Section 3.3). Possible connec-
tions with other theories are then discussed (Section 3.4).

3.1. Microscopic simulation

We study here the variations of the distributions of vehicle speeds as a function of the free-flow speed
¥ and of the occupancy k, using synthetic traffic data sets produced by microscopic traffic simulations
on a one-lane ring road. The microscopic model used is the one proposed by [4]. It is able to produce
congested traffic states in which the evolution of moving jams induces a bimodal distribution of
vehicle speeds.

The free-flow speed, denoted ¥, varied between 90km.h™ U and 125km.h~"'. The flow mean
occupancy, denoted k, varied between 7.5% and 27.5%. For each pair (4,k), 50 independent
micro-simulation runs were recorded. The initial state of each run was homogeneous. Vehicles were
evenly distributed on the ring. The length of the ring was set to L= 1km. The length of each vehicle
was [=5m. The simulated duration of the run was T=1A. The flow mean speed and the interquartile
range of the distribution of vehicle speeds are plotted in Figure 5, for ©=90km.h~ ' (Figure 5a) and
& =125km. h~ ' (Figure 5b), as a function of the flow mean occupancy. In both cases, congested traffic
states emerge when the flow mean occupancy exceeds the critical occupancy k. g. The latter depends
on the free-flow speed, and is close to

“In Wolfram’s CA classification [2].
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where 7 is the inter-vehicle time gap. k.o~ 16% and k. 125 ~ 12.5%.

For occupancy less than the critical occupancy, the flow is free. The distribution of vehicle speeds is
unimodal, and centered around the free-flow speed. When the occupancy exceeds the critical
occupancy, the flow mean speed decreases. The distribution of vehicle speeds becomes bimodal.
Moving jammed platoons appear in the flow. The low-speed mode corresponds to vehicles inside a
jammed platoon. The high-speed mode corresponds to vehicles evolving outside of a jam. A noticeable
fact is that for occupancy values exceeding 17.5%, the average speed are almost equal for both
systems, although the high-speed modes of the two distributions are different.

3.2. Estimating the distribution of vehicle speeds

From the fundamental diagram of the I-80 dataset in the occupancy-speed plane (Figure 1), there exists
a simple, continuous, one-to-one mapping between the level of congestion (measured by occupancy)
and the flow mean speed. Let us denote K(v) the relationship between the speed and the occupancy.
Let us now assume that a 30-second observed (n,k,v) triple in the I-80 dataset correspond to a platoon
of n vehicles observed at the location of loop sensor, with k the 30-second mean occupancy and v the
30-second mean speed. A vehicle in the platoon is indiced by i in 1 ... n. [; is the length of vehicle i, v;
the speed of vehicle i at the time it crossed the loop, and 4; the time headway, that is, the amount of
time that elapsed between the instant when vehicle i-/ did exit the loop and the instant when vehicle
i did enter the loop. Let us also assume that v;=v + @ with w a zero-mean low variance Gaussian noise.
This hypothesis is supported by the observations made on the RAI distribution of speeds (end of
Section 2.4) and origin-of-time invariance arguments.

Under this hypothesis, the distribution of vehicular speeds, denoted as f,, can be estimated by a
Gaussian kernel density estimate

Y N(nw,o?)
(n,v)eR

Y n

(n,v)eR

i (@)

with R={(n,v)} a set of volume-speed 30-second data records.

If K was true at the microscopic level of each vehicle—let us denote this hypothesis the smooth
homogeneous microscopic dynamics hypothesis—then the vehicular occupancy k; = % would be
such that k; = K(v) + ¢ with ¢ a zero-mean low variance Gaussian noise: vehicles in the platoon could
be supposed evenly spaced. One could write

Copyright © 2013 John Wiley & Sons, Ltd. J. Adv. Transp. 2014; 48:165-184
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fv=ri°K A3)

with f; estimated by

and R= {(n,k)} a set of volume-occupancy 30-second data records.

If the smooth homogeneous microscopic dynamics hypothesis holds, then the vehicular speed
distributions obtained from Equation (3) should be very close to the one from Equation (2). This is not
the case for the I-80 dataset. The distribution of vehicular speeds estimated from Equation (2) for lanes
2 to 5 (Figure 6b) shows two distinct peaks—one at 47km. h~ !, the other at 100km. h~ '—whereas the
distribution of speeds estimated using Equation (3) is a single-peak distribution with a maximum around
95km.h™ .

One may argue that, because multiple lanes are observed, this two-peak, bimodal distribution simply
reflects the fact that different homogeneous flows are observed, with low vehicles on the low-speed lane
(lane 5), high-speed vehicles on the high-speed lane (lane 2), and other vehicles on lanes 3 and 4. If this
was the case, then such a bimodal speed distribution should not appear on lane 1. But it does. The two
peaks are even sharper on the HOV lane (lane 1) than on the average of all other lanes (Figure 6).
Although not plotted here, almost identical plots are obtained for each lane and each detector station.
The most frequently observed vehicular occupancy on lane 1 is around 11%. According to the fundamen-
tal diagram of lane 1 (Figure 1), this occupancy value corresponds to a flow mean speed of 95km. 7~ '. On
average, according to the fundamental diagram, the flow on lane 1 is approaching the criticity threshold
but is still in free-flow conditions. Individual vehicle speeds should not vary much. At the same time,
the two peaks in the observed estimated distribution of vehicular speeds suggest a complex microscopic
dynamics, with vehicle speeds varying in a broad range while driving across the study area.

3.3. Bimodal estimates of vehicle speeds distributions

More remarkably, the bimodal character of the estimated distribution of vehicle speeds remains when
analyzing how this distribution varies with occupancy. In Figure 7a (respectively, b and c) is a
histogram plot of the estimated distribution of vehicle speeds, for lane 1, for all records such that
the occupancy equates 10% (respectively, 13% and 16%). In each case, the histogram is well fitted
by summing two distinct distributions. One, the high-speed mode, has a narrow interdecile range
and a high-median value. For lane 1, the median of the high-speed mode is close to the speed limit,
around 100km. h~"'. The interdecile range is about 20km. s~ '-wide around the median. The second

(a) Lane 1 (b) Lanes 2-5

Observed
Predicted

Density (%)

ol

0 20 40 60 80 100 120 0 20 40 60 8 100 120
Speed (km.h™) Speed (k.
Figure 6. Comparison of vehicular speed distributions estimated from 30-second data. (a) for lane 1 and (b) for

lanes 2 to 5. The observed distribution comes from Equation (2). The predicted distribution comes from Equation
(3), under the smooth homogeneous microscopic dynamics hypothesis.
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Figure 7. Bimodal estimates of the distribution of vehicle speeds.

distribution, the low-speed mode, has a lower median value and spreads over a larger range than the
high-speed mode. For lane 1, the median of the low-speed mode remains around 75km.h~ ' when
the occupancy varies between 10% and 16%. It then drops to 45% when the occupancy reaches
20%. The speed values in the low-speed mode spread in a 60km. h~ '-wide interdecile. Similar bimodal
distributions, and similar variations of those distributions with occupancy, are observed for all other
lanes. See for instance the bimodal estimates of speed distributions for lane 3 and an occupancy of
16% (Figure 7d).

The estimated vehicle speeds distribution plotted in Figure 7 have been fitted® with the following model:

fo=2Mip+ (1 =M, )

with
e A(k) the fraction of vehicles in the low-speed mode, varying continuously from 0 to 1 when the
occupancy k varies from O to 1.
* M, a Maxwell-Boltzmann-like distribution with a shape parameter a and originated at b, that is
0 if b<v

Map(v) = 5 (b — 2 (v
“ - Qe 2a? otherwise

* a(k) (respectively, a(k)) the shape parameter of the low (respectively, high) mode.
* b(k) (respectively, b(k)) the maximum speed in the low (respectively, high) mode.

The fitted parameters are given in Table I. In each case, the root-mean square of residuals is quite
low. The model explains well the observations.

The fits were computed using the Gnuplot implementation of the nonlinear least-squares Marquardt—Levenberg
algorithm.

Copyright © 2013 John Wiley & Sons, Ltd. J. Adv. Transp. 2014; 48:165-184
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Table 1. Fitted values of the model’s parameters.

Root-mean square

Lane, k y) a b a b residuals
Lane 1, 10% 0.59 18.0 109 8.09 122 1.7x1073
Lane 1, 13% 0.40 18.6 107 8.72 119 1.6x1073
Lane 1, 16% 0.25 18.2 98 14.0 117 1.4x1073
Lane 3, 16% 0.16 23.0 111 6.0 103 1.3x1073

3.4. Discussion

The wide scattering of traffic flow data (Figure 3) has been the subject of active research. Macroscopic
models derived from the fundamental diagram cannot explain those experimental facts. A number of
alternative theories have been proposed, mainly by physicists (see [5] for a detailed review). Among
them, one can find the kinetic theory of traffic, Kerner’s three-phase flow theory, and the cusp ° catas-
trophe model.

The kinetic theory of traffic finds its roots in the works of [7]. They developed a two-fluid model for
town traffic [8,9]. One fluid consists of moving vehicles. The other vehicles are stopped as a result of
traffic conditions (congestion, traffic signs, etc.). One key parameter is the distribution of desired
speeds. Below some critical concentration, the equilibrium distribution of speeds is a one-parameter
family. Above that concentration, this flow persists. But another component appears, in which a
density-dependent fraction of the traffic is stopped, the remainder being at desired speed. This model
has often been criticized in that its derivation into a macroscopic univariate traffic flow model implies
the distribution of desired speeds to be non-zero for vanishing speeds. Nelson and Sopasakis have
shown that no one-parameter macroscopic model can be derived if this assumption is relaxed, and
concluded that two-parameter macroscopic models should be used to describe data scattering [10].
Kerner’s theory proposes to classify traffic states into three different phases [11]. One denoted F is free.
The two others (S and J) are congested. In the free phase F, the flow increases linearly with the density,
up to a metastable region where free phases can coexist with synchronized states in phase S. In the
synchronized phase, flow and density are independent of each other. The jammed phase J contains
traffic states characterized by a high density and small flow rate/flow speed values. Transitions are
allowed between F and S, and between S and J, but not between F and J. Navin suggested the
three-dimensional cusp catastrophe to be appropriate for traffic variables [12]. The surface of the cusp
catastrophe is defined by two control variables with smooth continuous changes, whereas the state
variable is subject to discontinuities. Navin suggested using the flow rate and the occupancy as control
variables, and speed as state variable. Hall has conducted further studies in this line of ideas [13].

The three theories sketched previously express the same general idea. There is an occupancy region,
between free flow and jammed flow, where no univariate macroscopic flow model applies. But they
seem to lack a unifying framework. The model expressed by Equation (4) seems promising to this
end. To the best of the author’s knowledge, it is the first macroscopic model that links explicitly the
occupancy with the distribution of vehicular speeds in the flow of traffic. As such, and being
enthusiastic, it can be seen as a new kind of fundamental diagram, the mean flow speed being replaced
by a random variable with a well-defined probability density function. A lot of work remains to be
performed to assess the validity of this statement. Bias may exist in the I-80 dataset. Other datasets
should be analyzed to confirm the validity of the model. Some avenues of exploration are drawn in
the conclusion of this paper.

4. APPLICATION TO FUEL CONSUMPTION MODELING

The purpose of this section is to design a simple and naive FC model called BIMODACT (for
BIMODal ACTivity), to compute link-based FC from link-based traffic data. We concentrate here
on FC because it is the primary determinant for other out-of-pipe emissions. BIMODACT is simple

°In Thom’s catastrophe theory terminology [6].

Copyright © 2013 John Wiley & Sons, Ltd. J. Adv. Transp. 2014; 48:165-184
DOI: 10.1002/atr



A NEW KIND OF FUNDAMENTAL DIAGRAM 175

in that it relies on simple models: (i) a trip-average speed FC model; and (ii) on bimodal speed
distributions to capture the impact of speed variability on emissions. It is naive in that a large part
of what makes the complexity of operational traffic emission models is omitted. This section is orga-
nized as follows. Section 4.1 gives some of our motivations for this work. Two FC models are
presented in Section 4.2. One, taken from COPERT 4, is used to compose BIMODACT. The other,
called Comprehensive Modal Emission Model (CMEM), is used as a yardstick. BIMODACT is de-
fined in Section 4.3, and applied on real world data in Section 4.4.

4.1. Motivations

There is a mismatch between the traffic activity data required by mobile sources emission models and
today’s available traffic data. On the one hand, emission models use trip-based data, such as trip length
and trip average speed. On the other hand, traffic sensors do measure traffic flow variables at point-
based locations on road links. At the same time, the need for air quality assessments of traffic demand
management policies is increasing. To this end, mobile sources emission models provide the necessary
inputs to photochemical models, with a typical 1A/lkm time/space resolution for metropolitan area.
Those requirements have led to the development of a new generation of mobile sources emission
models—exemplified by the US Environmental Protection Agency’s MOtor Vehicle Emission Simu-
lator (MOVES) model—for which the necessary traffic activity data is recommended to be derived
from a travel demand model. To illustrate the complexity of the needed data, the following sentences
are quoted from MOVES documentation: Vehicle power, speed, and acceleration have a significant
effect on vehicle emissions. At the County scale, MOVES models those emission effects by using dis-
tribution of vehicles hour traveled (VHT) by average speed. MOVES in turn uses the average speed
distribution to select specific drive cycles, and MOVES uses these drive cycles to calculate operating
mode distributions. The operating mode distributions in turn determine the calculated emissions rates.
... A local speed distribution by road type and source type is necessary. MOVES calls for a speed dis-
tribution in 16 speed bins, by each road type, source type, and hour of the day included in the analysis.
If the available drive cycles do not cover all the possible (road-type, source type, and average speed)
combinations, one has to use microscopic traffic simulator to this end. But even state-of-the-art
microscopic models, such as AIMSUN and VISSIM, have been reported to fail in producing realistic
enough vehicle trajectories with respect to emission modeling [14,15]. Also, using a travel demand
model to estimate route flows for the purpose of emission modeling, as suggested for MOVES, is
highly questionable. The stability of route flow (and even link flow) solutions in dynamic multiclass
user-equilibrium traffic assignment is still a research topic [16,17]. Possibly drastically different route
flow equilibria, hence emission patterns, may be computed for a given demand. The authors are not
aware of good practices to evaluate the stability of solutions resulting from dynamic traffic assignment
tools, not accounting for calibration issues [18]. Last, but not the least, the day-to-day variability in
traffic demand and traffic patterns has to be dealt with in an appropriate manner when bridging together
an emission model and a photochemical model. For instance, it has been shown in Section 2 how the
distribution of average speeds during the evening peak period of the I-80 dataset varies. Ensemble
techniques like those used in probabilistic weather prediction may help in dealing with all those
sources of uncertainties, at the price of a huge increase in computational requirements. Hundreds of
traffic simulation/emission estimates, with random perturbations of the inputs, would be required.
All this foreseen complexity pleads for direct methods to compute link-based traffic emissions from
link-based traffic data.

4.2. Fuel consumption modeling

Fuel consumption models are a core component of road traffic emission models. Many emission
models have been proposed in the literature (see for instance [19] and references therein). Most
of them are trip-based and specify—or can be used to specify—emission factors usually expressed
in g.km~'. Emission factors are defined for classes of vehicles rather than for every model avail-
able on the market. To this end, vehicles are categorized into classes according to a number of
characteristics, including the vehicle type (e.g., two wheels, passenger cars, and heavy or light
duty), the fuel used (e.g., gasoline, diesel, and natural gas), the weight, the engine size, and the
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regulated emission standard. Depending on the level of detail available for a given trip, different
emission models can apply. On one side of the spectrum, average-speed models (such as COPERT
4, EMFAC or MOBILE 6) express emission factors as a function of the mean trip speed. By def-
inition, an average-speed model cannot distinguish between trips with the same mean speed but dif-
ferent speed profiles. On the other side of the spectrum, physical power demand models, also called
instantaneous models, do compute second-by-second tail pipe emissions on the basis of (i) a de-
tailed description of the vehicle’s subsystems (e.g., engine, power-train, and auxiliaries); and (ii)
the second-by-second vehicle’s operating conditions (speed, acceleration, and road grade). Besides
vehicle classes and trip data, other inputs are required. Indeed, vehicle emissions depend on several
other factors, including the road gradient, the vehicle load, the weather conditions, and the age of
the vehicle. Also, the literature distinguishes between evaporative emissions, cold start emissions,
and hot emissions. But despite their differences, most emission models do rely on a core FC model
under hot stabilized engine conditions. In what follows, the two following FC models are consid-
ered. The first is an average-speed model taken from COPERT 4. The second comes from CMEM.
Both are described and compared hereafter.

4.2.1. COPERT
The COPERT 4 methodology, included in the EMEP/EEA emission inventory guidebook [20], is
widely used in Europe. It is based upon average-speed emission factors. For a given class of vehicles,
the mass E, of a pollutant p emitted during a trip of length L and of duration 7'is given by E, = Le, (),
where v = L/T is the trip-average speed, and e, is the emission factor for the pollutant p.

As an example, the COPERT 4 emission factors for Euro 1 and later gasoline passenger cars and p
in {CO,HC,NO,} are of the form

a; + arv + 0352
1 + a4v + asv*

ey (V) ®)

with ¥ in the range [10: 130]km. h~'. The FC is also predicted using Equation (5). Note that Equation
(5) does not stand for all vehicle classes, or for all pollutants. For instance, the emission factor for CO,
is a linear combination of FC and other emission factors. Generally speaking, COPERT emission fac-
tors are nonlinear U-shape functions (Figure 8a).

4.2.2. Comprehensive Modal Emission Model

The Comprehensive Modal Emission Model (CMEM) is a modal emission model. It is public-domain
and maintained by the Center for Environmental Research and Technology, University of California,
Riverside. CMEM is based on six physical sub-models that predict engine power, engine speed,
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Figure 8. (a) Normalized COPERT emission factors for CO, HC, and NO, and the fuel consumption FC, for
EURO 2 gasoline passenger cars. (b) Comparison of the fuel consumption predicted by COPERT and CMEM
for the gasoline passenger car, using constant speed profiles.
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air-to-fuel ratio, FC, engine-out emissions, and catalyst pass fraction, depending on vehicle’s oper-
ation variables (e.g., speed, acceleration, and road grade). According to CMEM’s documentation the
instantaneous FC, expressed in g. s~ ! and denoted hereafter FC(#), is computed by

b(t): <K(t)~N(t)-V + P;”) ﬁ for P >0

KoNoV for P =0,

FC(t) =

where ¢(?) is the air-to-fuel ratio, P(¢) is the engine power output, K(¢) is the engine friction factor, N
(1) is the engine speed (in revolutions per second), V is the engine displacement, # is a measure of
indicated efficiency, and LHV the lower heating value of the fuel used. K, (respectively, Ny) is the
engine friction factor (respectively, engine speed) during engine idling. Hot-stabilized engine-out
emission rates are then computed by multiplying F'C by pollutant specific engine-out emission in-
dex. The minimal trip input data required by CMEM are a speed profile (i.e., a list of time-stamped
speed values), with a typical sampling frequency of 1 Hz (although this is not a requirement).

4.2.3. COPERT compared with CMEM

COPERT and CMEM have been developed in countries having noticeably different vehicle fleets and
emission regulations. Hence, there is no obvious mapping between the way vehicles have been
categorized in both models. Anyway, the CMEM vehicle class gasoline Tier 1, mileage <50k, low
power/weight, and the COPERT 4 vehicle class EURO 2 gasoline passenger car, engine capacity > 21
present very similar characteristics. In what follows, this particular vehicle class is denoted as gasoline
passenger car.

We compared the FC predicted by COPERT 4 and CMEM for the gasoline passenger car, as a
function of the trip average speed. We first applied CMEM on speed profiles simulating trips traveled
at constant speed, for speeds in the range [10;130]km. h~'. The FC rates predicted by CMEM for those
constant speed profiles, expressed in g.km~ !, are far below the one predicted by COPERT 4
(Figure 8b). The relative difference is close to 80% at 10km.h~'. It then decreases when the
speed increases. At 130km.h™ ! the relative difference is around 20%. This comes with no
surprise. As an average speed model, the COPERT 4 FC model implicitly assumes trips with
several acceleration, cruise, and deceleration phases.

When fed with more realistic inputs, CMEM and COPERT do better match. The Common ARTE-
MIS Driving Cycles (CADC) has been developed within the European project ARTEMIS (Assessment
and Reliability of Transport Emission Models and Inventory Systems). They have been designed to be
statistically representative of real world driving patterns. The CADC include the two following driving
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Figure 9. Artemis driving cycles. (a) Artemis Urban Cycle. (b) Artemis Motorway 130 Cycle.
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Table II. Fuel consumption predicted by the Comprehensive Modal Emission Model and COPERT for the
gasoline passenger car for the Urban and Motorwayl30 ARTEMIS driving cycles.

Driving cycle Comprehensive Modal Emission Model COPERT Relative difference
Urban 113.96 g. km~ 123.5 g.km~ ! 7.7%
Motorwayl30 62.20 g. km™" 66.31 g.km™" 6.2%

cycles: Urban and Motorwayl30. The speed profiles of those cycles are plotted in Figure 9. Their
detailed characteristics can be found in [21]. The Urban cycle has an average speed of 17.5km. h~ !
and a running speed of 24.4km.h~ ' (the vehicle is at full stop during 28% of the cycle duration, for
a total of 21 stops). The Motorwayl30 cycle contains no stop. Its average speed is of 116km.h~ .
The FC predicted by CMEM and COPERT for the gasoline passenger car on the Urban and
Motorwayl30 driving cycles are given in Table II. The relative difference is 6.2% (respectively,
7.7%) for the Motorwayl30 (respectively, Urban) driving cycle.

Having no information on (i) the error margins of each models; and (ii) the differences
between the vehicle classes chosen in both models for the gasoline passenger car, we now
assume that both models are properly calibrated. CMEM will be used as a yardstick when vehicle
trajectory data are available.

4.3. Bimodal fuel consumption modeling

Let us consider the situation, similar to the one simulated in Section 3.1, where n = kk identical
vehicles of length [ are distributed on a ring road of length L, with a mean-occupancy k and a
free-flow speed set to . The purpose is to estimate the quantity C of fuel consumed during a
time interval of duration 7, as a function of k and . We have at our disposal an instantaneous
FC model denoted as ¢ (e.g., CMEM) and an average speed FC model ¢ (e.g., COPERT). v; de-
notes the speed profile of vehicle i. T is taken long enough so that the system can be supposed
ergodic; that is, spatial and temporal distributions of vehicle speeds are assumed identical. In
other words, if one had observed the probability density function f of vehicle speeds at a
particular point of the ring during the period 7, then for any vehicle 7, any instant ¢, and any
interval [a,b] the following holds:

Pr(a <vi(t) <b) = /sf(v) dv
Under this hypothesis, the trip average speed v; of any vehicle i equates the flow mean speed v, that is:

W=/ yult) di= /() dv =¥ (©)

C can be expressed in three ways. First, using the average speed FC model ¢ and summing over trips
using Equation (6), we have

= 3 )Mo dt:k%VT-E(V) )

i=1...n

Second, using the vehicles’ speed profiles and the instantaneous FC model ¢, we have

Cr= ) c(v) (8)

i=l...n
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Third, using the average speed FC model and the probability density function of flow speed,

C= k%VT/f(v)E(v) dv

Results from Section 3 suggest that the probability density function of vehicle speeds f can be ap-
proximated by a bimodal distribution, using a probability density function of the form f =

Aifry + (1 = Zi)f i 5- Let us now assume that

f =40 +(1-2)dy

A min(l,max(O,ﬁ_v>>
V=V

That is (i) the high-speed mode f}, ; is now supposed not to vary with k and is reduced to a Dirac delta
located at the free-flow speed 4J; (ii) the low-speed mode f; , is now supposed not to vary with k and is
reduced to a Dirac delta located at a constant low speed v. The Dirac delta account for the fact that

speed distributions are implicitly assumed by the average speed model, in that an average speed is
representative of a driving cycle. The low (respectively, high) is supposedly constant to make things
as simpler as they can be. We now have

Cy = kI%VT (/IE(\_/) r(1- /1)5(19))
A :min<1,max<0,l_9_v)> )

Equation (9) defines BIMODACT. It basically depends on two, road dependant parameters: the
free-flow speed ¥ and the low speed y. The FC estimates using COPERT (Equation (7)), CMEM

(Equation (8)) and BIMODACT (Equation (9)) have been computed using the same set of simulation
runs than those described in Section 3.1. The results are plotted in Figure 10, for ©=90km. h~ ' and
©=125km.h™'. In both cases, v was set to 20km.h~'. When the occupancy is below the critical

occupancy, BIMODACT equates COPERT. In this case, the flow-mean speed v equates the free-flow
speed . Hence, 4=0 in Equation (9), which becomes Equation (7). CMEM is below COPERT, for
the similar reasons than those exposed in Section 4.2.3. Differences appear when the occupancy
exceeds the critical occupancy. In congested traffic states, BIMODACT is higher than COPERT,
and noticeably close to CMEM. The difference between BIMODACT and COPERT increases as soon
as congestion appears.
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Figure 10. Fuel consumed during 1 hour for the simulated data, as a function of the flow occupancy.
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Figure 11. Schematic top view of the freeway segment of US 101 (Hollywood Freeway, Los Angeles, California)
on which the trajectory data have been collected.

4.4. Experiments on real data

The results presented in Section 4.3 show that, in simulated congested conditions, BIMODACT allows
for FC estimates that are close to those produced by CMEM. However, the set of simulated vehicle
trajectories that has been used may introduce some bias. First, the simulated data were intentionally
built so that the distribution of vehicle speeds is ergodic. Second, the dynamics of vehicle trajectories
produced by the microscopic traffic model does not reflect all aspects of real-world vehicle trajectories.

In this section, COPERT, CMEM, and BIMODACT are tested using real trajectory data from the
American project NGSIM [22]. First, the dataset is described in Section 4.4.1. Then in Section
4.4.2, the three models are applied on vehicle trajectories. Finally in Section 4.4.3, COPERT and
BIMODACT are applied using traffic detector data.

4.4.1. Description of the data

The US101 NGSIM dataset has been collected on the southbound direction of Hollywood Freeway, a
freeway segment of US Highway 101 in Los Angeles, California. Figure 11 provides a schematic top
view of this road segment. The site is approximately 640m in length, with five main lanes and one
auxiliary lane throughout the section. Lanes are numbered from 1 to 6, starting from the left-most lane
to the auxiliary lane. The speed limit is 65mph, which is close to 104km. h~'. Vehicle trajectories were
measured using video cameras, and sampled at a resolution of 10 frames per second, between 7:50 and
8:35 AM. A total of 6101 trajectories, among which 45 are motorcycles trajectories and 137 are long
vehicles (i.e., trucks and buses) trajectories, are available. In what follows, motorcycles and long
vehicles are not considered. The trajectories observed on lane 1 are plotted in the time-space diagram,
as shown in Figure 12. One can clearly see traffic waves moving in the opposite direction of the traffic
flow. The traffic is in a congested state. The passenger car average speed over the section is 33.2km.
h~', with a standard deviation equal to 15.6km. h~".

4.4.2. Fuel consumption using vehicles trajectories

The total FC is estimated for the passenger car trajectories contained in the US101 NGSIM dataset,
using the same three methods than those exposed in Section 4.2.3. It is assumed that all vehicles
belong to the gasoline passenger car class. Using Equation (7) (i.e., COPERT), we found out that
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Figure 12. Vehicles trajectories observed on lane 1 of the US101 NGSIM dataset.
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the total FC amounts to 303kg. Using Equation (8) (i.e., CMEM), we found out that it amounts to
384kg. As observed with the simulated congested data, COPERT underestimates the value obtained
with CMEM. A difference of approximately 21% is observed for the NGSIM trajectories. Using Equa-
tion (9) (i.e., BIMODACT), with = 104km. h='and v = 20km.h™", we get 376kg, a 2% relative

difference with CMEM.

Besides differences in the total FC, the use of individual vehicle trajectories allows for a closer
examination of where the models diverge. For a given trajectory (i.e., speed profile) v;, let us denote r
(v;) the speed interquartile range of vehicle i. r(v;) follows the standard definition it was given in the field
of descriptive statistics. It is the difference between the third and the first quartile of the distribution of
values in v;. To compare CMEM and COPERT, we computed the following mean differences:

1

Ay =——
#Cy ic,

(em(vi) — Liem(Vi))

where C;.={i,r(v;)€b;} is the set of vehicles having their speed interquartile range in the interval
br=[kAv, (k+1)Av), k=0,1, ..., and Av is set to 2.5km.h~ ' The same quantities were computed
for CMEM and BIMODACT.

Results are plotted in Figure 13. The mean difference between CMEM and COPERT increases
when the speed interquartile range increases from O to 10km.h~ '. It then remains almost constant,
around 12g (to be compared with the mean FC per trajectory predicted by CMEM, around 66g). This
observation confirms that COPERT intrinsically underestimates the emissions for congested traffic
states, when compared with CMEM. A contrario, BIMODACT estimates are very close to CMEM’s.

4.4.3. Estimation of the fuel consumption using traffic detector data
The US101 NGSIM dataset contains the 5-minute average speed and the 5-minute average occupancy

measured by a loop sensor. Here we make use of those data to estimate the FC predicted by COPERT
and BIMODACT. Using COPERT, we found out that the total FC is given by:

SLZ ﬁjneM (1_/]‘)
J

where L=640m is the length of the road segment, j is the index of a 5-minute interval in [7:50,8:35],g;
(in veh. h~ ') is the 5-minute mean flow rate, and V; (in km.h™ 1) is the 5-minute mean flow speed. It
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Figure 13. Fuel consumption using vehicle trajectories.
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amounts to 316kg, to be compared with 384kg obtained with CMEM and trajectory data. Using
BIMODACT, we found out that the total FC is given by:

5sz 7 (zjeM (v) +(1- Aj)eM(ﬁ))

Vi—v

with 4; = min (1, max (0, j_V>) , 9=104km.h~ ', and v = 20km.h~". It amounts to 394kg, to be
compared with 384kg obtained with CMEM and trajectory data.
5. CONCLUSION

The main contribution of this paper is the model defined in Section 3.3. It expresses the distribution of
vehicle speeds in traffic flow f, as a function of the occupancy k, with five parameters.

fo=Mgp+ (1 =M,

with M,, a Maxwell-Boltzmann distribution, a (respectively, d) the shape parameter of the low
(respectively, high) mode, b (respectively, 5) the maximum speed in the low (respectively, high) mode,
and a the fraction of vehicles in the low mode. The model is not yet fully specified. We do not propose
here a functional form (as a function of occupancy) for the parameters. This is left to the near future,
along with complementary studies of empirical traffic data.

This model has strong connections with the kinetic theory of traffic flow, where the unknown is pre-
cisely a distribution of vehicle speeds, as a function of space and time. We plan to investigate this
point. Numerical and/or analytical solutions of kinetic models may be found more easily by
constraining the shape of the solutions. We also foresee interesting applications in the validation and
calibration of microscopic traffic models, and a better understanding of micro—macro relationships.

On the practical side, a typical application that relies on a statistical description of vehicle operating
modes (starting with the speed) is traffic emission modeling. The ability to derive some of the needed
traffic activity statistics directly from traffic flow data can help in feeding the new generation of emis-
sion models. As an example, a simple FC model, BIMODACT, has been defined. BIMODACT can
use standard 5-minute traffic flow data and still produce FC estimates close to the instantaneous emis-
sion model CMEM, taken as a yardstick. BIMODACT is essentially parametrized by two values, the
free-flow speed ¢ and the low-speed mode v. Both should be easy to calibrate using existing traffic

data. With respect to state-of-the-art practice in road traffic emission modeling, BIMODACT is rather
crude: traffic activity is binned into two speed modes. It would certainly be interesting to study more
elaborate ways to disgregate the new kind of fundamental diagram we propose in this paper into the
vehicle-specific power bins required by the current generation of road traffic emission models.

6. LIST OF SYMBOLS

Symbol Term Definition

Pr(a <X<b) Probability Probability that the random variable X
takes a value in the range [a : b]

fx Probability density function (pdf) If the random variable X has a density,

fx denotes the probability density
function of the random variable X
N(m,a?) Pdf of a normally distributed random
variable (or Gaussian variable) with
mean m and variance ¢
O Dirac delta The Dirac delta function centered at m,
i.e. the limit (in the sense of

(Continues)
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Symbol Term Definition

distributions) of a sequence N (m,c?)
aso — 0

Map Maxwell-Boltzmann pdf Pdf of a Maxwell-Boltzmann, originated

V;

at b, with a shape parameter a. Formally,
for x > b,

2 (b—x)?
Mep(x) = 200~

T a

Vehicular speed Speed of a given vehicle, indiced by i.
v() if the vehicular speed as a function
of time; v,(x) the vehicular speed as a
function of space.

v (or simply v) Flow mean speed Time mean speed of the flow of

vehicles, observed at a particular point
of the road during a lapse of time.

Occupancy Point based occupancy, defined as the
percentage of time that a particular
point of the road is occupied by a
vehicle during a lapse of time.

Free flow speed The expected flow mean speed when
the occupancy tends towards O.
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