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Emissions from traffic in networks are a growing concern, and there is a need for simple
tools to estimate the relationship between network properties, traffic conditions, and the
resulting aggregated emissions of pollutants such as greenhouse gases. This paper makes
use of a network’s macroscopic flow-density relation to approximate the following aggregated
components of vehicle driving cycles: time spent cruising at free-flow speed, time spent idling,
and the number of vehicle stops. The network-wide emission is estimated by multiplying
these driving cycle components with associated emissions factors. The study shows that
network emissions are systematically related to the network properties and vehicle density.
The proposed analytical model provides an approximation of emissions within 11% of the
estimates from a conventional microscopic analysis for all but the most congested traffic
states. This approach allows for systematic analysis of network emissions without the need
for intensive data collection and simulation.
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1. Introduction

Road transportation is a major source of air pollutant emissions. An estimated 1.9 billion
gallons (7.2 billion liters) of gasoline and $100 billion are were wasted due to fuel con-
sumption and delays caused by traffic congestion in 2012 within the United States alone
(DoT 2012). In addition to wasted energy and time, urban traffic congestion contributes
to network-wide emissions of air pollutants, including hydrocarbons, nitrogen oxides,
carbon monoxide, and carbon dioxide. It is estimated that the on-road vehicles account
for more than half of dangerous air pollutant emissions and over 30% of carbon dioxide
emission in the United States (EPA 2013). Reducing these emissions is important for pro-
tecting and improving human health as well as reducing production of greenhouse gases,
which are associated with global climate change. Emissions from vehicles in traffic are
playing an increasingly important role in urban policy making and traffic management
in large metropolitan road networks.

Most research on the relationship between traffic and pollutant emissions focuses on
individual vehicles and the effect that engine technologies or driving cycles have on
emissions from that vehicle. The driving cycle is the pattern of acceleration, cruising,
deceleration, and idling as a vehicle traverses distance in the network. In urban environ-
ments, the design of the road network and the timing of traffic signals have systematic
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impacts on the driving cycles of the vehicles in the network. The traffic conditions in the
network also have an impact on the performance of vehicles, because traffic congestion
causes additional stopping and idling, which directly influence the emissions from vehicles
in the network. In order to evaluate, control, and reduce network-wide emissions of air
pollutants, traffic emission need to be estimated considering the nature of stop-and-go
traffic in urban areas.

Although some pollutants have a highly localized impacts, which require detailed mod-
els and measurements (e.g., particulate matter), greenhouse gas emissions have a global
impact and it is most important to be able to estimate the aggregated emissions from
traffic in a whole network. Recent advances in modeling aggregated traffic conditions in
urban networks show that a systematic relationship often exists between average vehicle
flow and average vehicle density in a network. A macroscopic view of urban traffic pro-
vides a basis for making aggregated estimates of air pollutant emissions from the vehicles.
This paper shows that emissions factors developed from existing microscopic emissions
models can be integrated with models of aggregated traffic variables for urban networks
in order to estimate the aggregated network-wide emissions of greenhouse gases from
vehicles.

The paper is organized as follows. Section 2 reviews existing literature in the emission
modeling and traffic flow fields. Section 3 presents the overall framework for linking
aggregated traffic variables that are related to the driving cycle with emissions factors
to make an aggregated emissions estimate. A detailed description of how the elements
of the driving cycle are estimated from macroscopic traffic model is given in Section 4.
An evaluation is presented in Section 5 by comparing the emissions estimates from the
proposed model with the results from a more conventional microscopic analysis using
simulation. Finally, conclusions are discussed in Section 6.

2. Existing Models

There are a number of existing models in the literature that focus on estimating emis-
sions from vehicle emissions at various levels of resolution. The most detailed microscopic
emissions models are based on tracking driving cycles in second by second detail, while
the most aggregate models are based on broad averages in order to make regional es-
timates. Recent advances in traffic models that address the movements of vehicles and
congestion patterns at the network level provide useful tools for analysis of aggregated
traffic conditions. In the following subsections, some of the most relevant models for mod-
eling emissions and traffic are reviewed. These form the building blocks of the proposed
integrated model.

2.1. Vehicular Emissions

Existing models for vehicular emissions generally fall into two main categories: micro-
scopic models that focus on specific movements of individual vehicles and macroscopic
models that are based on aggregated data and average values. Microscopic models are the
most detailed models, and they often provide instantaneous emissions estimates based on
concurrent operating conditions of a an equipped vehicle or a simulation. These models
typically require extensive data inputs such as second by second trajectories for each ve-
hicle. VT-Micro (Rakha et al. 2000), CMEM (Barth et al. 2000), and the project level of
MOVES (EPA 2010) are microscopic models that are widely used in the United States.

In order to analyze the overall effect of changing a signal control system or widening
a roadway, microscopic models require that a detailed microsimulation be developed to



generate the detailed trajectory of each vehicle which is then used to produce the emission
estimate for each vehicle at each second. This is a time-consuming and costly process, and
the data intensity and computation time make these microscopic models prohibitively
burdensome for estimating emissions in large urban networks. As a result, microscopic
models are typically only used in practice for analyzing small-scale projects. For green-
house gas emissions, such detailed model outputs are not necessary in of themselves
except that they tend to be more accurate than emissions estimates from macroscopic
models (Rakha, Ahn, and Trani 2003).

Macroscopic emissions models are designed to estimate regional emissions from vehi-
cles based on the average network speed, the total number of vehicles, and some assumed
driving cycles (Akcelik 1985; Bai, Eisinger, and Niemeier 2009). These models require
relatively few data inputs, so they are much easier to implement for large urban networks.
However, these models do not account for the effect of vehicle acceleration and deceler-
ation for stops in a way that is related to what is actually happening in the network.
Macroscopic models relate average speed to a single emission rate, but in reality a sin-
gle average speed could be associated with many different driving cycles ranging from a
small number of long stops to a large number of short stops. These driving cycles should
be associated with different emissions rates, so macroscopic models have a tendency to
oversimplify the relationship between traffic patterns and emissions.

In recent years, a third type of model has emerged: mesoscopic emission models. These
models do not require information about the instantaneous movements of individual ve-
hicles, so they are not as complex and data-intensive as microscopic models. Mesoscopic
models typically require aggregated traffic data that reflects the traffic conditions and
congestion in the network, so they provide more accurate network-wide emission esti-
mation in compare with macroscopic models. One example is VT-Meso, which utilizes
link-by-link average speed, the number of vehicle stops, and the stopped delay as aggre-
gated traffic inputs (Yue 2008). The model synthesizes a typical driving cycle, and by
using the microscopic VT-Micro model, it estimates the average link fuel consumption
and emission rates. Overall network emissions can then be computed by aggregating the
emissions on all links. Gori et al. (2012) presents another mesoscopic emission model,
which uses a dynamic traffic assignment model to estimate the aggregated traffic param-
eters, namely distance traveled at free-flow speed, the average speed of vehicles in queues,
and the length of the queues. Mesoscopic models improve the accuracy of emissions es-
timates for larger networks, but they require inputs of aggregated traffic variables, and
these need to be obtained either from a simulation or another traffic model.

2.2. Modeling Traffic in Networks

Just as emissions can be modeled at varying levels of detail, traffic models also range
from microscopic models that track individual vehicle movements to macroscopic models
that relate aggregated network-level variables. For the purposes of emission modeling, it
is common to use microsimulation tools to construct trajectories for each vehicle that
traverses an existing or hypothetical network. Although simulation models are powerful
tools for investigating the complex interactions of vehicles, it is costly and challenging
to build and calibrate the models appropriately (Dowling et al. 2004). An alternative is
to work with the classic kinematic wave model (Lighthill and Whitham 1955; Richards
1956) that makes some simplifying assumptions about the variability of driver and road
characteristics but can describe the evolution of traffic states on a road segment by
tracking the interfaces between traffic states over space and time. The benefit of this
analytical approach is that a wide variety of traffic scenarios can be evaluated in a
robust and consistent way with far less data and computational complexity than a micro-



simulation. At the level of intersections and individual arterials, kinematic wave theory
has been a basis of traffic modeling for decades.

For networks that are homogeneous, well-connected, and on which demand is uniformly
spread, a consistent relationship between average network flow and average network
density has been shown to exist in theory (Daganzo 2007; Daganzo and Geroliminis
2008), in simulations (Ji et al. 2010), and in the real world (Geroliminis and Daganzo
2008; Buisson and Ladier 2009). This relation is often referred to as the Macroscopic
Fundamental Diagram (MFD) or network-level fundamental diagram. The size and shape
of the MFD depends primarily on the physical properties of the network including the
saturation flow rate, block length, and traffic signal settings (e.g., cycle length, duration
of signal phases, and signal offsets). This aggregate relation of traffic variables is useful
for a network manager, because it can be used to monitor the network performance or
implement control strategies to increase throughput and decrease delays in the system
(Geroliminis, Haddad, and Ramezani 2013). An additional objective may be to reduce
aggregated fuel consumption and emissions in a network, but this application of network-
wide traffic models has received less attention in the literature.

Since the critical input for emissions models is an accurate driving cycle, traffic mod-
els need to relate the time that vehicles spend accelerating, cruising, decelerating, and
idling to the traffic conditions on the roadway. An arterial-level model has been devel-
oped to estimate emissions assuming that some traffic data such as flows and number
of vehicle stops are measured directly from links in the network and then estimating
the other relevant parts of the driving cycle (Skabardonis, Geroliminis, and Christofa
2013). Another recent model uses kinematic wave theory to make analytical estimates
of the entire driving cycle for traffic on a single link approaching an isolated intersection
(Shabihkhani and Gonzales 2013). The model proposed in this paper is intended to go
a step further to estimate emissions based on aggregated traffic characteristics using the
MFD and physical characteristics of the network.

3. Integrated Traffic Emission Model for a Network

The proposed modeling framework builds on the Integrated Traffic Emission Model
(ITEM) presented in Shabihkhani and Gonzales (2013), which connects an analytical
model of traffic approaching an isolated intersection with emission factors from a mi-
croscopic emission model. That study shows that reliable predictions of emissions at a
signalized intersection can be made using kinematic wave theory to estimate the amount
of time vehicles spend idling, the time spent cruising, and the number of times that ve-
hicles stop per vehicle distance traveled. The model of network-wide emissions presented
in this paper is structured with the same two components: a traffic model to estimate
aggregated traffic parameters and a set of emissions factors to convert the driving cycle
into an emissions estimate.

The trajectories of vehicles approaching an intersection or traversing a network have
repeating patterns of cruising at the free-flow speed, vy, idling while stopped, and decel-
erating and then accelerating between speeds vy and 0 for every stop. Therefore, three
components of the driving cycle that must be estimated from the traffic model in order
to account for emissions from the vehicles: the time spent cruising per distance traveled,
T,; the time spent idling per distance traveled, T;; and the number of times that vehicles
must stop per distance traveled, n. The total emissions per vehicle distance traveled, F,
is then calculated by multiplying these components by the appropriate emissions factors:

E=eld.+e7T;+esn (1)



where e, is the emission of interest per unit cruising time, e; is the emission of interest
per unit idling time, and e is the total emission of interest associated with a complete
deceleration from vy to 0 and a complete acceleration from 0 to vy.

In order to make accurate emissions estimates, it is important to have accurate es-
timates of the components of the driving cycle (7¢, T;, and n) and accurate emission
factors (e, e;, and ey). We will focus the analysis in this paper on investigating simple
homogeneous networks in which the MFD is known to be applicable so that we can fo-
cus on using the MFD to estimate driving cycles. Then we use these driving cycles to
estimate emissions. The details about how to estimate the driving cycle from the macro-
scopic traffic data are presented in Section 4. Here we will now consider how to obtain
appropriate emissions factors, which are important for analysis of isolated intersections
or larger networks. Although the method may be applied to measured or simulated ve-
hicle data from any road or network, our investigation will use a simulation approach to
study the performance of idealized networks.

3.1. Traffic Simulation

The first step to estimating emissions factors with a microscopic emissions model is
to obtain high resolution vehicle trajectories that show speed and acceleration a fine
temporal resolution (e.g., every second). In the field, trajectories can be measured from
equipped vehicles, but a simulation model is useful for considering a wider range of
traffic conditions, many of which may not be part of a measured data set. In order to
represent the ideal homogeneous network conditions under which a consistent MFD has
been proven to exist, a simple ring network has been constructed using Aimsun that is
consistent with the theoretical assumptions in Daganzo (2007); Daganzo and Geroliminis
(2008). The ring with a single intersection is representative of a long arterial or network
with homogeneous traffic conditions and traffic signals with no offset.

In the ring model, a constant number of vehicles in the system correspond to a constant
density. The full range of possible densities from an empty network up to a complete
jam are systematically analyzed by loading the ring with a specific number of vehicles
and then running the simulation to measure aggregated network flow and extract vehicle
trajectories. Feeding each trajectory into a microscopic emission model provides a second-
by-second estimate of the emissions from each vehicle. Aggregating the emissions from
all the individual vehicle trajectories provides an estimate of the network-wide emissions
following the conventional detailed microscopic approach. In this paper, the project level
of MOVES (EPA 2010) is used as the microscopic emission model, but the same method
could be used with any microscopic model that uses vehicle trajectories as the model
input.

3.2. Estimation of Emission Factors

Our goal is to estimate emission factors for each component of the driving cycle, so
a sample of trajectories is parsed into cruising, idling, acceleration, and deceleration.
This process requires that thresholds be defined to distinguish between slight oscillations
in speed and larger changes that are associated with accelerations and decelerations
associated with stopping. The following criteria were used to parse the trajectories in
Shabihkhani and Gonzales (2013) and they are used again in this study:

(1) A vehicle is considered to be stopped and idling whenever the speed is slower than
1 mph (1.6 km/hr).
(2) A vehicle is considered to be accelerating or decelerating when the the following



conditions hold: the absolute value of the rate of acceleration exceeds 0.2 mph/sec
(0.3 km/hr/sec); the speed changes by at least 5 mph (8 km/hr); the duration of the
acceleration or deceleration lasts at least 2 sec; an intermediate period of opposite
acceleration does not exceed 1 sec; and an intermediate period of low acceleration
does not exceed 3 sec.

(3) The remaining time, the vehicle is moving at steady enough speed that it is con-
sidered to be cruising.

These criteria were identified because they provided the closest match between the num-
ber of stops counted with the automated procedure and the number of manually counted
stops from empirically measured and simulated trajectories. Although this parsing pro-
cess may appear complicated, the important thing is collect observations of enough ve-
hicle trajectories to obtain a good estimate of the average idling, cruising, accelerating,
and decelerating behaviors.

Once the trajectories have been broken into each of the components of the driving cycle,
each trajectory segment has a duration and is analyzed with a microscopic emission model
to estimate the corresponding vehicle emission. For the idling and cruising, the results
are simply averaged to obtain an average emission rate for each second of idling and each
second of cruising. For the accelerations and decelerations the duration and total emission
are both important quantities. Each stop requires that a vehicle decelerate and accelerate,
so the sum of the deceleration and acceleration durations are the period of time when
vehicles are neither cruising nor idling. The cycle of decelerating and accelerating for a
stop is associated with a quantity of pollutants emitted per vehicle stop.

In this paper, we evaluate the proposed analytical model with a number of different
network scenarios in which the free-flow speed is vy = 53 km/hr. The project level of
MOVES was used to analyze a sample of trajectories extracted from an Aimsun sim-
ulation of a ring-shaped network as described in Section 3.1. The emissions of interest
for our study are greenhouse gases, because these are global pollutants that are most
important to estimate in aggregate for a network. The relevant unit of measure for green-
house gases is grams of carbon dioxide equivalents (gCOseq) because, this represents the
global warming of all greenhouse gases emitted from the vehicles in terms of an equivalent
amount of CO2. The emissions factors for this case are e, = 2.187 gCOqeq/sec, e; = 0.881
gCO0zeq/sec, e, = 48.876 gCOzeq/stop, and the average duration of an deceleration and
acceleration cycle is 7 = 22 sec.

4. Analytical Model for Network-wide Traffic Variables

Existing macroscopic models for network-wide traffic conditions relate the average net-
work flow, ¢, to the average network density, k. These two variables imply the average
speed of vehicles in the network, v, by the well known relation:

v =q/k. (2)

These variables alone provide a lot of useful traffic information about the capacity of a
network and the delays that drivers in the network experience. Ongoing research is being
conducted to better understand the behavior of the macroscopic flow-density relation for
different types of realistic networks. For the proposed model we suppose that the MFD for
a network is known or has been measured use it to provide an analytical approximation
for the idling time, cruising time, and number of stops for vehicles in the network. The
goal is to develop a model with sufficient detail to estimate aggregated emissions in the
network without the need to track the details of each vehicle’s movements.



As presented in Section 3, the complexities of a second-by-second vehicle trajectory
can be simplified into three key parts of the driving cycle that are related to emissions:
time spent moving at the cruising speed per vehicle-distance, T,; time spent idling per
vehicle-distance, T;; and the number of times that vehicle stops per vehicle-distance, n.
We will first consider how T, and T; can be estimated if n is known. Then we will consider
how the number of stops per distance can be estimated as well.

Suppose that traffic on a homogeneous network has a triangular fundamental diagram
with free-flow speed of v;. If we ignore for the moment the range of speeds that are asso-
ciated with acceleration and deceleration, vehicles will have piecewise linear trajectories
with speed vy while moving (i.e., cruising) or stopped while idling. All travel time for
vehicles can be classified as effectively cruising or effectively idling. The kinematic waves
associated with these idealized trajectories are the same as the aggregated dynamics of
traffic with more realistic acceleration and deceleration patterns (Lighthill and Whitham
1955; Richards 1956).

Every vehicle that stops must decelerate from vy to 0 and then accelerate from 0 back
to vy. The duration of the deceleration is 74 and the duration of the acceleration is
Ta, and these values depend on the behavior of drivers in a particular network. If the
deceleration and acceleration are at constant rates, then half of 74 and 7, is effectively
cruising time and the other half is effectively idling time. Figure 1 shows how a piecewise
linear trajectory and a more realistic trajectory with constant rates of deceleration and
acceleration. For simplicity, we will consider a single time associated with the cycle of
deceleration and acceleration for each vehicle stop 7 = 74 + 7,. Therefore the each stop
reduces the actual time spent cruising by 7/2 and the actual time spent idling by 7/2.
It is important to account for 7 when modeling traffic emissions, because the emission
rates for cruising and idling should be multiplied by the actual cruising and idling times
rather than the effective times.

Distance

'}
S

S
Q

decelerating

Td
-

Td/ 2 Td/ 2
A o

/2 T2
‘[‘-Ll

accelerating

» Time

Figure 1. Relationship between a trajectory with constant deceleration and acceleration rates (solid) and a
piecewise linear trajectory simplified to effective cruising and effective idling (dashed).

The effective cruising time per unit distance is simply the inverse of the free-flow
cruising speed, because no distance is traversed while idling. The actual cruising time
per unit distance is then calculated by reducing the effective cruising time by half of



deceleration and acceleration time for each stop:

T.= — — = 3
¢ vy 2n ()

where n is the number of times a vehicle stops per unit distance traveled.

The effective idling time is the difference between the total travel time per unit distance,
which is the inverse of the average traffic speed, and the effective cruising time. The actual
idling time per unit distance is again calculated by reducing the effective idling time by
the other half of the deceleration and acceleration time per stop:

n=t_L1_T, ()

In many cases, it may be possible to measure n from the same data source used to obtain
the estimated macroscopic traffic state k and g (i.e., traffic data from probe vehicles could
provide an indication of this value). In the absence of direct measurements, it is useful
to be able to express the number of stops analytically. Although an individual vehicle
makes a discrete number of stops per distance traveled, this could vary across vehicles
or road segments. Therefore, it is useful to be able to have an analytical approximation
for n.

The simplest approximation is simply to suppose that on average vehicles are stopped
once per cycle. The average distance traveled during a signal cycle of length C' is vC, so
the number of stops per distance is given by:

1
n= (5)
This approximation is appropriate when the signal offset is 0, and especially when the
duration of the red signal exceeds the time required to travel the length of a block at
free-flow speed: C' — G > {/vy, where £ is the length of a block. When the red phase
is sufficiently long, a vehicle will always have to stop once per cycle when caught at a
red signal. When block lengths or signal times are short enough that thhis inequality is
violated, it is possible for some vehicles to traverse the network without stopping during
every cycle, which is a possible source of errors.

Since the MFD is a property of a specific network, the flow can be expressed as a
function of density, ¢ = @Q(k). The shape and size of Q(k) depends on the network
characteristcis (e.g., saturation flow, jam density, and block length) and traffic signal
settings (e.g., cycle length and green ratio). Therefore the average speed of vehicles in
the network can be expressed as a function of density, so (2) becomes v(k) = Q(k)/k.
The emissions in a network are estimated by evaluating T, T;, and n with v(k) and
substituting the resulting driving cycle components into (1).

5. Evaluation with an Idealized Network

The proposed analytical model is evaluated by constructing an idealized network in
a microsimulation, and then comparing the emissions estimates with the results of a
conventional microscopic emissions analysis. The accuracy of analytical approximations
for the MFD itself are beyond the scope of this paper, so the analytical approximations
are made assuming that the MFD is measured and known. A ring model is used to
represent an idealized homogeneous network as explained in Section 3.1. It is from this



simulation that the empirical MFD is measured, and the detailed vehicle trajectories
are also extracted in order to calculate the modeling error relative to the conventional
microscopic modeling approach.

First a comparison between the analytical modeling approach and the conventional
simulation approach is investigated for a base case network. Then, the effect of varying
one network parameter — the green ratio — is demonstrated using the analytical model to
show how the proposed modeling approach can be used to evaluate changes to the system.
Finally, an error analysis if conducted to compare the performance of the analytical model
relative to the conventional microscopic approach shows that for a wide variety of network
characteristics and traffic states.

5.1. Comparison of Analytical and Simulation Model Results

The base case network that is used to illustrate the performance of the proposed ana-
lytical model has the following properties: free-flow speed, vy = 53 km/hr; saturation
flow, s = 1900 veh/lane-hr; jam density, k; = 200 veh/lane-km; green ratio (length of
green phase divided by signal cycle length), G/C = 0.50; signal cycle length, C' = 60 sec;
block length, £ = 0.30 km; and no signal offset. Running the simulation for a range of
densities between 0 and k;, the average network flow ¢ is plotted for each density % in
Figure 2. The points in the figure indicate the measurements from the simulation, and
we will suppose that Q(k) is the empirical curve connecting these points (shown as the
solid line).
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Figure 2. Network flow-density relation (MFD) measured from the simulation of an idealized ring network (G/C =
0.50; C' = 60 sec; £ = 0.30 km).

Using average network speed at each density, v(k) = Q(k)/k, the number of stops is
estimated using (5). Figure 3(a) shows the analytically estimated value of n (solid line)
and the number of stops determined by analysis of the simulated vehicle trajectories
(dots) as described in Section 3.2. The plot shows that the analytically estimated number
of stops has a similar and close trend to simulated values, especially at low densities (k <
75 veh /lane-km) associated with the free-flow branch of the MED. At greater densities the
number of stops observed in simulation start to grow faster than the analytical prediction,
because the interactions between vehicles as conditions become congested create some



additional stop-and-go waves that are not accounted for in the simple model. At the
highest densities (k > 175 veh/lane-km), where traffic is nearly completely jammed, the
estimated number of stops per distance soars while the observed number of stops actually
declines. This is due to the fact that in extremely congested conditions, vehicles move so
little during each cycle that the trajectories do not trigger the necessary thresholds for
the stops to get counted.
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Figure 3. Components of the driving cycle estimated using the analytical model and measured from simulation
(G/C =0.50; C = 60 sec; £ = 0.30 km).

The analytically computed values for n are then used along with the values of v(k)
to estimate the time per distance spent cruising, based on (3), and idling, based on
(4). Figure 3(b) shows the analytically estimated idling time (solid line) and the idling
time measured from the simulated trajectories (dots). The analytically approximation fits
closely with the simulated values. Since the idling time and cruising time are calculated by
subtracting the duration of the deceleration and acceleration cycles associated with each
stop, errors in the estimated number of stops contribute to errors in the estimated values
of T, and T;. The values of k where stops are underestimated also have overestimated
values of T; and vice versa. The error that affects the idling time (as shown Figure 3)
also affects the cruising time estimates (not shown) in a similar way.

The total greenhouse gas emission per vehicle distance traveled is calculated by multi-
plying each of the estimated driving cycle components by the associated emission factors
as show in (1). These results can be compared with the outcome of a conventional micro-
scopic emissions analysis using the simulated vehicle trajectories. A comparison of the
analytically estimated emissions (solid line) and the aggregated simulation output (dots)
is shown in Figure 4. The close agreement between the analytical macroscopic model and
the detailed simulation model occurs because aggregating the emissions from all vehicle
trajectories together has the effect of averaging out variations from vehicle to vehicle.

5.2. Variation of Signal Timing

The proposed analytical model is particularly useful for comparing the performance
of networks with different characteristics. One example is to consider the effect that
changing signal timings has on the emissions from traffic in a network. Using all the
same network parameters as the base case presented in Section 5.1, an evaluation of
the effect of changing the green ratio is conducted by changing only the value of G/C.
Figure 5(a) shows the MFD for each of the green ratios G/C € {0.25,0.50,0.75}. The
middle value is the same base case presented in Figure 2.
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Figure 4. Network-wide emissions estimated using an analytical model based on the MFD and estimated using
detailed trajectories from a simulation and microscopic emission analysis (G/C = 0.50; C' = 60 sec; £ = 0.30 km).
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Figure 5. Comparison of MFD and analytically estimated emissions for varying green ratios, G/C €
{0.25,0.50,0.75}.

The effect of G/C on the MFD is not surprising, because a longer green phase within
the cycle allows a greater flow of vehicles to traverse the network. The most restrictive
green time (G/C = 0.25) is associated with a low network capacity, and a constant flow
that is associated with a wide range of densities. The analytically estimated emissions
for each of the cases are shown in Figure 5(b). The results show that the more restricted
green ratio is associated with greater emissions per vehicle distance traveled, but there
is not a big difference between G/C = 0.50 and G/C = 0.75.

The ability to compare scenarios based only the MFD is useful because detailed tra-
jectories do not need to be extracted and analyzed with the microscopic emission model
for each case considered. A similar method can be applied to changing other network
parameters such as the cycle length, C', and block length, . All of these cases are asso-
ciated with the same free-flow speed, vy, so the set of the emission factors (e, e;, and
es) and the duration of each acceleration and deceleration cycle (7) remains the same as
the base case. If the free-flow speed in the network were to change, these factors would
have to be re-estimated.

11



5.3. Model Errors

In order to assess the accuracy and robustness of the proposed analytical model, an error
analysis has been performed to compare the estimated emissions from the analytical
model with the results of a detailed simulation and microscopic emission analysis. The
accuracy is quantified by calculating the percent error of each analytically calculated
emission value relative to the simulated result.

Starting from the base case presented in Section 5.1 with G/C = 0.50, C' = 60 sec,
and ¢ = 0.30 km, a systematic error analysis was conducted for each of the following
variations in isolation: the green ratio, G/C € {0.25,0.50,0.75}; the signal cycle length,
C € {30,60,120} sec; and the block length, ¢ € {0.15,0.30,0.60} km. For each case a
separate ring simulation was constructed to generate the MFD for the analytical approx-
imation and to generate the detailed vehicle trajectories for the conventional microscopic
analysis. The percent error of the proposed analytical approach relative to the conven-
tional microscopic simulation approach is summarized in Table 1.

Table 1. Percent error of emissions estimate from the aggregated analytical emission model relative to the micro-
scopic simulation model (Base case: G/C = 0.5; C = 60 sec; £ = 0.30 km).

Network Properties Network Density, k (veh/lane-km)

G/C C (sec) ¢ (km) 25 50 100 150 200
Variation of the Green Ratio

0.25 60 0.30 2.1% 4.9% 0.9% 1.7% 15.9%

0.50 60 0.30 -1.7% 1.3% 10.5% -7.6% 19.5%

0.75 60 0.30 -8.4% -5.1% -1.2%  -17.4% 22.4%
Variation of the Signal Cycle Length

0.50 30 0.30 9.3% 10.1% 5.5% 0.4%  49.7%

0.50 60 0.30 -1.7% 1.3% 10.5% -7.6% 19.5%

0.50 120 0.30 -11.0%  -10.0% 0.2% -1.8% 1.1%
Variation of the Block Length

0.50 120 0.15 -5.0% 8.5% 6.7% -1.2% 22.6%

0.50 120 0.30 -T1.7% 1.3% 10.5% -7.6% 19.5%

0.50 120 0.60 -10.3% -7.5% 1.4% 02%  22.4%

The network scenarios are clustered into three groups, each group showing the results
of varying one of the network variables. The center row of each cluster is the base case
so that the effect on the percent error from increasing and decreasing each variable can
be compared one at a time. In almost all cases when the network is not completely
jammed (k < 200 veh/lane-km), the model is within 11% of the simulated value. These
errors do not appear to have a systematic biasand the magnitudes are small relative to
the variation in emission rates for different values of k as shown in Figures 4 and 5(b).
Therefore, the proposed analytical model provides a good approximation for the detailed
microscopic estimates.

Ounly at the jam density (kK = 200 veh/lane-km) are the errors very large and consis-
tently positive. These large errors occur when the network is near a state of complete
gridlock, because the model predicts a large number of stops but the traffic moves so
little with each cycle that the vehicle trajectories in the simulation never move faster
than a slow crawl. Fortunately, these extremely jammed conditions are rare, and the
model performs well for a wide range of congested traffic conditions and a wide range of
network characteristics.
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6. Conclusion

A model has been proposed that makes use of the macroscopic relationship between
average flow and density known as the MFD to make analytical estimates of the network-
wide emissions from traffic. A robust relationship is shown between the components of
that driving cycle that are associated with vehicular emissions and the fundamental
properties of the network. Aggregated traffic parameters are used to identify a typical
driving cycle. The components of the driving cycle per vehicle distance traveled (i.e.,
cruising time, idling time, and number of stops) are estimated based on the aggregated
flow-density relation (MFD), the free-flow speed in the network, the duration of a typical
acceleration and deceleration associated with a vehicle stop, and the signal cycle length.
These components are then multiplied by emission factors that are developed using a
detailed microscopic emission model, such as the project level of MOVES.

The Integrated Traffic Emission Model (ITEM) that has been presented and evaluated
in this paper links macroscopic traffic flow models with microscopic emissions models
in order to exploit the strengths of each modeling approach. Conventional microscopic
traffic emissions modeling requires detailed data for individual trajectories, which must
either be measured in the field or generated with a microsimulation, in order make de-
tailed emissions estimates. This is not practical for estimating emissions in large urban
networks, but that macroscopic emissions models that are currently available do not
adequately account for the effect that properties of the road network have on driving cy-
cles and the resulting emissions estimates. The proposed modeling approach address this
challenge by making use of state-of-the-art macroscopic traffic models that are sensitive
to properties of the network such as the lane capacities, block lengths, and traffic signal
timings. By making use of the MFD, which embodies the effects of network properties on
the aggregated flow-density relation, network-wide emissions can be reliably estimated
for a wide range of traffic conditions without the need for extensive simulations and
trajectory analysis.

The effect of network characteristics and traffic dynamics on real MFDs is currently
a topic of extensive research. The flow-density is known to exist and be robust for ide-
alized homogeneous networks, so this was used to demonstrate the potential for using a
macroscopic approach to approximate driving cycles in the network. The shape of the
MFD has been studied for various types of networks have been developed (Daganzo and
Geroliminis 2008; Ji et al. 2010; Gayah and Daganzo 2011), but we suppose that this
relation is either measured or determined by some other method. Given the traffic state
on the MFD, a few other network characteristics (vy, C, and 7), and the emission factors
(ec, €i, and eg), the ITEM has been shown to approximate the vehicular emissions within
11% of the values from microscopic analysis of simulated trajectories for all but the most
congested traffic states.

This proposed model is useful for monitoring emissions in real networks, because traf-
fic states can be monitored using data collected from many different sources, including
vehicle probes, mobile phones, and fixed detectors. The same data that is useful for
monitoring traffic and implementing efficient traffic control system can also be used to
estimate network-wide emissions without simulations or extensive additional data collec-
tion. Furthermore, the analytical approach provides a tool for systematically analyzing
the effect of changes to the network on emissions by tracking the effect on the MFD.
While this paper has focused on demonstrating the potential of this integrated model
with an idealized ring-shaped network, additional work is needed to determine how well
the modeling approach applies to more realistic networks that may have turning ve-
hicles, signal offsets, or inhomogeneous signal timings and block lengths. Nevertheless,
the proposed model has value because it provides a less data-intensive way to estimate
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aggregated netowrk emissions, which is especially important for tracking pollutants like
greenhouse gases that have a global impact.
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