
Computer Science & Engineering: An International Journal (CSEIJ), Vol.6, No.4, August 2016

DOI:10.5121/cseij.2016.6401 1

A REVIEW OF MEMORY ALLOCATION AND

MANAGEMENT IN COMPUTER SYSTEMS

Ahmed Faraz

Department of Computer & Software Engineering, Bahria University Karachi Campus,

13 National Stadium Road, Karachi -75260, Pakistan

ABSTRACT

In this paper I have described the memory management and allocation techniques in computer systems. The

purpose of writing this survey paper is to elaborate the concept of memory allocation and management in

computer systems because of the significance of memory component in computer system’s hardware. It is

apparent from the work of computer scientists that effective and efficient main memory management and

virtual memory management in computer systems improves the computer system’s performance by

increasing throughput and processor utilization and by decreasing the response time and turnaround time.

Firstly I have compared Uniprogramming system with Multiprogramming system. After comparison I found

that Multiprogramming systems are quite better than Uniprogramming systems from the point of view of

memory utilization. Also the functionality of operating system routines which are responsible for user’s

memory partitioning must be improved to get better system performance in Multiprogramming system .In

Uniprogramming system , the processor remains idle most of the time but dividing the memory into

partitions for holding multiple processes as in Multiprogramming system does not solve the problem of

idleness of a processor. Mostly all of the processes need I/O access, therefore processor also remain idle in

Multiprogramming system. We have also discussed resource memory in detail and compared fixed

partitioning with variable partitioning. After in depth study we found that variable partitioning is more

advantageous than fixed partitioning because reallocation of page frames is impossible in fixed

partitioning for a set of active processes at time instant‘t’. In this paper we have also discussed MIPS

R2/3000 machine virtual to real address mapping in detail so that virtual to real address mapping can be

understood through a machine’s architecture and example.

KEYWORDS

Queues, Long Term Queues, Short Term Queues, I/O Queues, Swapping, Processor Scheduling, Fixed

Partitioning, Variable Partitioning, Page Frames, Pages, Virtual Memory, Physical Memory, Processor

Utilization, Throughput, Response Time, Turnaround Time

1. INTRODUCTION

There are different models and classification of memory management schemes. The computer

systems deal with allocation of memory pages to processes. In order to allocate the memory pages

to active processes, two policies or schemes are implemented in computer systems. These policies

or schemes are “Fixed Partitioning” and “Variable Partitioning”. These policies are also referred

as Fixed Allocation Scheme and Variable Allocation Scheme. In Fixed Partitioning, the partition

of memory apportioned to an active process is unalterable during the period of existence of a

process. In Variable Partitioning, the partition of memory apportioned to an active process is

alterable according to the memory requirements of an active process during the period of

Computer Science & Engineering: An International Journal (CSEIJ), Vol.6, No.4, August 2016

2

existence of a process. In this paper we reviewed memory management in computer systems and

discussed a case study of MIPS R2/3000 virtual to real address mapping at the end of the paper so

that an advanced computer system’s memory management can serve as an example for

understanding computer system’s memory management.

2. MEMORY MANAGEMENT

Usually there are two types of systems, Uniprogramming systems and Multiprogramming

systems. The Uniprogramming systems are those systems in which memory is divided into two

parts. The first part of the memory contains operating system and the second part of memory

contains the programs which are currently being executed. The first part of the memory which

contains operating system is called “Resident Memory”. The Multiprogramming systems are

those systems in which memory is divided into two parts .The first part of the memory contains

operating system and the second part of the memory contains the programs which are currently

being executed as discussed in [23]. Here in Multiprogramming systems, the user part of the

memory is further subdivided into multiple sub-parts or sub-portions. These sub-parts or sub-

portions are used to accommodate multiple processes. It is the operating system that subdivides

user’s memory into sub-parts or sub-portions to accommodate multiple processes.

Figure 1. Memory Management in Uniprogramming System

Computer Science & Engineering: An International Journal (CSEIJ), Vol.6, No.4, August 2016

3

Figure 2. Memory Management in Multiprogramming System

2.1. Queues in Computer Systems

Queues are defined as waiting lines and are implemented as buffers in computer systems. These

buffers are either on primary storage medium that is main memory or they are on secondary

storage medium that is hard disk. When processes are ready to execute, they are loaded in

memory and are allocated a dedicated memory space for execution. On the basis of readiness for

execution, different queues are implemented in memory of computer system and on the secondary

storage medium or hard disk as elaborated in [23].

Those processes which reside in I/O queues have to wait for a long time because the execution of

I/O processes in memory of computer system depend upon the readiness of I/O device .We have

observed that the processor in uniprogramming system remains idle most of the time because I/O

activities are much slower than computation. In Uniprogramming system only one process is

executed in memory at one time, therefore if the process is waiting for I/O access then the

processor cannot perform any action or execution and has to wait. Due to this waiting for I/O

device access, the processor goes into dormant state; therefore processor utilization in

Uniprogramming system is very low whereas the processor utilization in multiprogramming

system is comparatively high because in Multiprogramming system the processor can perform

another computation if one process or all of the processes are waiting for I/O device access as

discussed in [23].

2.2. Types of Queues

There are three types of queues in computer systems:

(i) Long Term Queues

(ii) Short Term Queues

(iii) I/O Queues

Computer Science & Engineering: An International Journal (CSEIJ), Vol.6, No.4, August 2016

4

The Long Term Queues contain new processes which arrive in the system for execution. The

Long Term Queues are implemented on hard disk space or the secondary storage medium. The

Short Term Queues contain those processes which are ready for execution and ready to use the

processor. The I/O Queues contain those processes which are not ready to use the processor and

these processes require I/O device access for their complete execution.

Defining Long Term Queues for new processes, Short Term Queues for ready processes, I/O

Queues for those processes not ready for use by the processor does not solve the problem in

entirety. In Multiprogramming system, memory contains multiple processes and processor can

move from one process to another process when one process is waiting for I/O. In

Multiprogramming system it is very common that all of the processes wait for I/O access and the

memory does not hold such processes which are entirely independent of I/O. Therefore, the

processor has to wait. The other reason for idleness of the processor in Multiprogramming system

is that there is a speed mismatch between processor and I/O devices, the processors are much

faster than I/O devices, therefore the processor has to wait after execution of one process. Hence

it can be concluded that the processor still remain idle in Multiprogramming system most of the

time.

If the size of memory is increased, then it can occupy more processes and more processes can run

in memory in Multiprogramming system as discussed in [1]. Nowadays the size of memory is not

an issue, random access memory in gigabytes are available at low cost but as the big sized

memories are easily available at very low cost, the size of programs and processes also increased

too much. When processes of very large size are loaded in memory, the processor takes time in

execution of such big processes. For example, those processes or programs written in Java

language occupy huge amount of memory and the system becomes slower when Java based

applications run.

Figure 3. Implementation of Queues in the Processor Scheduling

Computer Science & Engineering: An International Journal (CSEIJ), Vol.6, No.4, August 2016

5

2.3. Swapping

Since we know that the long term queue is established on disk storage or secondary storage

medium and it contains process requests arrived from the system for execution. The process

requests are entered into main memory one at a time. Only one process can be executed in main

memory at one time instant. When the process completes its execution in main memory, it leaves

the main memory. Usually there are two types of processes in main memory: the first type of

processes are those processes which complete execution in main memory and the second type of

processes are those processes which does not complete execution in main memory [4]. The

second type of processes which does not complete their execution are halted but does not enter

into the idle state in swapping because the processor establishes named as an “Intermediate

Queue” on the disk storage. Those processes which are halted after some partly executions in

main memory are brought into the Intermediate Queue from main memory. Now the processor

brings a new process into main memory either from an Intermediate Queue or from Long Term

Queue for execution. Now the execution continues with the newly arrived process as explained in

[23].

Figure 4. Simple Job Scheduling

Computer Science & Engineering: An International Journal (CSEIJ), Vol.6, No.4, August 2016

6

Figure 5. Swapping

2.3.1. Swapping is an I/O Operation, how?

There are two components of Computer Systems which involve in I/O, the disk storage and the

main memory. In swapping, the processor brings a process from the long term queue into main

memory which is an input operation. This process completes its execution in main memory and

leaves the main memory. Those processes which does not complete their execution in main

memory are brought from the main memory into intermediate queue which is an output operation

and then the processor either selects a process from an Intermediate Queue or from Long Term

Queue and bring the selected process into main memory for execution which is an input

operation.

Figure 6. Swapping with Input and Output Operations

Computer Science & Engineering: An International Journal (CSEIJ), Vol.6, No.4, August 2016

7

2.3.2. Swapping enhances the Computer System’s Performance, how?

When we compare disk I/O with tape I/O or printer I/O, we learn that the disk I/O is the fastest

I/O on the system .In swapping, disk I/O is involved which is the fastest I/O on the system,

therefore swapping enhances the Computer System’s performance. The virtual memory improves

the Computer System’s performance over simple swapping as discussed in [16].

2.4. Classification of Memory Policies

When we discuss Memory Policies Classification, a question is raised in our minds that “what is

page fault rate?” In general the page fault rate “f” is a value not entirely intrinsic to the process.”

Page fault rate “f” is not a parameter pertaining to the real nature or essence of a process. This

discriminating and crucial parameter is dependent on memory management policy. Page fault rate

“f” defines two things: (a) how many main memory pages are apportioned to a process? (b)

Selection of a policy to decide which process’s page will reside in main memory as discussed in

[16].

2.5. The Effect of Memory Management Policy

Suppose that we have a typical computer system in which there is a change in memory

management policy. This change can improve the page-fault rate “f” without changing the system

load and other system parameters as discussed in [22]. The following three advantages can be

obtained through change in memory management policy:

(i) Improvement in processor utilization

(ii) Increment in system throughput

(iii) Decrement in response time

If someone is so inquisitive and has a question in mind that whether the change in memory

management policy may improve the processing efficiency or not, then the reply is that this

change does not increase process-paging rate as discussed in [18]. This means that either the

process-paging rate remains same or the process-paging rate is decreased due to the change in

memory management policy. There are two classes of memory management policies in

multiprogramming systems, the first one is Fixed Partitioning and the second one is Variable

Partitioning.

2.6. Mathematical Representation

In this survey, the terminologies and mathematical notations are taken from original work [22] by

Denning and Graham. Let us consider the interval in which the level of multiprogramming is

fixed . During this interval, the set of active processes will be following:

 (1)

At time instant‘t’, the process is associated with its resident set .

 is defined as the set of the page frames of the process present in memory. The resident set

 contains pages. This means that the minimum numbers of pages present in the

Computer Science & Engineering: An International Journal (CSEIJ), Vol.6, No.4, August 2016

8

set of the page frames of the process present in main memory must be equal to or greater than

1.There exists sharing among ‘active processes’ in the memory. Due to this reason resident sets

 overlap with each other. The reasoning is that when the processes become active in the

memory, then these active processes share data and information with each other. A specific

process does not stay in memory without communication with the other process . That is the

communication and co-ordination between two processes and is indispensable. Since the

resident sets are associated with active processes , therefore there exists an overlapping

between resident sets and active processes as discussed in [22].

.

Figure 7. Overlapping of Resident Sets and Active Processes

Finally the resident sets s overlap because of the sharing that takes place among active

processes

.

Figure 8. Overlapping of Resident Sets

Computer Science & Engineering: An International Journal (CSEIJ), Vol.6, No.4, August 2016

9

2.6.1. Partition Vector Z (t)

The management configuration is represented by a Partition Vector Z (t).

 (2)

This implies that the Partition Vector consists of a set of d resident sets. Here is the

First Resident Set, is the Second Resident Set, is the Third Resident Set, and

is the Resident Set.

2.6.2. Size Vector z (t)

The Size Vector z (t) is mathematically represented as follows:

 (3)

2.6.3. Total Page Frames

The total set of page frames used by the‘d’ processes is

 (4)

 (5)

This mathematical notation represents that total set of page frames used by the‘d’ processes is the

union of‘d’ resident sets where the resident sets range from i= 1 to d

2.6.4. Total Number of Pages Shared by Processes

Suppose that there are two processes and . It is assumed that .Also suppose that

 represents the number of pages shared by processes and at time instant‘t’.

Computer Science & Engineering: An International Journal (CSEIJ), Vol.6, No.4, August 2016

10

Figure 9. represent the number of pages shared by processes and

Suppose that there are three processes and .Also suppose that

represents the number of pages shared by processes at time instant‘t’.

Figure 10. represent the number of pages shared by processes

Computer Science & Engineering: An International Journal (CSEIJ), Vol.6, No.4, August 2016

11

When we include time instants t, we may write

 (6)

 (7)

 (8)

When we ignore time instants t, we may write

 (9)

 (10)

 (11)

Here the following membership functions are true:

 (12)

 (13)

 (14)

Here is the number of pages in set Z. The sum of all with r subscripts represent the

total number of pages shared by r processes at time instant t. Therefore, we observe that when we

calculate total number of page frames, union operation is implemented and when we calculate

total number of pages shared by processes, intersection operation is implemented as discussed in

[18].

Suppose that there are ‘r’ processes at time instant ‘t’, then the total number of pages shared by ‘r’

processes at time instant ‘t’ will be represented by the sum of all with ‘r’ subscripts. This

will be denoted as . Therefore we can write the following equations:

 (15)

 (16)

 (17)

Here the following inequality exists to find out the range of number of processes:

 (18)

Here‘d’ represents the total number of processes. The following block diagram shows the general

notation for the sum of all with r subscript.

Computer Science & Engineering: An International Journal (CSEIJ), Vol.6, No.4, August 2016

12

Figure 11. Total number of pages shared by ‘r’ processes at time instant‘t’.

 When we consider the values of subscripts as follows:

 (19)

Then the above block diagram will become:

Figure 12. Total number of pages shared by ‘r’ processes at time instant‘t’ for a case of

Computer Science & Engineering: An International Journal (CSEIJ), Vol.6, No.4, August 2016

13

2.7. Description of Feller’s Equation or Inequality

The following subsections will describe the mathematical notation for the Feller’s Equation as

described in [22].

2.7.1. Total Number of Terms in

The term has terms and last sum reduces to a single term that indicates the

number of pages shared by all the processes. The term represents total number of pages

shared by processes at time instant .

2.7.2. Total Number of Terms in

The term consists of only single term. This single term represents the number of pages

shared by all the processes.

2.7.3. Feller’s Equation or Inequality

The Feller’s Equation or Inequality states that:

 (20)

In the Feller’s equation we have:

: Total number of pages shared by processes at time instant .

: Total number of page frames available for allocation in memory.

We can observe that if we expand the Feller’s equation we get:

 (21)

Feller’s equation states that either the total number of page frames available for allocation in

memory will be equal to the total number of pages shared by processes at time instant or the

total number of page frames available for allocation in memory will be greater than the total

number of pages shared by processes at time instant .Feller’s equation can also be written

as follows:

Computer Science & Engineering: An International Journal (CSEIJ), Vol.6, No.4, August 2016

14

 (22)

In equation A, we can notice that when we take the summation of total number of pages shared by

 processes at time instant , we see that due to the term , the sign associated with

 continuously changes with alternative next term.

2.8. Resource Memory

In this survey, our purpose is to study and analyse the main memory with virtual memory and

virtual memory allocation and management in computer systems. There are some pages in main

memory which are used by active processes and there are certain pages in main memory which

are not used by active processes as discussed in [16]. Those pages in main memory which are not

used by active processes is called “Resource Memory”. The Resource Memory is denoted by R(t)

as follows:

 (23)

Since we are discussing the analytical techniques for the virtual memory allocation and

management in computer systems, the complexity of analytical modelling techniques becomes

more when we include the sharing concept.

For the sake of simplicity we assume that there is no sharing and Nr = 0 for r>1. This assumption

simplifies the problem greatly and the equation of Resource Memory becomes:

 (24)

 (25)

There is a specific method in memory management policy used to determine the program’s set of

localities. The purpose of the program’s set of localities is to determine the contents and size of

each process’s resident set.

There are two types of partitioning: Fixed Partitioning and Variable Partitioning. In Fixed

Partitioning, the partition vector or size vector does not varies with time‘t’. In Variable

Partitioning, the partition vector or size vector varies with time‘t’.

Suppose that there is a process and the process is active in computer systems and the

resident set size is a fixed constant for all time during which process is active. In this

case the Partition Vector or Size Vector is constant during which any set of active processes is

fixed. This is known as Fixed Partition approach. In the Variable Partition approach, the partition

vector or size vector is variable or the partition vector Z (t) varies with time. The partition vector

or size vector Z (t) varies when any set of active processes change. There are some advantages of

Computer Science & Engineering: An International Journal (CSEIJ), Vol.6, No.4, August 2016

15

Fixed Partitioning over Variable Partitioning but the Variable Partitioning is more advantageous

than Fixed Partitioning.

The most important advantage of Fixed Partitioning is the low overhead of implementation. The

reason for very low overhead of implementation is that during Fixed Partitioning, the partition

vector changes very less frequently because we know that the partition vector changes if and only

if the set of active processes change. Since the set of active processes change less frequently,

therefore the partition vector Z (t) also change very less frequently.

Also the Fixed Partitioning approach has an advantage of large variance in locality set size. In

Fixed Partitioning, the active processes change very less frequently. Even if the memory

requirements for processes can be known prior to processing, the change in locality of processes

occurs if there is a change in set of active processes.

We can correlate the change in locality with change in the set of active processes. Since in Fixed

Partitioning, the change in partition vector Z (t) occurs less frequently, the set of active processes

change less frequently, therefore there is a small change in locality. Suppose that we have a set of

active processes for Fixed Partitioning then each process has a large

variance in locality set size when time varies. If the time does not vary then each process has

zero variance in locality set size. In Fixed Partitioning, the computer system’s page allocation

algorithms suffer too much difficulty in page reallocation because the partition vector Z (t) is

fixed. There is no way to reallocate page frames from to at a time when ’s locality is

smaller than and ’s locality is larger than .

Suppose that the reallocation of page frames from to have advantages in terms of

performance and reallocation of page frames of would improve the performance and

reallocation of page frames of would not degrade the performance but due to the stringent

requirements on partition vector size in fixed partitioning and fixed allocation of page frames to

memory and active processes, reallocation of page frames is impossible even we view the

advantages of reallocation of page frames. For the purpose of reallocation of page frames we have

to move towards Variable Partitioning. After a deep study of Fixed Partitioning and Variable

Partitioning, we see that the Variable Partitioning has far more advantages than Fixed Partitioning

approach because there is a severe loss of memory utilization for processes that exhibit a wide

variance of locality size as discussed in [22].

2.9. Memory Address Translation in the MIPS R2/3000

The MIPS R 2/3000 microprocessor employs an on-chip MMU as discussed in [21]. The MMU’s

primary function is to map 32-bit virtual addresses to 32-bit real addresses. Later members of the

RX000 family like the R10000 support 64-bit addresses. A 32-bit address allows the R2/3000 to

have a virtual address space of 232 bytes or 4 GB. Both address spaces are composed of 4 KB

pages , which are convenient block sizes for information transfer within a conventional memory

hierarchy comprising a cache(of the split kind), main memory and secondary memory as

discussed in [21]. The 4 GB virtual address space is further partitioned into four parts called

“segments”, three of which form the system region or “kernel region” in MIPS nomenclature ,

devoted to operating system functions, while the other is the user region, where application

programs, data and control stacks are stored.

Computer Science & Engineering: An International Journal (CSEIJ), Vol.6, No.4, August 2016

16

The format of an R2/3000 virtual address appears in the Figure 13, 14. It consists of a 20-bit

virtual page address, referred to as the virtual page name VPN, and a 12-bit displacement D,

which specifies the address of a byte within the virtual page. The high order 3-bits 31:29 of VPN

form a type of tag that identifies the segment being addressed. Bit 31 of VPN is 0 for a user

segment and 1 for a supervisor segment, it thus distinguishes the user and supervisor (privileged)

control states of the CPU. The user segment is “kuseg” and occupies half the virtual address

space. The supervisor region is divided into three segments, kseg0, kseg1, and kseg2, each of

which has different characteristics as elaborated in [21].

Kuseg: This 2GB segment is designed to store all user code and data. Address in this region make

full use of the cache and are mapped to real addresses via the TLB.

Kseg0: This 512 MB system segment is cached and unmapped: that is , virtual addresses within

kseg0 are mapped directly into the first 512 MB of the real address space, which includes the

cache, but no virtual address translation takes place. This segment typically stores active parts of

the operating system.

Kseg1: This is also a 512 MB segment, but is both uncashed and unmapped. It is intended for

such purposes as storing boot-up code which cannot be cached and for other instructions and

data-high speed I/O data, for instance – that might seriously slow down cache operation.

Kseg2: This is a 1GB segment which, like kuseg, is both cached and mapped.

The MMU contains a TLB to provide fast virtual-to-real address translation. The TLB stores a

64-entry portion of the memory map (page table) assigned to each process by the operating

system. The current virtual page addressVPN is used to access a 64-bit entry in the TLB which

contains among other items, a 20-bit page frame number PFN. This real page address is fetched

from the TLB and appended to the displacement D to obtain the desired 32-bit real address. An

R2/3000 based system often has less than 4GB of physical memory, in which case not all the

available real address combinations are used.

Observe that the VPN itself is also part of the TLB entry because a fast access method called

“Associative Addressing” is used. Another major item stored in each TLB entry is the 6-bit

process identification field PID. This field distinguishes each active program or process; hence up

to 64 processes can share the available virtual page numbers without interference. There are also

4 control bits denoted NDVG, which define the types of memory accesses permitted for the

corresponding TLB entry. For example N denotes non-cacheable when set to 1, it causes the CPU

to go directly to main memory, instead of first accessing the cache. D is a write-protection (read-

only) bit; an attempt to write when D=0 causes a CPU interrupt or trap.

The MMU has some features not shown in Figure 14, which are designed to trap error conditions

that are collectively referred to as “Address Translation Exceptions”. When a trap occurs, relevant

information about the exception is stored in MMU registers, which can be examined and modified

by certain privileged instructions as discussed in [21]. A common address translation exception is

a TLB miss, which occurs when there is no valid entry in the TLB that matches the current VPN.

The operating system responds to a TLB miss by accessing the current process’s page table,

which is stored in a known location in kseg2, and copying the missing entry to the TLB. Another

address-translation exception type is an illegal access-for instance, a write operation addressed to

a page with D=0(read only) in its TLB entry.

Computer Science & Engineering: An International Journal (CSEIJ), Vol.6, No.4, August 2016

17

Figure 13. Translation look-aside buffer TLB in the MMU of MIPS R2/3000

Figure 14. Memory address mapping in the MMU of the MIPS R2/3000

Computer Science & Engineering: An International Journal (CSEIJ), Vol.6, No.4, August 2016

18

3. CONCLUSIONS

This paper is in fact a survey paper in which I have reviewed the Memory Management and

Allocation in Computer Systems. I have started the review by elaborating the most fundamental

concepts that is Queues in Computer Systems, type of Queues which are Long Term Queues,

Short Term Queues, Intermediate Queues, I/O queues with their role in process scheduling in

accordance with the readiness of process execution and Swapping. After discussing these

fundamental concepts I got the conclusion that Swapping improves the performance of Computer

Systems and the Virtual Memory improves the performance over swapping of Computer systems.

In fact there is a very strong relation between “Memory Allocation and Management policy” and

“System Load and System Parameters”. If there is a change in Memory Allocation and

Management without changing the System Load and System Parameters then the overall

performance of computer systems is improved. Also the Page Fault rate is improved .In this paper

I have discussed the mathematical notation for Multiprogramming Systems. Also I developed the

graphical models for overlapping of resident sets and active processes, the number of pages

shared by two processes , the number of pages shared by three processes and total number of

pages shared by ‘r’ processes at time instant ‘t’ using Set Theory. It is concluded that when we

calculate total page frames, the union operation is implemented and when we calculate total

number of pages shared by processes, the intersection operation is implemented. We have put

light on the concept of Resource Memory in computer systems and we also discussed MIPS

R2/3000 virtual to real address mapping in detail.

ACKNOWLEDGEMENTS

I would like to thank the ex- Director General of Bahria University Karachi campus, Vice

Admiral Khalid Amin HI(M) (Retired)and the Director of Bahria University Karachi Campus,

Captain Mohsin H. Malik TI(M) PN for motivating me to be involved in research work in my

field of interest. They have always persuaded the faculty to do research work for the sake of

serving the humanity, science and engineering. Also I would like to thank Dr. Farah Naz Lakhani

for motivating me to contribute towards research in the field of Computer Systems Engineering

and Computing.

REFERENCES

[1] M. Tofte and J.-P. Talpin, "Region-based memory management," Information and computation, vol.

132, pp. 109-176, 1997.

[2] C. A. Waldspurger, "Memory resource management in VMware ESX server," ACM SIGOPS

Operating Systems Review, vol. 36, pp. 181-194, 2002.

[3] J. C. Lau, S. C. Roy, D. L. Callaerts, and I. E. N. Vandeweerd, "Method and apparatus for allocation

and management of shared memory with data in memory stored as multiple linked lists," ed: Google

Patents, 1999.

[4] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, "Dynamic storage allocation: A survey and

critical review," in Memory Management, ed: Springer, 1995, pp. 1-116.

[5] K. Moronaga and M. Watanabe, "Storage management system for memory card using memory

allocation table," ed: Google Patents, 1993.

[6] D. F. Hooper, G. Wolrich, M. J. Adiletta, and W. R. Wheeler, "Method for memory allocation and

management using push/pop apparatus," ed: Google Patents, 2003.

[7] D. Gay and A. Aiken, Memory management with explicit regions vol. 33: ACM, 1998.

Computer Science & Engineering: An International Journal (CSEIJ), Vol.6, No.4, August 2016

19

[8] C. A. Waldspurger and W. E. Weihl, "Lottery scheduling: Flexible proportional-share resource

management," in Proceedings of the 1st USENIX conference on Operating Systems Design and

Implementation, 1994, p. 1.

[9] T. J. Lehman and M. J. Carey, "A study of index structures for main memory database management

systems," in Proc. VLDB, 1986.

[10] E. D. Berger, B. G. Zorn, and K. S. McKinley, "OOPSLA 2002: reconsidering custom memory

allocation," ACM SIGPLAN Notices, vol. 48, pp. 46-57, 2013.

[11] O. Avissar, R. Barua, and D. Stewart, "An optimal memory allocation scheme for scratch-pad-based

embedded systems," ACM Transactions on Embedded Computing Systems (TECS), vol. 1, pp. 6-26,

2002.

[12] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, et al., "Query processing, resource

management, and approximation in a data stream management system," 2003.

[13] F. Catthoor, S. Wuytack, G. de Greef, F. Banica, L. Nachtergaele, and A. Vandecappelle, Custom

memory management methodology: Exploration of memory organisation for embedded multimedia

system design: Springer Science & Business Media, 2013.

[14] I. Foster, C. Kesselman, C. Lee, B. Lindell, K. Nahrstedt, and A. Roy, "A distributed resource

management architecture that supports advance reservations and co-allocation," in Quality of Service,

1999. IWQoS'99. 1999 Seventh International Workshop on, 1999, pp. 27-36.

[15] I. Puaut, "Real-time performance of dynamic memory allocation algorithms," in Real-Time Systems,

2002. Proceedings. 14th Euromicro Conference on, 2002, pp. 41-49.

[16] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and S. Kumar, "Dynamic tracking of

page miss ratio curve for memory management," in ACM SIGOPS Operating Systems Review, 2004,

pp. 177-188.

[17] D. J. McMahon and G. A. Buzsaki, "Dynamic memory allocation in a computer using a bit map

index," ed: Google Patents, 1998.

[18] K. Harty and D. R. Cheriton, Application-controlled physical memory using external page-cache

management vol. 27: ACM, 1992.

[19] A. Aiken, M. Fähndrich, and R. Levien, Better static memory management: Improving region-based

analysis of higher-order languages vol. 30: ACM, 1995.

[20] M. B. Jacobson, J. W. Fordemwalt, D. L. Voigt, M. D. Nelson, H. Vazire, and R. Baird, "Memory

systems with data storage redundancy management," ed: Google Patents, 1995.

[21] John P. Hayes (1998) Computer Architecture and Organization, WCB/McGraw- Hill Books,

McGraw-Hill International Editions.

[22] Denning P.J. and Graham G.S, “Multi-programmed Memory Management”, Proc. IEEE, vol 63, June

1975, pp 924-939

[23] William Stalling (2004) Computer Architecture and Organization, WCB/McGraw- Hill Books,

McGraw-Hill International Editions.

AUTHOR

Mr. Ahmed Faraz holds Bachelor of Engineering in Computer Systems and Masters of

Engineering in Computer Systems from N.E.D University of Engineering and

Technology, Karachi Pakistan .He has taught various core courses of computer science

and engineering at undergraduate and postgraduate level at Sir Syed University, N.E.D

University and Bahria University Karachi for more than ten years. His research interests

include Artificial Intelligence, Data Mining, Parallel Processing, Computer Architecture

and Organization, and Statistical Learning.

