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Abstract— The high integration of residential Photovoltaics 

(PVs) to the low voltage distribution network, poses several 

challenges to the operation of the power systems today. The 

main reason is that roof-top solar PV sites are usually 

unobservable by the distribution system operators (DSOs) and 

consequently their generation is not measured. Therefore, the 

accurate knowledge regarding the real time generation of the 

residential PVs will become an imperative need. In this paper, 

a methodology for estimating the power generated by all the 

residential PVs of a certain area using the available 

information from some observable residential PVs is proposed. 

Considering the high impact of the solar panel orientation on 

the PV generation, the proposed method clusters together the 

residential PVs with the same orientation. The results show 

that there is a maximum reduction in the mean absolute error 

by 62% in the summer season for 25 degree panel azimuth in 

comparison to the case that the generation of the unobservable 

PVs are estimated without using the orientation of the solar 

panels. The methodology was validated using real data from 

residential PVs.     

Keywords—Big data, clustering, PV power estimation, 

residential PVs, solar panel azimuth. 

NOMENCLATURE 

β Slope of the solar panel 

γi Panel azimuth of the 𝒊𝒕𝒉  panel 

𝐺𝑀𝑖
𝛾  

 

Geometric Mean (GM) of panels azimuth 

γ for residential prosumer 𝑖 

𝑀𝐴𝐸𝑁𝑃(𝑒,𝑡,𝛾)  Mean Absolute Error (MAE) of estimated 

normalized power of the unobservable 

prosumer for γ degree panel azimuth at 

time t 

𝑀𝐴𝐸𝑁𝑃(𝑒,𝑡)  MAE of the base case estimation of the 

unobservable prosumer without 

considering panel azimuth at time t 

𝑁𝑃𝑖  Normalized Power (NP) of prosumer 𝑖 

𝑁 𝛾  Number of observable prosumers 

belonging to a panel azimuth cluster γ 

𝑁𝑃𝑒,𝑡,𝑖 Estimated normalized power of prosumer 
𝑖 at time t 

𝑁𝑃𝑒,𝑡,𝐺𝑀𝑖
𝛾

  Estimated normalized power of the 

unobservable prosumer 𝑖  for a specific 

representative panel azimuth 𝐺𝑀𝑖
𝛾
 

𝑁𝑃𝑡𝑟𝑢𝑒,𝑡,𝛾 𝑖
 True normalized power of prosumer 𝑖  at 

time t belonging to a panel azimuth cluster 

γ 

𝑃𝑖  Instantaneous power produced by the 

solar panels of prosumer 𝑖 

𝑃𝑝 Peak capacity of the installed solar panels 

of the prosumer at Standard temperature 

Conditions (STC) 

𝑤𝑖,𝑥 Weights that are given in Table I for four 

cases (A, B, C, D) 

I. INTRODUCTION  

A. Motivation and Background 

The penetration of residential PVs in the distribution grid 
is getting higher today since thousands of electricity 
consumers aims to become energy neutral using renewable 
energy sources. This is in line with the attempt of the 
European Commission to promote the green energy, 
therefore the residential PV generation will be a considerable 
amount in the energy mix of a country in the near future. In 
reality, the generation produced by the residential PVs is 
hardly known by the operators and essentially is a source of 
uncertainty to the grid operation. In theory, one may estimate 
the total PV generation by measuring every single solar 
generation site. However, considering the enormous growth 
of small scale and roof top PV sites [1], building an 
infrastructure to collect and continuously monitor all these 
small-scale sites is not a practical nor a cost effective 
solution. 

B. Relevant Literature 

 Considering the increase in the share of the residential 
PVs generation in the distribution grid several research works 
are conducted for the estimation of the total energy generated 
by these residential PVs. Some researchers tried to develop 
methodologies that aggregate the output power of the 
residential PVs in a specific region [2, 3]. In [4], the authors 
proposed k-means clustering and principal component 
analysis to estimate the total power generation of all the sites 
based on a selected subset of the sites. However, since the 
efficiency and the orientation of the solar panels were not 
considered, the estimations were accurate for the sunny days 
and not accurate on the cloudy days of the year. A load 
forecasting method using extreme weather conditions was 
proposed in [5] to estimate the residential PVs installed on 
the feeder level. However, an optimal temperature threshold 
was decided to select the number of days for the training 
model.   In [6], the authors proposed a methodology to 
estimate the solar power generated by the residential PVs 
using only publicly available data set. The availability of the 
results to only specific months of the year is a limitation to 
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the proposed methodology. In [7], the authors provided a 
publicly available data for the solar PV installations in United 
Kingdom. In [8, 9], an equivalent virtual PV prosumer was 
modeled using historical data of individual residential PV 
prosumers. In [10], an upscaling method was proposed in 
which the PV sites were clustered based upon the similar 
power generation pattern. A neural network was then used to 
estimate the power generation of all the clusters. However, 
the authors suggested that better estimations were possible if 
an individual neural network for each cluster was used. Some 
data driven techniques were also implemented in [9, 11, 
12].According to the literature review, there are still 
challenges in the accurate estimation of the residential PV 
generation. First, data outliers are significant factors in 
affecting the estimation results in data driven methods; 
methodology to specify the outliers, can improve the 
estimation model. Second, in an area, only a limited number 
of PV prosumers can be accessible and the large variances in 
the individual PV prosumers introduce challenges in 
correctly estimating the PV generation at the aggregated 
level.  

C.  Contributions and Organization 

      These challenges are considered in this research work, 
proposing a methodology that considers the panel azimuth 
information for each residential prosumer (having PVs). 
Therefore, the contributions of this paper are the following:  

• In this paper, two estimation schemes are proposed to 
estimate the PV generation of the prosumers that their 
PV generation is not measured, hereafter unobservable 
prosumers. Both schemes manage to improve the 
estimation of the PV generation of the unobservable 
prosumers. The estimation schemes consider that the  
orientation of the installed solar panels is known and the 
PV power generated by the panels for the specific 
prosumers is measured through smart inverters, 
hereafter observable prosumers. 

• The panel azimuth information is used after the 
preprocessing step, which not only clusters all the 
prosumers having same panel azimuth, but also helps in 
identifying the outlier prosumer within the grouped 
prosumers. Thus, using panel azimuth of prosumers as 
static information serves as a double check for outliers. 

• Real PV generation data for a whole year having 
different panel azimuths were used to test the developed 
schemes. 

The remaining of the paper is organized as follows. 
Section II introduces the proposed methodology and the 
framework that can be followed to estimate the PV 
generation of unobservable residential prosumers. The 
validation results for the proposed method are shown in 
Section III, while the paper concludes in Section IV.      

II. METHODOLOGY 

In this section the proposed framework for estimating the 

power generation of the residential PVs using the available 

information from some observable prosumers is shown. The 

estimation framework first clusters the prosumers based 

upon the orientation of their solar panels as described in 

Section II.A and then the normalized power of the 

unobservable prosumers is estimated using the method 

described in Section II.B. Fig. 1. explains the methodology 

using a flow chart. The preprocessing of the data set was 

carried out for those prosumers whose data was available for 

a year. The prosumers which had non reporting data either 

due to the faulty sensors of the system or due to electrical 

faults were discarded. In the next step the geometric mean 

of panel azimuth and normalized power were calculated for 

each prosumer and the clustering of the prosumers was done 

for the two estimation schemes. The first scheme is based on 

panel azimuth clustering, and the second scheme is based on 

panel azimuth and distance clustering. The two schemes are 

then compared using performance indicators.   

 

 

 Fig. 1. Flowchart for the Methodology 

A. Clustering of Prosumers  

      The power generated by the solar panels is 
mathematically defined by the two angles: β, the slope of the 
solar panel and γ, the panel azimuth [13]. The domestic 
prosumers have fixed (non-tracking) solar panels and the 
power generated by them mainly depends upon the azimuth 
of the panels. For this paper γ, which is the solar panel angle 
relative to the direction facing south, was taken -180° for east, 
0° for south and +180° for west[14, 15]. The variable γ for 
each solar panel installed in residential prosumer is assumed 
to be known after the installation of the PVs since it is a static 
information. A representative panel azimuth for a residential 
prosumer i can be calculated by using the Geometric Mean 
(GM) of γ of each panel as shown below, 

𝐺𝑀𝑖
𝛾

= √‖𝛾1‖ × ‖𝛾2‖ × ⋯ ‖𝛾𝑛‖
𝑛

 (1) 

where n is the total number of solar panels installed by the 
domestic prosumer and γi  is the panel azimuth of the ith 
panel. The geometric mean was chosen in this paper instead 
of the arithmetic mean due to the large variations in the 
individual panel azimuth of each prosumer. In particular, the 
large variations tend to affect the arithmetic mean since it is 
dominated by numbers on the larger scale whereas 
the geometric mean handles the large variations, due to its 
multiplicative nature. Thus a better representation of the net 
panel azimuth of the prosumer was achieved through the 
geometric mean [16, 17].  The net panel azimuth of the 
prosumers was rounded off to the nearest 5 degrees in order 
to make coherent clusters. All the prosumers of an area with 
the same geometric mean panel azimuth were clustered to the 
same category.  

B. Estimation of the Normalized Power for the 

Unobservable Prosumers in a Cluster 

 After the clustering of the prosumers according to their 
net geometric mean panel azimuth, the estimation of the 
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normalized power of the unobservable prosumers follows. To 
have a common reference for all the prosumers (since they 
have different installed capacity), the Normalized Power 
(NP) of each prosumer was calculated as,  

𝑁𝑃𝑖 =
𝑃𝑖

𝑃𝑝

 (2) 

where Pi represents the instantaneous values of the power 
produced by the solar panels for the ith prosumer and the Pp 
is the peak capacity of the installed solar panels of the 
prosumer. The Pp of each prosumer is taken from 
manufacturer’s data sheet under the STC (Standard 
Temperature Conditions). In order to estimate the normalized 
power of the PVs for the unobservable prosumers, two 
estimation schemes are proposed in this paper. The first one 
(Scheme 1) considers only the panel azimuth of the 
prosumers, while the second one (Scheme 2) considers both 
distance (of the unobservable prosumer from the observable 
one) and the panel azimuth to estimate the normalized power. 
Both Schemes are compared to the base case estimation, 
which does not consider any panel azimuth information for 
the PV generation estimation of the unobservable prosumers.  

1) Base Case Estimation   

In this scheme the estimation of the PV generation for 

the unobservable prosumers is done without considering the 

role of the panel azimuth. Therefore, the normalized power 

of the unobservable prosumer was estimated by averaging 

the normalized power of the observable prosumers as, 

𝑁𝑃𝑒,𝑡,𝑖 =
1

𝑁𝑥

∑ 𝑁𝑃𝑖,𝑥

𝑥∈region

 (3) 

where 𝑁𝑥 is number of customers in region x. Since all the 

observable prosumers that were in the region 𝑥  were 

included for the estimation of the PV generation of the 

unobservable prosumer, the estimated normalized power 

(𝑁𝑃𝑒,𝑡,𝑖
) is simply the average value of all the observable 

prosumers normalized powers (in the region) at time t.  
 

2) Scheme 1-Estimation using the Panel azimuth 

information 
 In this scheme the estimation of the normalized power of 
the unobservable prosumer was done by considering the 
panel azimuth information only. Within each cluster, a 
prosumer’s normalized power curve was estimated using the 
normalized power curve of the observable prosumers 
belonging to the same cluster as,  

 𝑁𝑃𝑒,𝑡,𝐺𝑀𝑖
𝛾

 =
1

𝑁 𝛾 
∑ ( 𝑤𝑖,𝑥 × 𝑁𝑃𝑖,𝑥

 

)            
𝑥∈ 

𝐺𝑀1
𝛾

,⋯𝐺𝑀𝑛
𝛾

 

 
(4) 

where 𝑁 𝛾  is number of observable prosumers belonging to 

a panel azimuth cluster γ and 𝑁𝑃𝑒,𝑡,𝐺𝑀𝑖
𝛾

  represents the 

estimated normalized power of the unobservable prosumer i 

for a specific representative panel azimuth 𝐺𝑀𝑖
𝛾

. 𝑁𝑃𝑖,𝑥 

represents the normalized power of the observable prosumer 

belonging to panel azimuth clusters 𝐺𝑀1
𝛾

, 𝐺𝑀2
𝛾

, … , 𝐺𝑀𝑛
𝛾

 and 

can be calculated by using (2). 𝑤𝑖,𝑥  represents the weights 

that are given in Table I for four cases (A, B, C, D). Case A 

gives equal weights to the prosumers that are having 5 

degrees and more than 5 degrees difference of net panel 

azimuth from the cluster of unobservable prosumer. For Case 

B the weights were redistributed such that there was a 

decrease in the weights of the prosumer lying in the same 

cluster as that of unobservable prosumer and an increase in 

the weights of the prosumer having 5-degree difference from 

the cluster of the unobservable prosumer. In Case C the role 

of the prosumers having more than 5-degrees difference of 

the panel azimuth from the unobservable prosumer was 

decreased in the estimation while it was nullified in Case D. 

It should be noted that all the observable prosumers were 

considered in the estimation procedure except for Case D in 

which the observable prosumers that have more than 5 

degrees difference of net panel azimuth from the cluster of 

the unobservable prosumer were not considered.  

TABLE I.  WEIGHTAGE SCHEMES FOR SCHEME 1 

Cases 

Same Panel 

azimuth as 

unobservable 

Prosumer 

(+, -) 5 degrees 

from the Panel 

azimuth of 

unobservable 

Prosumer 

More than (+, -) 5 

degrees from the 

panel azimuth of the 

unobservable 

prosumer 

Case A 0.80 0.10 0.10 
Case B 0.75 0.15 0.10 
Case C 0.80 0.15 0.05 
Case D 0.80 0.20 0 

  

3) Scheme 2-Estimation based on the Panel azimuth and 

the distance 
 In this scheme the distance of the unobservable prosumer 
from the observable prosumer was also taken into the 
consideration along with the panel azimuth of the 
unobservable prosumer for the estimation purposes. For the 
estimation, (5) was used as well, however the weights (𝑤𝑖,𝑥) 

that were used to multiply the normalized power of the 
observable prosumers are also based on the distances 
between the observable and unobservable prosumers as 
shown in Table II. Case A gives equal weights to far away 
prosumers and nearby prosumers that have the same azimuth, 
whereas for Case B the weights are increased for nearby 
prosumers. In Case C the weights of the far away prosumers 
are reduced and their effect in the estimation is nullified in 
Case D. 

TABLE II.  WEIGHTAGE SCHEMES FOR SCHME 2 

Cases 

Closest to 

unobservable 

Prosumer 

having the 

same panel 

azimuth 

Second and 

third closest to 

unobservable 

prosumer 

having the same 

panel azimuth 

Remaining 

prosumers in the 

panel azimuth 

cluster as the 

unobservable 

prosumer 

Case A 0.80 0.10 0.10 
Case B 0.75 0.15 0.10 
Case C 0.80 0.15 0.05 
Case D 0.80 0.20 0 

  

C. Performance Metric for the Comparison 

In order to assess the performance of the estimation 

schemes, the percentage reduction of the Mean Absolute 

Error (MAE) is used. This metric is calculated by first 

calculating the MAE between the estimated normalized 

power (𝑁𝑃𝑒,𝑡,𝛾 𝑖
) of an unobservable prosumer and the true 

normalized power (since it is actually known). 

𝑀𝐴𝐸 = ∑ |𝑁𝑃𝑒,𝑡,𝛾 𝑖
− 𝑁𝑃𝑡𝑟𝑢𝑒,𝑡,𝛾 𝑖

|

𝑛

𝑡=1

= ∑|𝑒𝑖|

𝑛

𝑡=1

 (6) 



The Percentage Reduction of the MAE (PRMAE) of the 

estimated normalized power of the unobservable prosumer 

(𝑁𝑃𝑒,𝑡,25 ) in relation to the MAE of the base case estimation 

is then calculated as,  

PRMAE  =
𝑀𝐴𝐸𝑁𝑃(𝑒,𝑡,𝛾) −𝑀𝐴𝐸𝑁𝑃(𝑒,𝑡) 

𝑀𝐴𝐸𝑁𝑃(𝑒,𝑡) 
  × 100          (7) 

III. RESULTS 

The proposed estimation schemes were developed using 

Python version 3.6 on a standard PC with an Intel Core i5-

2430M CPU running at 2.40 GHz with 12 GB of RAM. 

Section III.A describes the data set that was used in the 

estimation schemes. Section III.B presents the simulation 

results for prosumers having 25 degree panel azimuth. 

Section III.C concludes the results section by presenting the 

simulation results for prosumers having 10, 20, 40 and 50 

degrees panel azimuths to show the applicability of the 

estimation schemes for other panel azimuth angles. 

A. Description of the Data Set  

To verify the effectiveness of the estimation schemes a 

real data set is used that includes real power generation from 

residential solar prosumers of Nicosia (35°10′N 33°22′E), 

Cyprus. The real values were recorded from September 2020 

to September 2021. The total number of solar residential 

prosumers in this data set is 110. The power production 

values from observable prosumers (Pi) were recorded every 

15 minutes and they were accessed using the solar edge 

website [18], while the measurements were preprocessed 

[19, 20]. In order to generalize the estimation results, data 

for the four seasons of the year were used. It should be noted 

that although the normalized power of all the prosumers in 

each cluster is known, for evaluation purposes one prosumer 

in the cluster is considered as unobservable and the other as 

observables. 

B. Simulation Results for Percentage Reduction in MAE for 

25 Degree Panel azimuth 

To show that the estimations using Scheme 1 and 

Scheme 2 are effective, for all the four seasons of the year, 

two single days of the year are chosen for the summer and 

autumn season, while an extended time frame of 15 days are 

selected to represent the spring and winter season. In 

particular, 1st of November 2020 is selected to represent 

autumn season, 1st of July 2021 to represent summer season, 

first 15 days of February 2021 to represent winter season and 

first 15 days of April 2021 as spring season. The four cases 

(A, B, C, D) are compared with the base case estimation that 

is calculated using (3). 

1) Percentage Reduction of MAE for a Single Day of the 

Season 

     Fig. 2 illustrates the percentage reduction of the MAE for 

the autumn season. In general, both Scheme 1 and Scheme 

2 present a considerable reduction of the MAE, indicating 

that the information regarding the panel azimuth helps the 

estimation of the normalized power of the unobservable 

power. Moreover, the simulation results show that Scheme 

2 is effective in most of the cases for reducing the percentage 

of MAE for the autumn season. As shown in Fig. 2, the 

maximum reduction in MAE is shown by Scheme 2 for 

prosumer 2. For prosumer 3, Cases C and D are showing 

better results for Scheme 1 and Cases A and B of Scheme 2 

results in larger reduction in MAE. In general, both schemes 

result in reduction of MAE, indicating the importance of 

considering panel azimuth in the estimation procedure. 

 
Fig. 2. Percentage Reduction for Simulation on 1st November 2020 

For the summer season, the percentage reduction in the 

MAE for each prosumer is higher in comparison to autumn 

season. More specifically, as shown in Fig. 3 the percentage 

reduction in the MAE for prosumer 4 is 62%, which is the 

maximum one compared to the case when no panel azimuth 

information was used for the estimation of the normalized 

power. Specifically in the summer season, this maximum 

percentage reduction in the estimation of the normalized 

power can be helpful to reduce the uncertainty when PV 

curtailment might be needed for maintaining system 

operation in proper limits. 

  
Fig. 3. Percentage Reduction for Simulation on 1st July 2021    
Fig 4 shows the estimation curves for the autumn season 

which was the most volatile case among the 25-degree panel 

azimuth prosumers. There were three prosumers in the 

cluster for that day and prosumer 2 was taken as an 

unobservable prosumer. The estimated curves show that the 

base case using no panel azimuth information and Scheme 1 

cases using panel azimuth information only estimates the 

curves to be lower than the real values of the prosumer 2. On 

the other hand, Scheme 2 using both the panel azimuth and 

distance information was effective in capturing the real 

values of prosumer 2 even on a cloudy day (as shown by the 

dip around 13:00). This also shows that even with a small 

number of prosumers the distance between the observable 

and unobservable prosumer can have significant reduction 

on the estimation error. Although there were variations in 

the PV generation on this cloudy day, all the cases of 

Scheme 2 follow the trend of the real values of the prosumer.  
      

                              
   

   

   

   

   

  

 
               

               

               

               

               

               

               

               

                                                     
  
 
 
 
 
  
 
 
  
 
  

 
 
 
  
 
 
 
  
  

  
 
  

 

                                                  

   

   

   

   

   

   

 
               

               

               

               

               

               

               

               

                                                     
  
 
 
 
 
 
  
 
  
 
  

 
 
 
  
 
 
 
  
 
 
  
 
 
 
 



 
Fig. 4. Normalized Power Estimations for Prosumer 2 on 1st November 

2020 

2) Percentage Reduction of MAE for 15 Days of the 

Season 

To show that the estimation scheme is generalized for an 

extended timeframe the first 15 days of February are 

selected for the winter season and first 15 days of April are 

selected for the spring season. Fig. 5 and Fig. 6 shows the 

results of the simulations for the winter and spring season. 

For the winter season, Scheme 2 results in greater percentage 

reduction in the MAE in comparison to Scheme 1. The 

maximum reduction is observed for prosumer 2 with 52% 

decrease for Case C weightages and the minimum reduction 

is recorded for prosumer 3 (around 18%) for Case A.  

 
Fig. 5. Percentage Reduction for Simulation 1st February till 15th 
February 

 
Fig. 6. Percentage Reduction for Simulation 1st April till 15th April 

Fig. 6 illustrates the percentage reduction of the MAE for 

the spring season. In general, both Scheme 1 and Scheme 2 

present a considerable reduction of the MAE, indicating that 

the information regarding the panel azimuth helps in the 

estimation of the normalized power of the unobservable 

power. Moreover, the simulation results show that Scheme 

2 (considering both distance and azimuth) is more effective 

in most of the cases for reducing the percentage of MAE for 

the spring season. The maximum reduction is observed in 

prosumer 4 which is almost the same for the four cases A, 

B, C and D of Scheme 2. For prosumers 1 and 4, Scheme 2 

demonstrates a larger percentage reduction of MAE for all 

the cases whereas for prosumer 2 and 3 Cases A and B of 

Scheme 2 are better and Case C and D of Scheme 1 show 

larger percentage reduction of MAE. Based on the 

estimation results from the four seasons, it can be concluded 

that the panel azimuth information plays a critical role in the 

reduction of MAE for the 25-degree azimuth prosumers.  

C. Simulation Results for Percentage Reduction in MAE of 

10,20,40 and 50 Degree Panel azimuths 

To better illustrate the effect of azimuth information in 

the estimation of the PV generation of unobservable 

prosumers, four different panel azimuths other than 25-

degree panel azimuth are selected. The panel azimuths used 

for the simulations are 10-, 20-, 40- and 50-degree panel 

azimuths. More specifically, in Figs. 7-10 each prosumer 

representing a different panel azimuth to show that both 

proposed Schemes provides better results than the base case 

estimation. The prosumer which has the maximum 

percentage reduction in the MAE for each season of the year, 

is selected as the representative prosumer for each panel 

azimuth. The real values of the PV generation of each 

prosumer are taken from the data set as explained in Section 

III.A. For these simulations, 24th of December 2020 is 

selected to represent winter season, 4th of September 2021 to 

represent autumn season, 4th April 2021 as spring season and 

4th July 2021 to represent summer season. 

Fig. 7 and Fig. 8 show the percentage reduction for the 

prosumers belonging to different panel azimuths of Nicosia 

for winter and autumn seasons respectively. For the winter 

season, Scheme 2 results in greater percentage reduction in 

the MAE in comparison to Scheme 1. The maximum 

reduction is observed for prosumer 3 belonging to 40-degree 

panel azimuth with 40% decrease for Case C weights and 

the minimum reduction is recorded for prosumer 4 (around 

22%) belonging to 50-degree panel azimuth for Case B 

weights.  

 
Fig. 7. Percentage Reduction for Simulation on 24th December 2020 
For the autumn season, the trend is retained, and the 

maximum reduction is observed for prosumer 2 belonging 

to 20-degree panel azimuth with 60% decrease for Case C 

weights and the minimum reduction is recorded for 

prosumer 3 which shows 23% reduction. The spring and 

summer seasons are shown in Fig. 9 and Fig. 10 

respectively. Based on the estimation results from the four 

     

           

                    
 

   

   

   

     

           

                    
 

   

   

   

     

           

                    
 

   

   

   

     

           

                    
 

   

   

   

                

               

               

           

                

               

               

           

                

               

               

           

                

               

               

           

    

 
 
 
 
 
  
 
 
 
  
 
 
 
  
  
 
  
 
 
 

                                       

   

   

   

   

   

 
               

               

               

               

               

               

               

               

                                                     
  
 
 
 
 
  
 
 
  
 
  

 
 
 
  
 
 
 
  
  

  
 
  

 

                                       

   

   

   

   

   

   

   

  

 
               

               

               

               

               

               

               

               

                                                     
  
 
 
 
 
  
 
 
  
 
  

 
 
 
  
 
 
 
  
  

  
 
  

 

          

           

          

           

          

           

          

           

   

   

   

   

   

   

   

  

 
               

               

               

               

               

               

               

               

                                                      

 
  
 
 
 
 
  
 
 
  
 
  

 
 
 
  
 
 
 
  
  

  
 
  

 



seasons, it can be concluded that the Scheme 2 results in 

greater percentage reduction in the MAE in comparison to 

Scheme 1 for all the prosumers having different panel 

azimuths.  

 
Fig. 8. Percentage Reduction for Simulation on 4th September 2021 

 
Fig. 9. Percentage Reduction for Simulation on 4th April 2021 

 
Fig. 10. Percentage Reduction for Simulation on 4th July 2021 

IV. CONCLUSION 

This paper deals with the estimation of the residential PV 

power generation that is not measured by any measurement 

device. Two estimation schemes are proposed in this work 

that take into account the panel azimuth for estimating the 

PV generation. The results of the case studies that are carried 

out show the importance of panel azimuth information when 

estimating the normalized power for the residential 

prosumers. Furthermore, it is shown that the large variances 

that occur in the large fleet of the residential PV prosumers 

can be captured by employing the estimation schemes. In 

particular, the estimation scheme based on panel azimuth 

information and distance (Scheme 2) significantly improves 

the estimation of the normalized power for the unobservable 

prosumers for all the seasons of the year. Future work 

includes the use of machine learning techniques that would 

be useful in the estimation of the normalized power of each 

prosumer by considering past data sets and learning 

parameters that may be able to tackle the abrupt changes that 

occur on the cloudy days of autumn and winter.  
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