
First Experiences with Google Earth Engine

José A. Navarro
Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), Av. Carl Friedrich Gauss, 7. Building B4, 08860

Castelldefels, Spain
jose.navarro@cttc.es

Keywords: Google Earth Engine, Distributed Processing, Parallel Processing, Image Processing.

Abstract: This paper presents the first experiences of the author with GEE (Google Earth Engine). A C++ image pro-
cessing algorithm, still under development, was migrated to this new environment using GEE’s web interface
and the JavaScript language. The idea is to discover the problems that might arise when migrating to this
environment as well as to assess the presumable performance boost that should be achieved. A reduced—
more didactic—version of the aforementioned algorithm is presented in a step-by-step way along with a brief
description of the advantages and drawbacks—from the authors standpoint—of GEE.

1 INTRODUCTION

Google Earth Engine (GEE) (Google, 2015a) is
a planetary-scale repository of satellite imagery and
geospatial datasets as well as a powerful service of-
fered to scientists and researchers to analyze such
data. This paper describes the lessons learned by
the author while migrating an image processing al-
gorithm relying on Sentinel-1 imagery to GEE. The
idea was to assess both the advantages and inconve-
niences of using such environment, as well as to eval-
uate the presumable performance boost that should
be expected. GEE is available for the Python and
JavaScript programming languages. This paper fo-
cuses on the browser-based JavaScript version avail-
able online, so the conclusions presented here should
not be extrapolated to the Python counterpart.

The actual algorithm that motivated this work is
too complicated to be didactic. A simplified—and
useless—example is used instead. Such example,
however, poses the same problems that had to be
faced to migrate the original algorithm. It is pre-
sented in equations 1 and 2. Figure 1 depicts a very
schematic C implementation of equation 1. Equation
2 is not shown in Figure 1. Figure 5 depicts the full
JavaScript code implementing the example algorithm.

In a few words, for each value of n, ranging be-
tween 1 and the total number of images in a dataset
minus 1 (t − 1), equation 1 is applied, creating a set
of t− 1 intermediate results (images). Finally, these
t−1 images are merged into a single one (equation 2),
keeping the maximum pixel value for each of these.

for (n = 1; n <= t-1; n++)
for (m = 1; m <= n; m++)
for (r = 1; r <= rows; r++)
for (c = 1; c <= columns; c++)
q(n,r,c)+=pow(p(m,r,c),2.0)/pow(n,2.0);

for (m = n + 1; m <= t; m++))
for (r = 1; r <= rows; r++)
for (c = 1; c <= columns; c++)
q(n,r,c)+= p(m,r,c) / n;

Figure 1: C version of the algorithm shown in equation 1.

qn,r,c =
∑

n
m=1 p2

m,r,c

n2 +
∑

t
m=n+1 pm,r,c

n
,n ∈ [1..t−1]

(1)
ir,c = max(qn,r,c),n ∈ [1..t−1] (2)

where
n,r,c Image, row and column indices.
t Total number of images to process.
pn,r,c Value of the pixel for input image n, row r,

column c.
qn,r,c Value of the pixel for intermediate output

image n, row r, column c.
ir,c Values of the pixel for row r, column c in

the results image.

2 SOME IMPORTANT FINDINGS

The following subsections describe some features,
advantages and drawbacks of GEE that may not be ex-
plained using the example algorithm but that are im-
portant enough to be taken into account.



// server-side list and boolean
var myList = ee.List([1, 2, 3]);
var serverBoolean = myList.contains(5);
// Will print "false".
print(serverBoolean);
// Client-side conditional. It will fail.
var clientConditional;
if (serverBoolean) {
clientConditional = true;

} else {
clientConditional = false;

}
// Should print false, but will print true.
print(’Should be false:’, clientConditional);
//Server-side conditional. It will work.
var serverConditional =
ee.Algorithms.If(serverBoolean,

’True!’, ’False!’);
print(’Should be false:’, serverConditional);

Figure 2: Client-side versus server-side computing.

2.1 Client vs. Server Computation

The JavaScript incarnation of GEE clearly distin-
guishes between client and server worlds. When run-
ning a JavaScript GEE script many operations take
place in the browser (client side) itself, but some oth-
ers are executed by the Google’s servers. It must be
noted that these two worlds do not mix well. GEE
provides a set of Earth Engine objects easily recogniz-
able by their ee. prefix (as, for instance, ee.Image)
that are handled exclusively by the server. On the
other side, JavaScript provides variables which are
only understood with the browser (Google, 2016a).

This leads to situations that are suprising enough.
For instance, index-based iteration is not recom-
mended when Earth Engine objects are involved,
since this would mix client-side, JavaScript variables
(the index) and server-side objects—the Earth Engine
ones—leading to unpredictable (but always incorrect)
results. Map (Google, 2016c) and reduce (Google,
2016f) operations are recommended instead. This
poses some problems on the way algorithms are de-
signed.

The same happens to conditional statements;
server side (ee.) objects may offer boolean methods
that, apparently, could be used by the client-side con-
ditional statements. Since the value returned by those
server objects is not a client-side boolean, client-
side comparisons will also fail. In this particular
case, however, it is possible to use server-side condi-
tional statements. Figure 2, excerpted from (Google,
2016a), depicts this problem.

var i1 =
ee.Image(’MOD09GA/MOD09GA_005_2012_03_09’);

var i2 =
ee.Image(’MOD09GA/MOD09GA_005_2012_03_08’);

var result = ee.Image(i1 - i2);
result = result.multiply(0.0001);

Figure 3: Typical operations on images.

2.2 On-demand vs. Batch Computation

There are two computing modes in GEE: on-demand
and batch. On-demand tasks are run interactively,
immediately; on the other hand, background tasks
are executed in a batch queue. The main difference
between on-demand and batch tasks is a time limit.
On-demand (interactive) tasks cannot run for more
than five minutes; batch tasks may run indefinitely as
long as it is clear that the job is continuing to make
progress (Google, 2016g). Long computations, there-
fore, should be executed in batch mode.

By default, all tasks are run in on-demand mode;
to execute a batch task, command Export (Google,
2016g) must be used.

2.3 Limits

One of the most frequent problems found when run-
ning an program in the GEE environment is the fact
that limits do exist. Time limits and the way to avoid
these have been commented in section 2.2. Memory
and storage limits must also be taken into account.
Memory limit problems normally arise when running
some commands on big images; for instance the com-
putation of the maximum and minimum values per-
formed by the example algorithm will not finish until
the extent of the output image is restricted by a clip-
ping operation (section 3.5). Storage (to save results
in Google Drive or Google Cloud) is also a problem;
although GEE may be accessed using a free Google
account, the standard 15 Gb storage limit is an impor-
tant constraint to keep in mind.

2.4 Images, Channels and Pixels

The algorithm in Figure 1 implements the traditional
pixel-based approach to image processing. Images,
rows and columns are accessed by means of indices
that let the programmer access every individual pixel
to process. GEE, on the contrary, forgets about pix-
els and works directly with images and channels at
once. For instance, Figure 3 shows how two images
are loaded and a third one is computed.

Therefore, equations 1 and 2 must be rewritten as
follows to adapt these to GEE’s philosophy:



#pragma omp parallel for
for(int x=0; x < width; x++)
for(int y=0; y < height; y++)
result[x][y] = computeSomething(x,y);

Figure 4: Explicit parallelization directive in OpenMP.

qn =
∑

n
m=1 p2

m

n2 +
∑

t
m=n+1 pm

n
,n ∈ [1..t−1] (3)

i = max(qn),n ∈ [1..t−1] (4)
where

n Image index.
t Total number of images to process.
pn Input image n.
qn Intermediate output image n.
i Results image.

In this context, for instance, p2
m stands for ”square

the values of all pixels in image pm”.
In short, the maximum granurality of the opera-

tions available in GEE is the image channel. It is not
possible to set the value of a single pixel. This, of
course, poses problems on the way algorithms are de-
vised.

2.5 Transparent Parallelization

Parallelization is automatic and transparent in GEE
(Google, 2016b). This means that no actions need
to be taken to make the algorithm parallel or to in-
dicate the parts that may be parallelized, as it hap-
pens with other parallelization frameworks (OpenMP,
2016). The #pragma directive in the first line of Fig-
ure 4 is an example showing how C / C++ code may
be parallelized using OpenMP. The loop in the fig-
ure would not be parallelized if such directive would
not exist. The effort to identify all the parallelizable
parts in a complex algorithm should be obvious to
the reader. GEE, as stated above, makes this task
transparent to the programmer, so, in this case, all the
advantages of parallelization come without the usual
drawbacks. Parallelization is the key to high perfor-
mance.

2.6 Deferred Processing

An important fact to note is that an algorithm in GEE
may do nothing at all if no information is displayed on
the screen or exported to disk files. GEE analyzes and
optimizes the algorithm in such way that actual com-
putations will take place when these are absolutely
necessary. This feature allows, for instance, loading
the full collection of Sentinel-1 images without run-
ning into memory problems. Obviously, if such col-
lection is not filtered using any criteria, the algorithm

will run into problems as soon as actual output is pro-
duced. The key point here is that computations that
do not lead to actual results will never take place.

3 THE ALGORITHM IN GEE

The following sections describe how the example
algorithm was implemented. The problems that arose
during its implementation are also highlighted.

3.1 Retrieving the Images

Lines 1–5 of Figure 5 show how a few variables are
initialized. Lines 6–21 of the same figure are much
more interesting, since they show a powerful mech-
anism to fetch the input images. Line 6 declares a
variable—only1BandCollection—to hold them. In
line 7 the full Sentinel-1 collection is selected; line 8
reduces the number of images so only those captured
between January 1st, 2014 and September 1st, 2016
are taken into account. In lines 9–10 the collection
is filtered a bit more, keeping only those images cov-
ering the point whose coordinates are provided; the
filtering process goes a little bit further in lines 11–
13, where it is stated that the images captured along
some specific orbital path of satellite should only be
selected. Lines 14–16 state that the images still in
the collection must be filtered once more to keep only
those with a given pixel resolution, and lines 17–18
request that the instrument used to capture the im-
agery must be the one specified there.

Then a specific single band for every image in the
collection is selected (line 20), so all the other bands
are discarded. Finally, line 21 sorts the remaining im-
ages in a chronological order.

The point to stress here is that such a powerful
image selection and filtering mechanism avoids the
need to manually download the different images in-
volved in the process, thus reducing substantially the
time needed to get started.

3.2 Preparing the Images

Although equations 3 and 4 already assume the han-
dling of full images instead of pixels—which is com-
patible with GEE’s approach—these still rely on the
use of index-based iteration—which is not (section
2.1). Consequently, the algoritm had to be adapted
to GEE’s phylosophy.

The first change was to limit the number of in-
put images to process to a certain value (variable
max images). This is done in lines 22–23 of Figure
5. The key point is that, knowing the actual number



001 var orbit_number = 81;
002 var max_images = 5;
003 var band_to_extract = ’VV’;
004 var resolution_meters = 10;
005 var instrumentMode = ’IW’
006 var only1BandCollection =
007 ee.ImageCollection(’COPERNICUS/S1_GRD’)
008 .filterDate(’2014-01-01’, ’2016-09-1’)
009 .filterBounds(ee.Geometry.Point
010 ([-3.714566, 40.425326]))
011 .filter(ee.Filter.eq
012 (’relativeOrbitNumber_start’,
013 orbit_number))
014 .filter(ee.Filter.eq
015 (’resolution_meters’,
016 resolution_meters))
017 .filter(ee.Filter.eq
018 (’instrumentMode’,
019 instrumentMode))
020 .select(band_to_extract)
021 .sort(’system:time_start’, false);
022 only1BandCollection =
023 only1BandCollection.limit(max_images);
024 var mergeChannels =
025 function(image, outputImage)
026 {
027 outputImage =
028 ee.Image(outputImage);
029 outputImage =
030 outputImage.addBands(image);
031 return outputImage;
032 };
033 var mergedImage =
034 ee.Image(only1BandCollection
035 .iterate(mergeChannels,
036 ee.Image(0).select([])));
037 mergedImage = mergedImage.double();
038 var logRemovedImage =
039 ee.Image(10)
040 .pow(mergedImage.divide(ee.Image(10)));
041 logRemovedImage =
042 logRemovedImage
043 .rename([’1’,’2’,’3’,’4’,’5’]);
044 var bandMap =
045 {
046 ’a’: logRemovedImage.select(’1’),
047 ’b’: logRemovedImage.select(’2’),
048 ’c’: logRemovedImage.select(’3’),
049 ’d’: logRemovedImage.select(’4’),
050 ’e’: logRemovedImage.select(’5’)
051 }
052 // n = 1
053 var intermediateResult =
054 logRemovedImage.expression
055 (
056 ’(a*a) +’ +
057 ’((b + c + d + e))’,
058 bandMap
059 );

060 var the_result =
061 intermediateResult;
062 // n = 2
063 intermediateResult =
064 logRemovedImage.expression
065 (
066 ’((a*a + b*b) / 4) +’ +
067 ’((c + d + e) / 2)’,
068 bandMap
069 );
070 the_result =
071 intermediateResult.max(the_result);
072 // n = 3
073 intermediateResult =
074 logRemovedImage.expression
075 (
076 ’((a*a + b*b + c*c) / 9) +’ +
077 ’((d + e) / 3)’,
078 bandMap
079 );
080 the_result =
081 intermediateResult.max(the_result);
082 // n = 4
083 intermediateResult =
084 logRemovedImage.expression
085 (
086 ’((a*a + b*b + c*c + d*d) / 16) +’ +
087 ’(e / 4)’,
088 bandMap
089 );
090 the_result =
091 intermediateResult.max(the_result);
092 var limits =
093 ee.Geometry.Rectangle
094 (-3.747899, 40.458659, -3.681233, 40.391993);
095 the_result = the_result.clip(limits);
096 var stats = the_result.reduceRegion({
097 reducer: ee.Reducer.max()
098 .combine(ee.Reducer.min(),
099 null, true),
100 maxPixels: 1e9,
101 tileScale: 16});
102 var min_image_value =
103 ee.Number(stats.get(’1_min’));
104 var max_image_value =
105 ee.Number(stats.get(’1_max’));
106 var the_normalized_result =
107 the_result.subtract(min_image_value)
108 .divide(ee.Image.constant(max_image_value)
109 .subtract(min_image_value))
110 Map.setCenter(-3.714566, 40.425326, 8);
111 Map.addLayer(the_normalized_result,
112 {’min’: 0, ’max’: 1},
113 ’The normalized result’);
114 Export.image.toDrive({
115 image: the_normalized_result,
116 description: ’The_normalized_result’,
117 scale: 10,
118 maxPixels: 1e13
119 });

Figure 5: The algorithm.



of images to work with, it is possible to rewrite the
equations exactly for the specific number of selected
images (five in the example, line 2, Figure 5). Equa-
tions 3 and 4 may thus be rewritten as follows:

q1 = (p2
1)+(p2 + p3 + p4 + p5) (5)

q2 = ((p2
1 + p2

2)/4)+((p3 + p4 + p5)/2) (6)

q3 = ((p2
1 + p2

2 + p2
3)/9)+((p4 + p5)/3) (7)

q4 = ((p2
1 + p2

2 + p2
3 + p2

4)/16)+(p5/4) (8)
i = max(q1,q2,q3,q4) (9)

Obviously, these new equations will change de-
pending on the actual number of selected images,
which has direct implications on the maintainability
of the code. However, this modification makes pos-
sible to implement the algorithm using the so-called
GEE image expressions (Google, 2016d). An expres-
sion is a method of the ee.Image class that is able to
parse a textual representation of a math operation and
then apply it to the channels in the image. The prob-
lem is that expressions cannot involve several images,
but a single one.

Since the algorithm has stored the single-channel
max images images in an image collection, ex-
pressions may not be used to compute the equa-
tions: expressions are able to work with the chan-
nels in a single image only. To solve this prob-
lem, the algorithm was adapted again to transform the
only1BandCollection collection into an unique im-
age made of these single channel images. This muta-
tion made possible the use of expressions.

The solution is to iterate through the whole
only1BandCollection image collection, calling a
function as many times as images it contains. The
function will append the (current) single-channel im-
age in the collection (first parameter) as a new chan-
nel to an output, results image (second parameter).
Once the iterator has invoked the function for each of
the images in the collection, the results is the sought
multichannel, merged image. To iterate through im-
age collections their method iterate may be used.
It takes two parameters: the name of the aforemen-
tioned function (mergeChannels in the example) and
the results image, which must be empty. The func-
tion mergeChannels is defined in lines lines 24–31
of Figure 5. The iterator itself is invoked in lines 33–
36. The result is assigned to mergedImage.

Line 37 changes the kind of values stored in
mergedImage to double to avoid precision prob-
lems when computing the equations. In lines 38–
40, the logarithmic scale affecting Sentinel-1 imagery
(Google, 2015b) is removed using a simple arithmetic
operation, so the original values are restored. The re-
sulting image is logRemovedImage.

3.3 The Tailored Equations

Now it is possible to implement the tailored version
of the algorithm as shown in equations 5 to 9 using
expressions. The first thing to do is to rename the
channels in logRemovedImage (lines 41–43 of Fig-
ure 5) to refer to these easily—the previous operations
baptized the channels with rather weird names. Note
that this command is fragile since it depends on the
number of images selected at the beginning of the al-
gorithm.

Expressions need to refer to the different channels
in an image using labels. A dictionary (bandMap) is
defined in lines 44-51 of the example. It allows the
reduction of the amount of code required for each ex-
pression. It defines, respectively, channels 1 to 5 in
image logRemovedImage as a, b, c, d and e, the ac-
tual labels used in the expressions. Then equations 5,
6, 7 and 8 are implemented as expressions in lines 52–
59, 62–69, 72–79 and 82–89 respectively. Equation
9 is implemented sequentially, computing the partial
maximum just after the evaluation of each expression
(lines 70–71, 80–81 and 90–91). Note how the ex-
pressions mimetize the equations. The result of this
process is stored in an image, the result. To finish,
it is worth to remark that the expressions used by the
algorithm directly depend on the number of images to
be processed, set at the beginning of the code, which
again compromises code maintainability.

3.4 Clipping

Lines 92–94 in the example define a rectangle of in-
terest. It will be used to clip the results image, so it
will cover the area stated by such rectangle only. Clip-
ping is essential; otherwise, the algorithm will try to
compute a result for a very big area— as big as a full
Sentinel-1 image—taking, for this example, about 20
hours of elapsed time to complete. Taking into ac-
count that the algorithm is run in parallel in several
Google servers such amount of time is not negligible.

The clipping operation takes place in line 95. Note
that the algorithm has not yet shown nor stored the re-
sult, so according to the deferred processing approach
(section 2.6) no computations have taken place nei-
ther; that is why it is possible to clip the results image
after evaluating the expressions at no computational
cost.

3.5 Normalizing, Visualizing, Exporting

Although not shown in equations 5 to 9, the result had
to be interpreted as a probability map; thus, the results
image had to be rescaled to store values in the range



[0..1]. To do it, the minimum and maximum pixel
values in the result had to be computed. This was
done by means of a reduce operation (Google, 2016e),
that is, one that takes a full image and returns a single
result (in this case, a set of statistics). The computa-
tion may be found in lines 96–101 of the example. Pa-
rameters maxPixels and tileScale are optional, but
have been explicitly passed to reduce the chances of
running into memory problems. Lines 102–105 copy
the values of the minimum and maximum pixel values
into floating point variables to use them later. Then
the image is normalized by means of an arithmetic
image operation (lines 106–109); the result is stored
in the new image, the normalized result.

Note again that no actual processing has taken
place until now because of the deferred processing
feature (section 2.6). In lines 110-113 the map is dis-
played on the screen, so the actual processing can be
deferred no more. The amount of work (pixels) to
compute will depend on the scale of the map shown,
so when using big scales the computation is almost in-
stantaneous (only a few pixels will be actually com-
puted). Decreasing the scale will increase the com-
putational cost. Lines 114–118 export the result to
Google Drive (other export methods exist). Export-
ing implies that the whole result will be computed
and that the batch mode will be used (section 2.2);
the computational cost will depend again on the ac-
tual scale selected (in meters per pixel).

4 CONCLUSIONS

GEE is a good tool for image-processig related re-
search. The servers offered by Google plus the par-
allel processing approach and the availability of con-
stantly updated on-line imagery are key points. The
web-based interface is ideal to quickly test new ideas.
On the contrary, the map / reduce / iterate approach
that forgets about pixel-based operations, plus the ab-
sence of index-based server iterations are, at least
in the beginning, serious obstacles to surmount: it
implies a radical change in the way algorithms are
implemented—which may be difficult to maintain due
to tailored solutions (as setting a limited number of in-
put images to process). Limitations do exist. The on-
demand work mode restricts the maximum run time
to 5 minutes. This means that the (complex) process
of big areas must take place using the batch mode.
Memory limitations also exist; these apply to both
on-demand and batch modes. One solution to over-
come these seems to be the clipping of the output
area. To finish, performance is exceptional in on-
demand mode. No results are available yet to com-

pare the batch mode with the non-GEE implementa-
tion, although a performance boost is foreseable due
to parallel, distributed execution in GEE.

ACKNOWLEDGEMENTS

The author wants to thank Noel Gorelick for the in-
valuable help provided when answering a noticeable
number of questions in the Google Earth Engine de-
veloper’s forum.

REFERENCES

Google (2015a). Google Earth Engine. Available on-
line: https://earthengine.google.com/. Ac-
cessed: 2017-01-10.

Google (2015b). Sentinel-1: C-band Synthetic Aperture
Radar (SAR) ground range data, log scaling. Avail-
able online: https://explorer.earthengine.
google.com/#detail/COPERNICUS%2FS1_GRD. Ac-
cessed: 2016-12-28.

Google (2016a). Google Earth Engine API. Client vs.
server. Available online: https://developers.
google.com/earth-engine/client_server. Ac-
cessed: 2017-01-10.

Google (2016b). Google Earth Engine API. Introduction.
Available online: https://developers.google.
com/earth-engine. Accessed: 2017-01-10.

Google (2016c). Google Earth Engine API. Map-
ping over an image collection. Available
online: https://developers.google.com/
earth-engine/ic_mapping. Accessed: 2017-01-
10.

Google (2016d). Google Earth Engine API. Mathematical
operations. Available online: https://developers.
google.com/earth-engine/image_math. Ac-
cessed: 2017-01-10.

Google (2016e). Google Earth Engine API. Reducer
overview. Available online: https://developers.
google.com/earth-engine/reducers_intro. Ac-
cessed: 2017-01-10.

Google (2016f). Google Earth Engine API. Re-
ducing an image collection. Available on-
line: https://developers.google.com/
earth-engine/ic_reducing. Accessed: 2017-01-
10.

Google (2016g). Google Earth Engine developer’s fo-
rum; thread: Batch versus interactive. Available
online: https://groups.google.com/forum/
#!topic/google-earth-engine-developers/
dIsa00Sm9e8. Accessed: 2017-01-10.

OpenMP (2016). The OpenMP API specification for par-
allel programming. Available online: http://www.
openmp.org/. Accessed: 2016-12-28.


