

Safety and toxicity assessments and methodology

Andy Booth

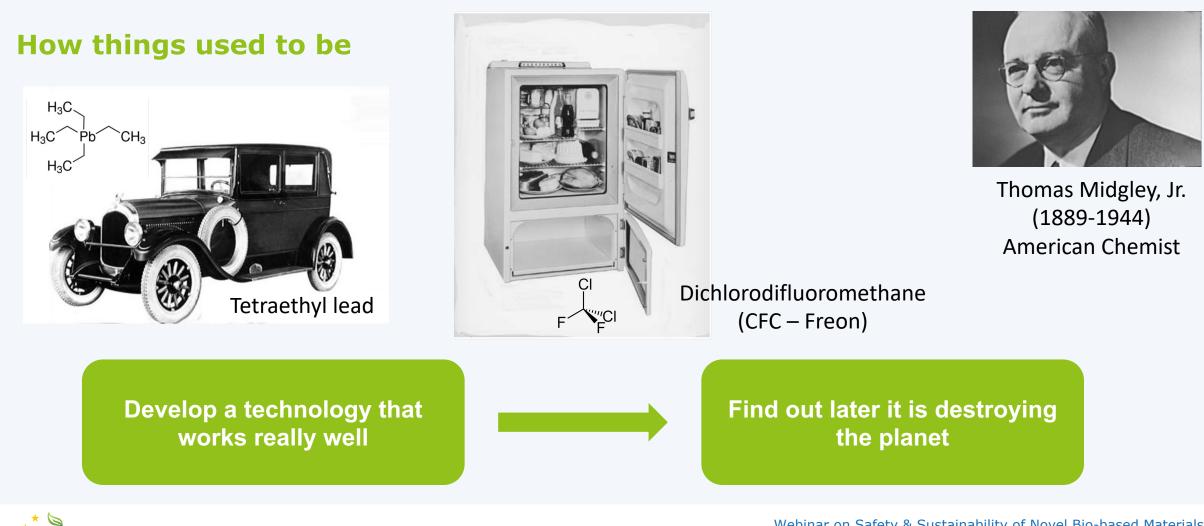
Webinar on Safety & Sustainability of Novel Bio-based Materials Andy Booth, SINTEF Ocean

www.perfecoat-project.eu 1

Why conduct safety testing?

Safeguard human health Reduce environmental impact Regulatory compliance

Maintain optimal product performance


Webinar on Safety & Sustainability of Novel Bio-based Materials Andy Booth, SINTEF Ocean

www.perfecoat-project.eu 2

Safety and Sustainability in PERFECOAT

Bio-based Industries Consortium

Webinar on Safety & Sustainability of Novel Bio-based Materials Andy Booth, SINTEF Ocean

www.perfecoat-project.eu 3

Importance of early toxicity testing

- Facilitate early go-no go decisions:
 - Prevent time loss on developing (a group of) molecules with a non-favourable toxicity profile
 - Improved overall toxicity profile from starting materials intermediates final materials
- Give guidance for further testing
- Facilitate compliance with regulatory requirements
- Market introduction of safe bio-based products

Safety and Sustainability in PERFECOAT

Safety testing.....how?

Chemical

Toxicology

Classical testing of toxicity: in vivo (animal) testing extrapolated to human hazard

- Time-consuming
- Non-ethical
- Technical concerns with animal testing
- Search for methods to reduce or eliminate animal testing ("3 Rs" reduce, refine, replace)

Safety and Sustainability in PERFECOAT

<u>SSbD of</u> High Performance Bio-based Functional Coatings for Wood and Decorative Applications

WP6 Task 6.1 Chemical safety assessment

- Objectives:
- Feedback key chemical risk information for all candidate biopolymer coating materials (iterative 'safe by design' approach).
- Conduct leaching studies to determine components transferring from the polymer to (i) water and (ii) those that may cause skin irritation.



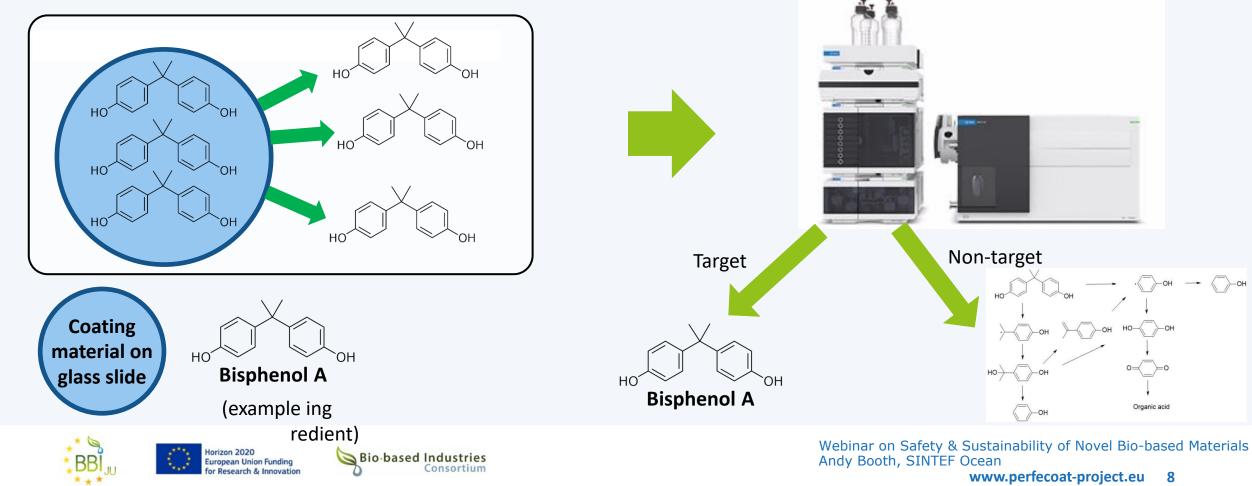
Task 6.1 - Chemical safety assessment

Conduct a comparison of the chemical exposure risks between the new and existing materials.

All major chemicals identified in the product leachates will be quantified and cross-referenced with the European Chemicals Association (ECHA) database and EU REACH regulation (EC 1907/2006).

Alternative will be proposed to substitute chemicals having the highest risk.

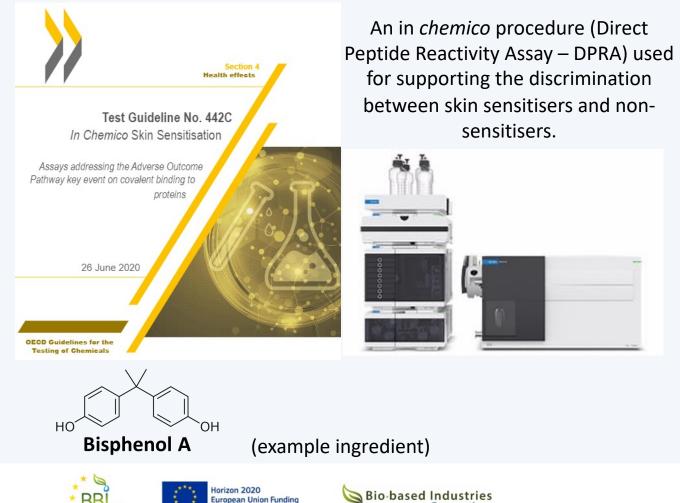
Organic acid

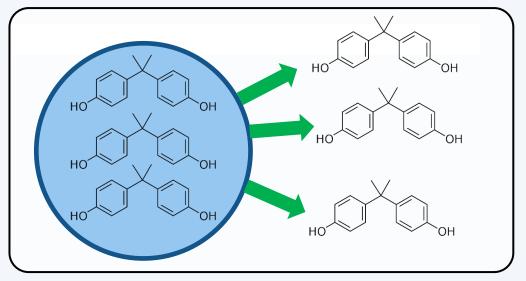

LC-MS Analysis

Target and non-target screening

Aqueous leaching

(Additives, residual chemicals, monomers)

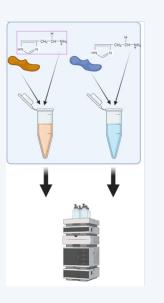


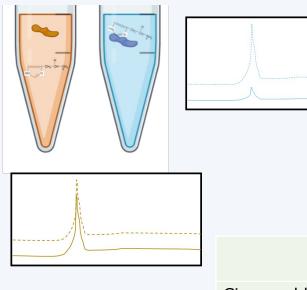

OECD 442c – Skin Sensitisation

Consortium

Aqueous leaching

(Additives, residual chemicals, monomers)

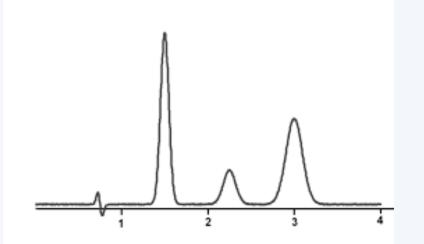


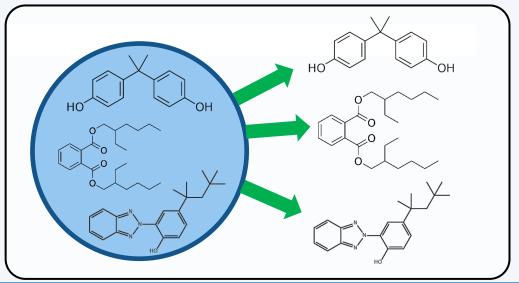

- Need to test a pure chemical with a known molecular weight or average molecular weight
- Can be done with pure chemical or as a leachate, but concentration must be known
- Cannot be used on particles <u>only chemicals</u>

• Established skin sensitisation method based on a chemical procedure (DPRA) and using this for supporting discrimination between skin sensitisers and non-sensitisers in fossil fuel and bio-based coating ingredients.

- The method tested and validated using the 4 recommended reference chemicals (see table).
- Further improvement of the accuracy and sensitivity of the method by developing an <u>LC-MS/MS method</u> for the quantification of peptides.
- Method is now being applied to chemicals and coatings.

	CYS	LYS	Mean depletion	Reactivity	Model
Cinnemaldehyde 1	85.63%	72.62%	79.13%	high	Cysteine/Lysine
Vanillin 1	100.00%	inconclusiv e	100.00%	high	Cysteine-only
Formaldehyde 1	43.19%	2.82%	23.01%	moderate	Cysteine/Lysine
Ethylene glycol 1	97.32%	4.05%	50.69%	high	Cysteine/Lysine



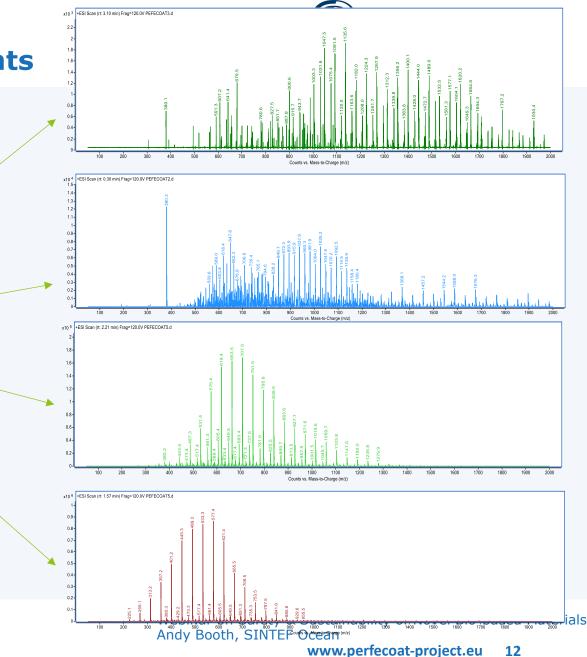


Some 'individual' ingredients are actually mixtures of chemicals

Need to determine the individual or average molecular weights

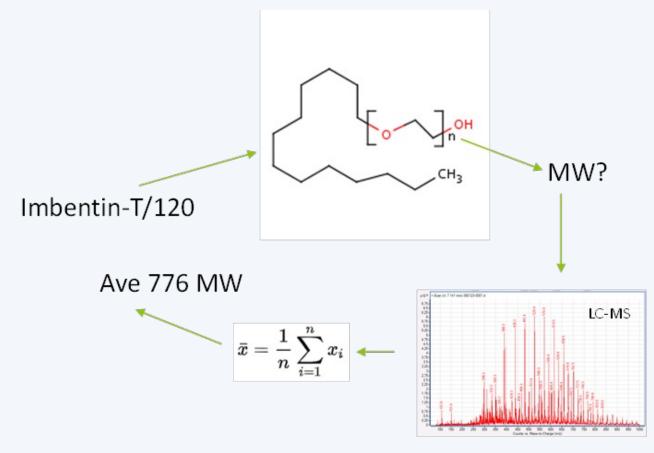
Coating products produce leachates with multiple chemicals

Challenge with chemical leachates mixtures: must know concs & MWs!



Requires molecular weight of test chemical to be known

No.	Compound/Component	MW (g/mol)		
1	Disponil SLS 101 Special	674		
2	RHODAFAC RS/710-E	324		
3	Emulsogen EPN 287	?		
4	Polirol AL 1347	?		
5	Imbentin-T/120	?		
6	AEROSOL A-102 E	?		
7	CaCO ₃	100		
8	TiO ₂	80		
	Propylene glycol propyl			
9	ether	178		
10	Irgacure 184	204		
	Trimethylolpropane			
11	ethoxylate triacrylate	av. 428		
12	Polydimethylsiloxane	236		
13	Epoxyacrylate	392		



Average molecular weight determination

No.	Compound/Component MW (g/mol)			
1	Disponil SLS 101 Special	674		
2	RHODAFAC RS/710-E	324		
3	Emulsogen EPN 287	ave.1210		
4	Polirol AL 1347	ave. 866		
5	Imbentin-T/120	ave. 776		
6	AEROSOL A-102 E	ave. 713		
7	CaCO ₃	100		
8	TiO ₂	80		
9	Propylene glycol propyl ether	178		
10	Irgacure 184	204		
11	Trimethylolpropane ethoxylate triacrylate	ave. 428		
12	Polydimethylsiloxane	236		
13	Epoxyacrylate	392		

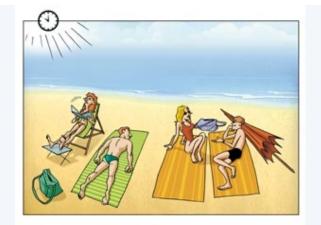
 Results of the DPRA testing are in line with the other classifications.

- For some chemicals this is the first sensitisation data.
- For particle ingredients skin sensitisation cannot be determined with this method
- Testing of the method and harmonisation against an internal leaching standard operating procedure (SOP) is ongoing.

* 5	
* BBI	
* * *	

Summary from the skin sensitisation testing and comparison to existing classifications

Constituent Type	Name	CAS	Classification	CLP notifications (% of all)	Effects in- vivo (REACH)	DPRA - Skin Sensitisation (PERFECOAT)	
Modifier Calcium carbonate (CaCO ₃) 471-34-1		Skin Irritant 2	Skin Irritant 2 (10%)	N	NA		
Pigment	Titanium dioxide (TiO ₂)	13463-67-7		Skin Irritant 2 (<0.1%)	N	NA	
Defoamer	Polydimethylsiloxane	63148-62-9		Skin Irritant 2 (1.6%)	NA	NA	
Coalescent	Propylene glycol propyl ether	1569-01-3	Skin Irritant 2	Skin Irritant 2 (20%)	N	Low	
Photoinitiator	Irgacure 184	947-19-3		Skin Irritant 2 (0.1%)	Ν	Minimal	
Diluent	ΤΜΡΕΟΤΑ	28961-43-5		NA	Y	High	
Main resin	Epoxyacrylate	powachulato EE919	55818-57-0	Skin Irritant 2	Skin Irritant 2 (6.5%)	Y	NA
Ividin resin		22819-21-0	Skin Sensitizer 1	Skin Sensitizer 1 (92%)	I	NA	
Surfactant	Disponil SLS 101 Special	111072-31-2	Pre-registration		High		
Surfactant RHODAFAC RS/710-E 9046-30-5			Not in the database		Low		
Surfactant	AEROSOL A-102E	68954-91-6	Skin irritant	Skin Irritant 2 (82%)	NA	High	
Surfactant	Imbentin-T/120	9043-30-5	Skin irritant	Skin Irritant 2 (21%)	NA	Low	
Surfactant	Emulsogen EPN 287	?	Not in the database			Minimal	
Surfactant	Polirol AL 1347	?	Not in the database Moderate		Moderate		



Example leaching ranking

No.	Compound/Component
1	Disponil SLS 101 Special
2	RHODAFAC RS/710-E
3	Emulsogen EPN 287
4	Polirol AL 1347
5	Imbentin-T/120
6	AEROSOL A-102 E
7	CaCO ₃
8	TiO ₂
9	Propylene glycol propyl ether
10	Irgacure 184
11	Trimethylolpropane
11	ethoxylate triacrylate
12	Polydimethylsiloxane
13	Epoxyacrylate

Example toxicity ranking

- **Compound/Component** No. **Disponil SLS 101 Special** 1 2 Epoxyacrylate 3 **Emulsogen EPN 287** Trimethylolpropane 4 ethoxylate triacrylate Polydimethylsiloxane 5 Polirol AL 1347 6 7 CaCO₂ 8 TiO₂ 9 Propylene glycol propyl ether 10 Irgacure 184 11 **AEROSOL A-102 E** 12 Imbentin-T/120
- 13 RHODAFAC RS/710-E

Risk = Exposure x Hazard

- Concentration
- Prevalence
- Persistence
- Geographic location

- Toxicity
- Bioaccumulation
- Bioconcentration
- Species/Ecosystem levels

Example leaching ranking

No.	Compound/Component
1	Disponil SLS 101 Special
2	RHODAFAC RS/710-E
3	Emulsogen EPN 287
4	Polirol AL 1347
5	Imbentin-T/120
6	AEROSOL A-102 E
7	CaCO ₃
8	TiO ₂
9	Propylene glycol propyl ether
10	Irgacure 184
11	Trimethylolpropane
11	ethoxylate triacrylate
12	Polydimethylsiloxane
13	Epoxyacrylate

Example toxicity ranking

No.	Compound/Component
1	Disponil SLS 101 Special
2	Epoxyacrylate
3	Emulsogen EPN 287
4	Trimethylolpropane
	ethoxylate triacrylate
5	Polydimethylsiloxane
6	Polirol AL 1347
7	CaCO ₃
8	TiO ₂
9	Propylene glycol propyl ether
10	Irgacure 184
11	AEROSOL A-102 E
12	Imbentin-T/120
13	RHODAFAC RS/710-E

High leaching + high toxicity Low leaching + low toxicity

Example toxicity ranking

	No.	Compound/Component
	1	Disponil SLS 101 Special
	2	Emulsogen EPN 287
	3	Polirol AL 1347
	4	Trimethylolpropane
		ethoxylate triacrylate
	5	Polydimethylsiloxane
	6	Epoxyacrylate
	7	CaCO ₃
	8	TiO ₂
	9	Propylene glycol propyl ether
	10	RHODAFAC RS/710-E
	11	AEROSOL A-102 E
	12	Imbentin-T/120
	13	Irgacure 184

Summary & Reflections

- One available method for conducting safety assessment of new biobased chemicals and materials is presented
- There a many ways of conducting a safety assessment and these should be selected on a case by case basis
- Important to note that no single test allows a full safety assessment
- Standard methods increase the comparability of different data sets and increase robustness
- The approaches outlined here are cost effective and high throughput methods potential for widespread use
- The method uses only analytical chemistry, no animals, cells or biological material

Webinar on Safety & Sustainability of Novel Bio-based Materials Andy Booth, SINTEF Ocean www.perfecoat-project.eu 17

Thanks for your attention!

Andy Booth: andy.booth@sintef.no

This project receives funding from the Bio-based Industries Joint Undertaking (JU) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 101022370. The JU receives support from the European Union's Horizon 2020 research and innovation programme and the Bio-based Industries Consortium.