

Marcelo Leomil Zoccoler

Post-doc

Bio-Image Analysis Technology Development – Physics of Life – TU Dresden

From Paper to Pixels - Navigation Through Your Research Data Symposium











#### Example: Counting nuclei after segmentation with Stardist



Neat! Let's run it for another image! Let me just plug my external HD...

#### Data Structures



Pol

**Physics of Life** 

Image by eikira from Pixabay (https://pixabay.com/photos/trunk-automobile-vehicle-luggage-1478832/)

🍠 @zoccolermarcelo

### **OMERO** Server







• Example: Counting nuclei after segmentation with Cellpose

| ~ | Apply | Cellpose | 2D | Model | on | Image | in |
|---|-------|----------|----|-------|----|-------|----|
|   | OMER  | 0        |    |       |    |       |    |
|   |       |          |    |       |    |       |    |

This notebook demonstrates how to apply a Cellpose 2D model on an image stored in a OMERO server.

We start by importing the necessary Python libraries.

|    | import numpy as np                   |
|----|--------------------------------------|
|    | from skimage.io import imshow        |
|    | from getpass import getpass          |
|    | import ezomero                       |
|    | from cellpose import models          |
|    | from omero.constants import metadata |
| 1] | ✓ 26.3s                              |

#### 1. Connect to OMERO server



| image_id = 178                                                                                                           | Python            |
|--------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                                          |                   |
| We can open the image with $get_image$ from ecomero and print its shape. No shape is standardized to $(T, Z, X, Y, C)$ . | tice now that the |
| <pre>omero_image, image = ezomero.get_image(conn, image_id, no_pixels=False) print(image.shape)</pre>                    |                   |
| <pre>name = omero_image.getName() print(name)</pre>                                                                      |                   |
| √ 1.8s                                                                                                                   | Python            |
| (1, 1, 254, 256, 1)<br>blobs                                                                                             |                   |
| imshow(np.squeeze(image))<br>✓ 03s                                                                                       | Puthon            |
| <matplotlib.image.axesimage 0x2b0e89edee0="" at=""></matplotlib.image.axesimage>                                         |                   |
| 9<br>30 -                                                                                                                |                   |
| 100 -                                                                                                                    |                   |
|                                                                                                                          |                   |
| A DE ALCONES SET 1                                                                                                       |                   |

It may be useful to also get the dataset ID to save the results.

2. Opening Image

| data   | <pre>set = omero_image.getParent()</pre>                          |  |  |
|--------|-------------------------------------------------------------------|--|--|
| data:  | <pre>set_id = dataset.getId() t("Dataset ID: ". dataset id)</pre> |  |  |
| pr an  |                                                                   |  |  |
| V 0.1s |                                                                   |  |  |

150



🈏 @zoccolermarcelo



#### • Example: Counting nuclei after segmentation with Cellpose





4





Physics of Life **TU Dresden** 

# **OMERO** Scripts



## Batch Processing with OMERO







- Fixed 2-level hierarchy forces researchers to structure their data from start
- Extra levels of complexity could get achieved by adding tags
- Data, metadata and results from analysis can be all in the same place and linked (FAIR)
- OMERO scripts are very handy for light simple algorithms
- Complex algorithms that require lots of computational resources, like deep-learning, would need special servers and would be best loaded and processed in HPCs or powerful workstations
- Tiled processing for large images is not straight-forward (bandwidth limitations for writing whole large images)
- ezomero library eases a lot programming with OMERO compared to default Python bindings, but it does not have some functionalities yet (like write tiles)



- OMERO guide Python: <u>https://github.com/ome/omero-guide-python</u>
- OMERO Python Language Bindings: <u>https://docs.openmicroscopy.org/omero/5.4.5/developers/Python.html</u>
- ezomero: <a href="https://thejacksonlaboratory.github.io/ezomero/">https://thejacksonlaboratory.github.io/ezomero/</a>





# Acknowledgements





Cornelia Wetzker

#### **CMCB TECHNOLOGY PLATFORM** Center for Molecular and Cellular Bioengineering TU Dresden

#### Networks









NFDI4

CENTER FOR SYSTEMS BIOLOGY

DRESDEN

Funding



#### **BiAPoL team**

- Marcelo Zoccoler
- Johannes Soltwedel
- Maleeha Hassan
- Stefan Hahmann
- Former lab members:
- Robert Haase
- Allyson Ryan
- Till Korten
- Mara Lampert
- Svetlana Iarovenko
- Ryan George Savill
- Laura Zigutyte
- Somashekhar Kulkarni









https://github.com/BiAPoL