
How to Relax Instantly:
Elastic Relaxation of Concurrent Data Structures

Artifact Overview Document

Kåre von Geijer and Philippas Tsigas
{karev, tsigas}@chalmers.se

Chalmers University of Technology, Gothenburg, Sweden

Document Overview

This document complements the 2024 Euro-Par paper ’How to Relax Instantly: Elastic
Relaxation of Concurrent Data Structures’ by K. von Geijer and P. Tsigas [1], and provides a
description of the artifact used as well as step-by-step instructions to replicate the experiments.
The artifact contains a library of concurrent data structures and benchmarks for evaluating
their scalability. It encompasses both the new elastically relaxed data structures introduced
in [1] and previous relaxed and strict designs to facilitate comparisons.

This document starts with a Getting Started Guide. This describes the artifact dependencies,
and outlines how to install them locally on a Ubuntu system or how to set up a prepared
Docker container. Furthermore, it also covers how the library pins software threads to
hardware threads, and how to set this up for a new computer.

Following the getting started guide, the Step-by-Step Instructions outlines how to use the
system, and how to run a script to re-run the experiments of the paper. This section covers
both how to run individual benchmarks, and also how to run Python scripts aggregating many
runs and data structures into graphs. More general information about how to navigate the
artifact is found in its README.md file.

Getting Started Guide

The artifact is mostly self-contained and written in C, with some python3 used to generate
the plots. It is implemented for the memory model of x86-64, so its performance and
linearizability are not guaranteed for other architectures. Furhermore, it is built for Linux.
All experiments should have exclusive access to the machine, to guarantee no interference
from other processes.

Dependencies

Re-running the experiments from [1] requires:

• gcc (preferably version 13.2.1),

1



• GNU make (preferably version 4.4.1),

• bc (preferably version 1.07.1),

• python3 (preferably version 3.11.8, and at least 3.7),

• pip3 (preferably version 23.3.2).

It also requires that gcc is set as the standard C compiler (e.g. by using alias cc=gcc).
Furthermore, the plots need the following python packages:

• matplotlib (version 3.8.2),

• numpy (version 1.26.3),

• scipy (version 1.12.0).

Installing locally on Ubuntu

If running on Ubuntu, the above dependencies can all be installed as following:

$ apt install build-essential bc python3 python3-pip
$ pip3 install numpy==1.26.3 matplotlib==3.8.2 scipy==1.12.0

Similar other setups can be done for other OSs. If not done when installing gcc, make sure
to set cc as an alias for it.

Setup with Docker

The artifact also includes a Dockerfile which can be used to set up an Ubuntu container
with the dependencies outlined above. This requires docker to be available on your system.

First build the image, which installs the environment:

$ docker build -t relax_instantly .

Then create the folder results, which will be mounted to the container so that the graphs
can be viewed from the outside. Finally, run the container in interactive mode, from which
you can run experiments as described in the next section.

$ mkdir results
$ docker run -it --rm -v ./results:/app/results relax_instantly

Thread Pinning

Although not necessary to run the experiments and generate graphs, setting up thread pinning
is essential for getting good quality results. Furthermore, this has to be configured individually
per machine, as the hardware thread numbering varies between systems.

A common pinning strategy, which was used in [1], is to first pin one thread per core, and
then pin with SMT when all cores all full, while only keeping to one NUMA node. Tools like
lscpu (that shows which threads are on what NUMA node) and lstopo (which visualizes
the core and thread layout) are very useful.

2



To pin the software threads to the hardware thread numbers found above, one has to add
an entry to common/Makefile.common and include/utils.h. We have added example
entries here that you can modify to set up your machine:

1. Makefile.common: Search for the entry starting with ifeq ($(PC_NAME), example),
and replace example with the current machine name (the output from uname -n).
Then, you could change the compiler flag -DEXAMPLE to something more descriptive
of your machine, but this is optional. Otherwise it should be fine.

• Note, if running in a container, the perceived machine name will be changed
from the real machine name, so you have to check it with uname -n within the
container after starting it.

2. utils.h: Search for the entry starting with #if defined(EXAMPLE). If you changed
the compiler flag in the Makefile, change EXAMPLE here to what you changed the flag
to (excluding the -D). Then, change the thread pinning order (now set to 0..256) to
your desired order of how to allocate hardware threads.

• There are three orders to specify here. One for alternating between NUMA nodes,
one for directly utilizing SMT, and the final one (which we recommend starting
with) is to avoid NUMA and SMT as long as possible.

To validate that the thread pinning works successfully, run htop during the run of your
experiments and see that the threads are being filled up in the correct order, and all are being
used in the experiments with maximum thread counts. For complementary information about
thread pinning, read the included README.md.

Verify Setup

To ensure that the setup went smoothly, all data structures should be able to be compiled
using the command make all. They should be present in ./bin, and output some statistics
when run. Furthermore, the following command should show (and save in ./results/) a
very simple plot.

$ python3 scripts/benchmark.py --initial 65536 --runs 2 -d 500 -k 5000 \
-m 1 --width-ratio 2 -f 2 -t 10 -s 4 --ndebug 2Dd-queue queue-ms \
--title "Testing Queues: Thread Scalability" --name queue_test --show

Step-by-Step Instructions

To compile the default test for any data structure in the src/ folder, run make <name>, after
which the binary with the same name will be found in bin/. This binary can be run with
different options, such as number of threads or relaxation configuration, and outputs stats
such as throughput. If instead compiling with RELAXATION_ANALYSIS=1 make <name>,
then the binary will be instrumented with locks to measure relaxation errors (at the cost of
very low throughput).

3



To re-run the experiments from [1], run the ./scripts/recreate-europar.sh script. This
has a few variables at the top which can be adjusted to vary the run, such as how many runs to
use. The most important setting to change is the maximum number of threads to use, which
we recommend to set equal to the number of hardware threads. When done, the plots can
be found in ./results/. The script is by default configured to do far fewer runs than the
experiments in [1], and takes around 10 minutes on our machines.

The experiments in [1] were run on a 128-core 2.25GHz AMD EPYC 9754 with two-way
SMT, and a similar system is recommended to get the most similar results. Using a system
with fewer threads will result in not seeing the full scalability, and likely not seeing as large
difference between the 2D structures and the rest. Similarly, if using a NUMA system, the
extra inter-node communication will slow down different algorithms differently. None of the
relaxed algorithms are currently optimized to handle NUMA settings, although heuristics
probably could alleviate the communication penalty significantly.

Scalability Evaluation

The python script scripts/benchmark.py is recommended to use for benchmarking the
thread and relaxation scalability of different data structures, as shown in Figure 3 in [1].
Use the –help flag to get detailed information of all the arguments to use for the script. To
compare the throughput of the 2D queue from [3] and MS queue from [2], one can run the
following:

$ python3 scripts/benchmark.py --runs 5 --width-ratio 2 -l 16 -f 2 -t 16 \
--step 2 -d 1000 2Dd-queue queue-ms --name scalability_test

Here we compare the throughput of the two data structures at thread counts of 2 to 16 with a
stride of 2. For each thread count the test aggregates results from 5 runs, where each run runs
for 1000 ms. For relaxation configuration, the 2D queue uses a width of twice the thread
count, and a depth of 16. Finally, the test is saved in results/scalability_test/.

This script is used in ./scripts/recreate-europar.sh to recreate the plots from Figure
3 in [1]. However, the low number of runs and test duration will likely make the results more
volatile than in the paper. To ensure results corresponding to the paper, the 2D designs should
outscale the other ones in throughput, and the elastic designs should be very comparable to
the static one.

Variable Workload Plots

The other important testing script is scripts/benchmark-variable-workload.py, which
is used to benchmark how data structures adapt to a variable workload in a producer-
consumer scenario. This corresponds to Figure 4 in [1]. This script utilizes the C tests
test-variable-workload.c, which are only implemented for the two elastic queues, but
can rather easily be adapted for other data structures. Here is how to use it to run a simple
example similar to in the paper:

$ python3 scripts/benchmark-variable-workload.py 2Dd-queue_elastic-law \
--args "-i 8388608" "-l 16" "-d 1000" "-w 128" "-n 128" --show \

4



--ops-per-ts 500 --name variable_test

Here, the initial number of items is set to 8388608, a window depth of 16 and a starting
width of 128 are used, it runs for one second width 128 total threads. It also specifies that the
throughput and relaxation characteristics should be sampled every 500 operations (thread
locally). Finally, the results are saved in results/variable_test.

The two plots corresponding to Figure 4 in [1] are generated by the two last (not commented
out) lines in recreate-europar.sh. The test without dynamic relaxation should look very
similar to the plot in the paper. However, the dynamic relaxation requires some fine tuning to
work well. The controller can be tuned by changing the constants at the top of controller.h
in the queue source directory, but the default values should work okay. Furthermore, if the
Rank error bound significantly lags behind the Tail error, the number of initial items should
be lowered. The important result is that the Tail error should dynamically adapt to the number
of active producers, indirectly stabilizing the Producer latency compared to the static run.

References

[1] von Geijer, K., Tsigas, P.: How to Relax Instantly: Elastic Relaxation of Concurrent Data
Structures, To appear in: Euro-Par 2024: Parallel Processing. Springer (2024)

[2] Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: Proceedings of the fifteenth annual ACM symposium
on Principles of distributed computing. pp. 267–275 (1996)

[3] Rukundo, A., Atalar, A., Tsigas, P.: Monotonically Relaxing Concurrent Data-Structure
Semantics for Increasing Performance: An Efficient 2D Design Framework. In: 33rd
International Symposium on Distributed Computing (DISC 2019). vol. 146, pp. 31:1–
31:15. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2019)

5


