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Abstract—Software defined networking (SDN) setups in gen-
eral assume a perfect control channel between network devices
and the centralized controller. Whilst this may be the case in
certain controlled contexts such as data centers, when moving
to wide area networks, this assumption does not necessarily
hold true anymore. Therefore, there is the need to evaluate the
impact of unreliable control plane behavior in SDN scenarios.
This paper evaluates the impact of a lossy control channel on data
plane throughput and latency. Additionally, it presents a hybrid
SDN approach that dynamically switches between centralized and
distributed operation at nodes, depending on the control channel
packet loss ratio. Results show that throughput and latency at
data plane can be maintained at acceptable level even in the
presence of substantial control channel losses.

I. INTRODUCTION

Software Defined Networking (SDN) [1] separates the data
and control planes of the network. It logically centralizes the
control in an SDN controller which is in charge of telling each
network device how to forward packets by installing the appro-
priate forwarding rules. One of the main advantages it brings
is programmability, since there is a single entity (the logical
controller) with which network management applications must
interact to apply their policies. Through agreed upon APIs, the
full potential of SDN can be exploited by network managers.
This has been the case in controlled scenarios that do not pose
challenging constraints to the deployment of such paradigm
because of the availability of reliable and high capacity
networks, for instance, in data centers. However, moving to
wide area networks, the assumption of the availability of such
reliable networks may not hold true anymore.

If SDN control is physically centralized, in the presence of
unreliable conditions, three types of faults can be identified,
namely i) data plane faults (the network element(s) or port(s)
associated to the network element(s) fails), ii) control chan-
nel faults (the connection between the SDN controller and
the data plane element(s) fails or it experiences losses), iii)
SDN controller faults (the SDN controller fails). Therefore, a
reliable control plane is key for the correct operation of SDN
scenarios.

On a different front, hybrid SDN approaches have been
introduced to enable the transition from centralized operation
to legacy distributed operation. In this case, centralized and
distributed operation coexist in the same network. There are
various ways in which this can be done, depending on the
scenario [2]. Ideally, the hybrid-SDN model should allow

retaining the advantages of canonical-SDN (i.e., centralized
logic and programmability) and legacy distributed networks
(i.e., no single point of failure).

In this paper, we first characterize the impact of an un-
reliable control channel on data plane throughput, which
substantially increases with the percentage of losses. After
that, we exploit hybrid SDN to handle the unreliability of the
control plane. This is done at the node level, and so, when
impairments in the control plane are detected (e.g., packet
losses), the node switches to distributed operation (i.e., it uses
conventional distributed routing protocols). Results show that
dynamically switching between modes of operation allows
maintaining acceptable throughput level as well as latency at
data plane even in the presence of highly unreliable control
planes.

Previous work mainly focused on data plane reliability by
designing efficient schemes for fast detection and recovery
of the communication [3]–[5]. Much less effort has been
devoted by the community to solve control plane unreliability
(including controller failures and control channel losses). In
order to overcome SDN controller failure, deployment of
multiple SDN controllers [6] may be a solution (controller
redundancy), but it may also lead to inconsistency issues.
For instance, HyperFlow [7] proposes physically distributed
controllers that are synchronized through a publish/subscribe
system. Another option is to design schemes to handle control
plane unreliability. For instance, ResilientFlow [8] restores
the control channel through alternate paths (path redundancy)
in the presence of channel failure. However, these research
works focused on solving a single specific type of fault (SDN
controller or control channel). They do not handle multiple
faults at a time or degraded control channel performance
(e.g., lossy control channel), which may be the norm when
deploying multi-hop wireless networks to serve dense small
cell deployments, for instance. To tackle SDN controller
failures a solution may be by forming a hierarchy or cascade
deployment model. In this context, since OpenFlow version 1.3
[6] supports multiple SDN controllers managing an equivalent
set of forwarding nodes. But some inconsistent issues like
Event Ordering, Unreliable Event Delivery and Repletion of
Commands are still matters of concern. Ravana [9] ensures
event ordering, correct event processing and execution of
commands for exactly once during the SDN controller failure.
In [10], integrated SDN principle has been proposed where



Fig. 1. Reference Network Diagram for both canonical-SDN and hybrid-SDN

a module OLSR-to-OpenFlow (O2O) has been presented to
configure control rules that are used to forward OpenFlow
packets. After detection of the SDN controller failure by the
O2O module, the O2O module dumps the OLSR routing tables
into the forwarding nodes to recover SDN from the SDN
controller failure. This approach needs translation of routing
table into SDN rules.

Our scheme differs from state of the art solutions in the
way control packet loss is handled. As control packet loss is
of major concern, from the point of view of a network node,
the failure of the SDN controller is equivalent to the failure
of the control channel. Thus, we propose to take a look at
control plane reliability from the point of view of the node
experiencing the problem. We introduce logic at the node to
detect the problems and make a decision on whether to operate
in a centralized or distributed way. Therefore, our scheme
provides a solution not only for control channel failure, but
also for SDN controller failure. Evaluation confirms that this
operation reduces the bad impacts of these kinds of control
plane failures over data plane.

The rest of the sections of the paper are organized as
follows. Section II illustrates our hybrid-SDN approach, in-
cluding the hybrid node architecture with a light controller.
The proposed approach is evaluated in section III, and finally,
conclusions in the section IV.

II. HYBRID NODE ARCHITECTURE WITH LIGHT
DISTRIBUTED CONTROLLER

The architecture illustrated in Figure 2 aims to quickly adapt
to changes in the control plane channel by combining both
centralized and distributed control logic, thus, creating a hybrid
control plane architecture. In this way, our architecture at-
tempts to preserve the benefits of both worlds (i.e., centralized
and distributed ones). Specifically, we propose to maintain a
centralized control logic to preserve the benefits of canonical-
SDN (i.e., simple network management, programmability)
under reliable control plane conditions, whereas the distributed
control plane is in charge of acting under unreliable conditions
to quickly react to failures that avoid the inefficient use of a
centralized control logic. Our hybrid control plane architecture
proposes changes to the architecture of data plane nodes
while preserving the architecture of centralized controllers
with respect to canonical-SDN models.

The data plane node is divided amongst the data plane
forwarding pipe and the control logic to decide the operation

Fig. 2. Hybrid Node Architecture with integrated light controller

of the data plane forwarding pipe. In what follows we describe
the architecture of the main components embedded in a data
plane node. Last but not least, we describe the work-flow be-
tween the aforementioned building blocks and the centralized
SDN controller.

1) Data Plane Forwarding Pipe: We have adopted the
Open Source Hybrid IP/SDN networking (OSHI) framework
that has been designed in [11]–[13]. This framework allows
nodes to concurrently run a distributed control plane and a
centralized control plane. To attain this goal, the hybrid-node
embeds an SDN Capable Switch (SCS) such as Open vSwitch,
an IP-based forwarding engine (i.e., the one provided by the
Linux kernel), and an IP routing daemon based on Quagga
to calculate distributed routes (see Figure 2). The SCS is
connected to the physical network via the physical interfaces
while the IP forwarding engine is connected to the SCS via a
set of internal virtual ports endowed in the SCS. The main
flow table embedded in the SCS allows for distinguishing
between regular IP packets that are needed to be processed
by distributed control plane (i.e., Quagga routing daemon) and
those needed to be processed by the SDN controller. VLAN
(Virtual LAN) IDs have been used to distinguish between
packets that need to be processed by a distributed control plane
and packets that have to be processed by SDN controller. In
particular, packets tagged with VLAN IDs are processed by
SDN, while packets without a VLAN ID are processed by IP
routing daemon.

2) Light Controller: We included a light controller in the
data plane node that acts as a gateway to the SDN controller,
in order to enable centralized or distributed control depending
on the reliability of the control plane channel between data
plane devices and the centralized SDN controller. The light
controller is based on i) a monitoring framework that contin-
uously infers the reliability of the control plane network by
periodically monitoring the status of the control plane channel.
In this paper, the metric is based on determining packet loss
ratio of the control plane channel. The resulting metric referred
to as Control Packet Loss Ratio (CPLR) that determines the
status of the control plane channel between the data plane
node and the SDN controller. The activation of the distributed
control operation from the centralized control operation for a
node is decided by the decision module installed in the data
plane node. The decision module is based on the stats gathered



from centralized or the distributed control plane logic which is
active in a given data plane node. The decision module referred
to as CCRI (CPLR Calcultor and Rules Installer), periodically
inspects CPLR of the control channel to characterize a lossy
control channel and determine control channel failure (see
Figure 2). Under high losses or failure, it triggers the actions to
switch from centralized to distributed control plane operation.

3) Interaction between the Data Plane Node Forwarding
Pipe, the Light Controller, and the centralized SDN controller:
By default, packets are tagged with a VLAN ID to enable
the use of a centralized control plane logic embedded in the
SDN controller. In the following we summarize the centralized
operation.

1) When a packet with VLAN ID reaches to a physical
interface of the SCS, the SCS conducts a lookup in its
flow tables to find a match for the current packet.

2) If a match is found in one of the flow tables, the packet is
then forwarded according to the rule installed previously
by the SDN controller into that flow table. Otherwise,
the incoming packet is forwarded to the centralized
SDN controller for appropriate handling according to
the policies defined.

3) The centralized SDN controller installs the necessary
OpenFlow rules to serve the current incoming packet.
Thus, the forwarding data plane node simply follows
the instructions set by the SDN controller to forward a
packet.

During any impairment experienced by the control plane,
either a failure in the SDN controller or the control plane
channel failure due to the presence of a lossy control channel,
CPLR measurements will infer an anomaly in the proper
operation of the network. In what follows we describe the
work-flow related to the distributed operation. The CCRI
module calculates the CPLR of control channel periodically
and once the CPLR exceeds a certain threshold level the
network operation is switched from centralized to distributed
mode by following these steps:

1) When the CCRI module of the light controller detects
CPLR above the threshold level, it deletes the old rules
from the SCS flow tables of data plane nodes that were
installed with the intervention of the SDN controller.

2) The CCRI module of the light controller installs new
rules in the SCS flow table of data plane nodes. One
rule includes OpenFlow POP VLAN action aiming to
remove the VLAN tag of the incoming packets to the
ingress port of a node and to forward the incoming
packets to the IP forwarding engine.

3) Incoming packets arriving to the SCS ingress port are
then forwarded to the IP forwarding engine in order to
process the packets through the IP routing daemon. In
the IP routing daemon, a distributed routing protocol,
in our case, Open Shortest Path First (OSPF), routes
packets to their intended destination.

4) On the other hand, the CCRI module of the light
controller also updates the SCS flow table of data plane

nodes by adding another rule that pushes the VLAN tag
again to the packets using an OpenFlow PUSH VLAN
action, before the packets leave the SCS egress port and
sends the packets towards the following hop towards the
destination host. All these rules are deleted and installed
without intervention of the SDN controller.

III. PERFORMANCE EVALUATION

As data plane, we used Mininet [14] version 2.2.1 and
Open vSwitch 2.3.0 supporting openFlow 1.3 to model a N*N
grid topology. As SDN controller, we considered Ryu [15] to
set forwarding policies into data plane nodes. As traffic flow
generators, we used iPerf [16] to inject TCP traffic flows.

A. Canonical-SDN Operation

First, we carried out an experiment in order to observe the
impact of control plane failure over data plane throughput in
canonical-SDN operation. Total duration of each experiment
was 120 second and each experiment was repeated 10 times.
We set up a canonical-SDN with 9-nodes grid mesh network,
where nodes lack distributed control plane logic. As depicted
by Figure 1, four hosts were connected to the four corner
nodes of the topology. Three TCP flows have been generated
from three hosts (h1, h7, h9) which were destined to upper
right corner host (h3).

When a new packet comes to a switch, the switch looks
up in its flow tables for a flow entry match for the packet.
If no match is found in the flow tables, the switch sends the
packet as a PacketIn message to the SDN controller using the
flow-miss entry rule. Then, the SDN controller calculates the
shortest path for the packet and, using a PacketOut message,
the SDN controller instructs the switch to install flow rules into
the flow table of the switch. The switch keeps the rules for
infinite period of time unless the switch gets further instruction
from the SDN controller to modify or delete the rules. With
subsequent flow of packets, the switch simply forwards the
packet according to the rules installed previously.

As soon as any link impairment happens on the data plane,
the affected switches instruct the SDN controller immediately
about the impairment by sending PortStatus messages. In our
case, when the SDN controller receives PortStatus messages,
the SDN controller instructs, by means of FlowMod messages,
the affected nodes as well as all the nodes in the affected
path to delete all the rules from their flow tables except the
flow-miss entry rule. After instructing to delete the old rules,
the SDN controller again calculates a new shortest path and
instructs all the switches in the new path to install new rules in
their flow table. The switches then forward packets according
to the new rules.

To observe the impact of the unreliable control plane over
data plane throughput and latency, in a controlled way we gen-
erate losses of control messages that are exchanged between
the switches and the SDN controller. We used netem [17]
to add impairments to the control channel (the link between
the SDN controller and the network node). We also broke



(a) (b)

Fig. 3. Comparison between aggregated throughput and average latency behavior of canonical-SDN and hybrid-SDN

(a) (b)

Fig. 4. Aggregated throughput and average latency behavior against multiple link impairments for certain CPLR in canonical-SDN

data plane links randomly by maintaining a sequence of link
down/up at some periods of our emulation time.

Figure 3a and 3b depict the aggregated throughput and
average latency over different Control Packet Loss Ratios
(CPLRs) respectively. Results reveal that the increment of
CPLR causes degradation of the data plane throughput and
substantial growth of latency in canonical-SDN. In the evalu-
ated scenario, during the presence of link impairment in the
data plane, the affected nodes send PortStatus messages to
the SDN controller to let the SDN controller know about link
failure. In this case, due to the faulty control link between the
SDN controller and the switches, the control messages (i.e.,
PortStatus, PacketIn, PacketOut, and FlowMod) get dropped
and can not be exchanged on time. Moreover, LLDP (Link
Layer Discovery Protocol) messages that are used by the
SDN controller for discovering network topology, also get
dropped. As the SDN controller and a switch use a single path
TCP connection to maintain communication between them,
dropped packets are retransmitted again. Though dropped
control packets are retransmitted again, loss of the control
packet affects the restoration time of a new path at data plane
due to untimely delivery of the control packets between the

SDN controller and the forwarding nodes. Therefore, with
increasing CPLR, the SDN controller requires more and more
time to establish a new alternate path at data plane because of
the control packet loss, which, in turn, affects the aggregated
throughput and latency at data plane substantially.

Since the focus of this paper is on quantifying the advantage
of hybrid operation, we did some preliminary evaluations to
understand what were the CPLRs that allowed the control
channel to operate (even with difficulties) and those for
which it was impossible in most repetitions. In particular,
we observed that value to be 30%. In this case, there is
an immense degradation of aggregated throughput and huge
increment of latency at the data plane for 30% of CPLR,
as the SDN controller and the forwarding nodes can not
maintain proper communication between them because of
control packet loss. Thus, the threshold for switching from
centralized to distributed mode of operation was set to this
value.

Figure 4a depicts the aggregated throughput and Figure 4b
illustrates average latency at data plane in case of canonical-
SDN while the network was experiencing an increasing num-
ber of data plane link impairments for a certain CPLR. We



observe that aggregated throughput at data plane substan-
tially degrades and on the other hand latency increases with
increasing number of broken links at data plane. This was
evaluated for various values of CPLR to assess its dependency
on varying degrees of data plane link impairments. As CPLR
increases, so does restoration time due to control packet loss
and consequent retransmission of control packets between the
network nodes and the centralized SDN controller. During the
CPLR of 30%, degradation of the aggregated throughput at
data plane is enormous and latency is substantially higher due
to substantial loss of control packets, which causes several
retransmissions that affects proper communication between the
SDN controller and the forwarding nodes. As latency is very
high during CPLR of 30%, it is not represented in the figure.

B. Hybrid-SDN Operation

In the previous section, the operational degradation of a
canonical SDN network due to the unreliability of the control
channel was characterized. In this section, we quantify the
gains that a hybrid SDN operation offers. In this direction, we
repeat the same set of experiments with hybrid-SDN operation
under control plane and data plane impairments. We emulate
the same network topology that is used for the canonical-
SDN scenario. But the difference is that the forwarding nodes
are hybrid nodes, which combine centralized and distributed
network operations and can take autonomous switching deci-
sions between both modes. Initially, the network is operated in
centralized mode. We configure the light controller (see Fig-
ure 2) to monitor switch-to-controller communication and to
measure its CPLR in every 5 sec. Then, we start increasing the
CPLR and when control channel losses reach 30%, the CCRI
module of the light controller performs network switching
from centralized to distributed operation. It can be observed
from Figure 3 that during the control plane impairments,
canonical-SDN fails to maintain proper network operation, as
explained in the previous section, whereas hybrid-SDN is able
to obtain aggregated throughput and latency values equivalent
to those obtained for the lowest CPLR values in the canonical
SDN case.

IV. CONCLUSIONS

Due to centralized control over the networks, any impair-
ment on the control plane is hazardous for proper operation of
the canonical-SDN (i.e., centralized controller) because com-
munication between the SDN controller and a forwarding node
is hampered during the control plane impairments. Hybrid-
SDN not only leverages the advantages of canonical-SDN, but
also mitigates the drawbacks of canonical-SDN in terms of
reliability. Hybrid-SDN indeed keeps the network operational
irrespective of the level of control plane impairments by
switching network control from centralized to distributed. In
fact, our hybrid-SDN approach switches network control logic
when CPLR of the control channel reaches an unacceptable
level that limits proper communication between the SDN
controller and the forwarding nodes. Additionally, it allows
obtaining aggregated throughout and latency values equivalent

to those obtained by canonical-SDN under low CPLR. We
believe that our CPLR based network control logic has a high
potential in (more unreliable) wireless transport deployments
(e.g., multi-hop networks in dense small cell deployments).
Evaluation of this scenario will be our next step.
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