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 Data Clustering or unsupervised classification is one of the main research areas in Data 
Mining. Partitioning Clustering involves the partitioning of n objects into k clusters. 
Many clustering algorithms use hard (crisp) partitioning techniques where each object 
is assigned to one cluster. The most widely used in hard partitioning algorithm is the K-
means and its variations and extensions such as the K-Medoid. Other algorithms use 
overlapping techniques where an object may belong to one or more clusters. Partitioning 
algorithms that overlap include the commonly used Fuzzy K-means and its variations. 
Other more recent algorithms reviewed in this paper are the Overlapping K-Means 
(OKM), Weighted OKM (WOKM) the Overlapping Partitioning Cluster (OPC) and the 
Multi-Cluster Overlapping K-means Extension (MCOKE). This tutorial focuses on the 
above-mentioned partitioning algorithms. We hope this paper can be beneficial to 
students, educational institutions, and any other curious mind trying to learn and 
understand the k-means clustering algorithm. 
  

 

 

1. INTRODUCTION  
Data Mining techniques are used in order to extract 
meaningful information from Big Data and discover 
hidden patterns that can be used to predict certain trends. 
Some of these techniques in Data Mining include 
Association Analysis (rules that can predict relations 
between object variables in a large dataset), Classification 
(classifying an object to belong to one or more predefined 
classes), Clustering (grouping objects in clusters that share 
similar characteristics), and Regression (determining 
correlations between object attributes). 
These techniques can be broadly divided into two basic 
concepts: supervised learning and unsupervised learning. 
In supervised learning, we have a set of labeled training 
data that given an input object returns an output that can 
be of continuous value (Regression) or could predict a 
class label of the input object associated with it 
(Classification). Supervised learning algorithms would 
thus learn from the training data where the outcome is 
known and used to predict the value of the output for any 
given valid input object after having seen some training 
examples. Unsupervised learning such as Clustering is the 
opposite of the former. There is no prior knowledge of the 
data labels and therefore no right or wrong answer. Hidden 
patterns have to be extracted from the data by looking at 

similarities between them and grouping them together into 
clusters. 

These techniques and algorithms can be used for a 
variety of applications such as clustering data, information 
retrieval, pattern recognition, classifications, and 
associations. Clustering algorithms can be further 
subdivided into two, Hierarchical Clustering and 
Partitioning Clustering. According to (Abbas, 2008), 
hierarchical algorithms are more suitable for small data 
sets and partitioning algorithms for large data sets. The 
memberships in clustering can be looked at in two angles; 
hard or uncertain memberships. Hard memberships may 
have hard or overlapping partitions based on binary 
functions model whereas uncertain memberships are based 
on uncertainty functions using possibilistic or fuzzy logic 
framework. The section below briefly discusses 
Hierarchical clustering before exploring Partitioning 
clustering and some of the extensions around the K-means 
algorithm.  
2. HIERARCHICAL CLUSTERING 
This technique constructs a tree of clusters in a hierarchy 
also known as dendrogram. There are two ways to 
achieving this i.e., divisive and agglomerative methods. 
Divisive methods start with one huge macro-cluster 
containing all data objects and continuously split it into 
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two smaller groups generating a top-down hierarchy. On 
the contrary, agglomerative methods start with clusters 
with one data object (singleton clusters) at the bottom and 
continuously merges two clusters at a time to generate a 
bottom-up hierarchy. 
 
A) Divisive Clustering 

The framework of the divisive clustering is given in the 
pseudo-Algorithm 1 below. 
 

Algorithm 1: Divisive Clustering 

1: Start with the root cluster consisting of all data 
objects 

2: repeat 

3:           Select a parent cluster in a set of current clusters 
to split 

4:           Split the parent node into two parts 

5: until singleton leaves are achieved 

 
There are two major considerations needed in using the 
above algorithm that could affect its performance. Firstly, 
the splitting method and criteria. As seen above, the 
technique for splitting the node into two parts is known as 
bisecting. The most widely used algorithm is the Bisecting 
K-means (Steinbach et. al., 2000) which uses K-means 
(MacQueen, 1967) on the parent cluster C to determine the 
best split which maximizes the Ward’s distance (Ward, 
1963) between two possible child clusters C1 and C2. The 
larger of the split cluster is selected as the new parent for 
further splitting and the method is iterated until K clusters 
have been obtained. 
Secondly, deciding the appropriate cluster to split i.e. 
whether the algorithm should choose the cluster with the 
largest number of objects or select all clusters at each level. 
A more compromise alternative is selecting the cluster 
with the largest square error variance. 
Whether referred to as a business continuity plan, or a 
corporate security plan, the general responsibilities of 
crisis management fall on the Human Resource 
department to ensure that the organization’s employees are 
working in a safe environment and have adequate training 
in how to respond should a crisis arise.  In the event that a 
disaster should occur, it will also fall on the HR 
department to locate employees, ensure they are safe, and 
arrange for counselling and recovery programs.  There 
may be situations in which a business cannot access their 
headquarters, and must operate from a new location, or 
remotely.  In this case the HR department may be 
responsible for facilitating the transfer. 

Due to the unpredictable nature of crises, both man-
made and natural, it is imperative for organizations to have 
an effective strategy that focuses on employee safety, as 
well as business continuity.  In order to analyze how 
different companies manage crisis situations, interviews 
were conducted with three large multi-national 
corporations; American Express Corp., Husky Injection 
Moulding Systems Ltd., and Johnson & Johnson.  The 
interviews consisted of a multi-part survey aimed at 
examining the three key functions of crisis management; 
Planning, Reaction, and Learning (Exhibit 1).  It is 
understood that this topic is emotionally charged, and can 
relate to an organization’s security, thus no information 
regarding organizational security protocols or proprietary 
information was requested. 

B) Agglomerative Clustering 

The framework for the agglomerative clustering is given 
in the pseudo-Algorithm 2 below. 
 

Algorithm 2: Agglomerative Clustering 

1: Start with clusters with one data object (singleton 
cluster) 

2: repeat 

3:           compute the dissimilarity between clusters 

4:           Merge two least dissimilar clusters into a new 
cluster 

5: until one maximal cluster is achieved that contains 
all data objects in a single cluster 
 

 
The algorithm computes the dissimilarity of all data sets 
between clusters. The commonly used formula is the 
Lance-Williams dissimilarity update formula (Lance & 
Williams, 1967) to compute distance between the clusters 
by either considering single linkage (nearest neighbor – 
similarity is that between most similar member), average 
linkage (group average – considers average pair-wise 
similarity), and complete linkage (maximal – choosing a 
cluster pair whose merge has the smallest diameter) 
(Sneath & Sokal, 1962).  The closest pairs that are less 
dissimilar are merged bottom-up until one maximal cluster 
remains. 
There are a few advantages and disadvantages of 
hierarchical clustering. Among the common advantages 
cited include: 
 

i) Easy to understand representation of the 
hierarchical tree or dendrogram (Berkhin, 2006). 



 
               Int. J. Management and Data Analytics, Vol. 1 (2), 2021                         40 

 
http://ijmada.com 

 

ii) Different similarity/dissimilarity distance 
functions can easily be used (Xu et al, 2005). 

 
Disadvantages include: 

i) Difficult to reassign an object if a 
misclassification was done previously (Berkhin, 
2006). 
ii) Very sensitive to outliers (Xu et al, 2005). 

 

Hierarchical clustering normally produces 
dendrograms which provide data views at different levels 
making it easy for the end user to visualize the problem 
during the clustering process. However, one major 
disadvantage of hierarchical algorithms is that in any level 
of the hierarchy, once the merge/fusion or split decisions 
are made they cannot be undone (Fisher, 1995). In order 
to overcome such a limitation, Fisher proposed an 
algorithm that would modify the dendrogram iteratively 
until the optimal solution is found. Algorithms that use this 
approach produce quadratic high computational 
complexity (Aggarwal & Reddy, 2014) making them 
unrealistic for large real life problems. Most hierarchical 
algorithms tend to have quadratic or higher complexity in 
the number of data points (Chakraborty & Nagwani, 2011) 
and thus not very suitable for large data sets. 

3. PARTITIONING CLUSTERING 
This technique splits the set of data into partitions based 
on K disjoint initial groupings or clusters and using an 
objective function iteratively improves the quality of those 
partitions. K is provided by the user. We first examine the 
hard (crisp) clustering techniques followed by soft 
(overlapping) techniques. The most widely used and 
simplest algorithm for this hard clustering is K-means 
(MacQueen, 1967; Jaini, 2010; Lloyd, 1982).  Some 
variations of K-means include K-Medoids, K-Mode, 
Fuzzy K-Means. Others include CLARANS (Raymond & 
Han, 2002) and PAM (Partitioning Around Medoids) 
(Kaufman & Rousseeuw, 1990) which are modifications 
of K-Medoids. 
 

A) K-Means Clustering 

Undoubtedly, the K-means is the most widely used 
partitional clustering algorithm (Jain, 2010). There are 
many reasons attributed to this such as; a) it is very easy 
to implement, b) very versatile in that any part of the 
algorithm can be easily modified, c) it is guaranteed to 
converge (Selim and Ismail, 1984) at a quadratic rate 
(Bottou and Bengio, 1995).  
 
This research primarily focuses on partitioning clustering 
algorithms and methods that extend K-means based on the 
squared Euclidean distance that will measure linear 
separation between the clusters (for simplicity) and will 

not explore those K-means variations with nonlinear 
separation that project data onto high dimensional kernel 
space such as Kernel K-means (Scholkopf et al., 1998) and 
Kernel Overlapping K-means (BenN’Cir et al., 2010). 
 
The framework for the K-Means clustering is given in the 
pseudo-Algorithm 3 below. 
 

Algorithm 3: K-means Clustering 

1: Select K points as initial cluster centers (centroids) 
randomly or based on heuristics 

2: repeat 

3:           Assign each data points to its closest centroid 

4:      Recalculate the centroid of each cluster and check 
for convergence of objective function 

5: until convergence criteria is met and no change on 
each cluster or maximum number of  
              iterations are achieved. 
 

 
The algorithm begins with first assigning K points as the 
initial cluster centers. This can be done randomly or by 
based on heuristics. Data objects are then assigned to their 
nearest cluster center by calculating the distance using 
Euclidean distance measurement. The sum of squares 
errors (objective function) is then calculated by squaring 
the Euclidean distances to each cluster centroid and the 
object is assigned to the cluster with the smallest value. 
The recalculation of the centroids is taken as the average 
of the values of the objects that are part of that cluster. 
These steps are then iterated in a loop until the objects in 
each cluster do not change or until a maximum number of 
iterations are reached. The steps 3 and 4 above is aimed at 
minimizing the objective function defined in the Equation 
(1) below for the given set of centroids. 
 

    (1) 
 
Where Ck is the kth cluster, xi is a point in Ck, and ck is the 
mean of the kth cluster. 
K-means clustering being a greedy-descent nature 
algorithm, it will converge to a local minimum (Selim & 
Ismail, 1984). For up to two-dimensional Euclidean space 
with arbitrary number of k clusters, the K-means 
complexity is NP-Hard (Manning et al, 2008; Everitt et al, 
2001). 
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The K-means algorithm does require two things a priori 
from the users. One is to first choose the initial centroids, 
and two, to estimate the number of K clusters in advance. 
Choosing the initial clusters largely affects the outcome of 
the algorithm. This can be done randomly by picking K 
points as K centers as suggested in (MacQueen, 1967).  
Forgy (Forgy, 1965) suggests spreading the randomness of 
the initial location of the clusters. The idea being that this 
random selection is likely to pick points from the dense 
regions which may be good centers. However, this does 
not eliminate the possibility of picking an outlier for a 
center. This can be minimized by having multiple runs of 
this method. Other heuristic approaches that have been 
proposed for cluster initialization includes Ward’s 
distance method (Ward, 1963) that uses the sum of squared 
errors to evaluate between two cluster distances as 
suggested in (Milligan, 1981). Kaufman’s method 
(Kaufman, 1990) selects the K centers sequentially by first 
choosing the most centrally located data object in the data 
set and subsequently choosing the other centers that have 
many data objects around it by a heuristic function. K-
means++ (Arthur & Vassilvitskii, 2007) selects the first 
centroid randomly and subsequently chooses the next 
centroid which is farthest from the currently selected 
centroid based on a weighted probability score.  (Bradley 
& Fayyad, 1998) method randomly partitions the set into 
J subsets which are then combined into a superset 
clustered in by k-means J times initialized each time with 
a different center. The center set that gives the least SSE 
are considered the final centers. 
 
As for estimating the number of K clusters in advance, the 
ISODATA algorithm (Ball, 1965) was one attempt in 
determining the optimal K where K-means is first ran on 
the dataset to obtain the clusters which these clusters are 
then merged if the distance between them is less than a 
certain given threshold or split if the standard deviation 
within the cluster is exceeds the same threshold. The 
Silhouette Coefficient algorithm (Kaufman, 1990) takes 
into account the inter and intra cluster distances for any 
given data object. The average a1 of the distances is 
calculated for all points intra cluster for a given point x. 
The average a2 is then calculated for all other inter clusters 
that don’t contain point x. These two values a1 and a2 are 
then used to estimate the Silhouette Coefficient of point x. 
The average of all the silhouettes becomes the width for 
all the dataset points. Other methods include the Gap 
statistic method (Tibshirani et. al., 2001) that estimate the 
number of clusters using gap statistic, Calinski-Harabasz 
index (Calinski & Harabasz, 1974) among others. This 
goes to show that estimating the number of clusters is non-
trivial and is a major challenge for the K-means algorithm. 
K-means also has a shortcoming in that it only works for 
numerical data and not categorical data. The K-mode 
clustering algorithm (Xu & Wunsch, 2005), a variation of 

the K-means, works for categorical data sets. The K-mode 
algorithm differs from K-means in that it uses modes 
instead of means to calculate the centroids and measures 
dissimilarity between the categorical data instead of the 
Euclidean distances between the objects. 
Another drawback for the K-means algorithm is that it is 
very sensitive to outliers. Since all data objects must be 
assigned to a cluster, an outlier can easily affect the mean 
of the data objects in that given centroid. K-Medoids 
algorithm addresses this problem by choosing the actual 
data points as the cluster prototypes.  The K-Medoid 
algorithm is further improved by the Partitioning Around 
Medoids (PAM) algorithm (Kaufman & Rousseeuw, 
1990) and the Clustering LARge Applications (CLARA) 
algorithm (Raymond & Han, 2002). Although beyond the 
scope of this research, it is worth mentioning a brief 
description of the K-Medoid algorithm in the section 
below. 
 
B) K-Medoid 

The framework for the K-Medoid Clustering is given in 
the pseudo-Algorithm 4 below. 
 

Algorithm 4: K-Medoid Clustering 

1: Select K points as initial cluster centers (centroids) 
randomly or based on heuristics 

2: repeat 

3:           Assign each data points to its closest centroid 

4:     Select a random non-representative object x and 
compute cost of swapping x with a representative object 
y. 

5:          If the cost < 0 then swap x with m to form the 
new set of K representative objects 

6: until convergence criteria is achieved. 

 
The algorithm uses the actual data objects as prototypes 
and randomly assigns an object x to replace an object y 
which is represented in the cluster prototypes. Once this is 
done, the membership of all data points that belonged to 
the representative y are checked and if they are closer to x 
then y is swapped with x. The cost of swapping is 
computed as the absolute error criterion for K-Medoids 
and is recalculated for every assignment of x and y as it 
obtains the final representative points for each cluster. 
This fact makes K-medoid computational complexity 
higher than that of K-means and thus not very suitable for 
big data sets. 
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4. OVERLAPPING CLUSTERING 
Many clustering algorithms are hard clustering techniques 
where an object is assigned to a single cluster. Fuzzy 
clustering techniques allow objects to belong to multiple 
clusters with different degrees by assigning membership 
degrees to the objects and allowing the object to belong to 
the cluster that has the highest degree. Data points with 
very small membership degrees can in this case help us 
distinguish noise points. The sum of all membership 
degrees add up to unity.  
 
There are several overlapping clustering algorithms which 
are graph-based clustering algorithms, which are out of 
scope of this research. Overlapping graph-based methods 
use greedy heuristics and may be applicable in community 
detection in complex networks (Fellows et al., 2011). 
However, it is worth mentioning that these algorithms 
have major limitations that do not make them practical for 
real-life problems as out lined by Perez-Suarez et. al 
(Perez-Suarez et. al, 2013) . Some of the mentioned 
limitations indicated are:  
 
i) They produce a large number of clusters in that 
analyzing these clusters could be as difficult as analyzing 
the whole collection.  
ii) There is a very high overlapping in the clusters which 
would essentially hinder getting useful information about 
the structure of the data.  
iii) They have a very high computational complexity thus 
making them unrealistic to apply them to real-life 
problems. 
 
The primarily focus of this research is on partitioning 
clustering algorithms and methods that extend K-means 
based on the squared Euclidean distance which are fast and 
have low computational complexity compared to 
hierarchical making them suitable for large data sets. 
 
The algorithms discussed optimize partitions for fixed k 
clusters (i.e. k is defined a priori) and in most cases are 
suitable if there is some domain information regarding the 
k. Otherwise it is not trivial to determine what suitable k is 
for any given data set. Alternatively, different runs can be 
made with different values of k and the results be 
compared to see which produced the best partition and can 
be then be used as the benchmark for future runs.  
(Bandyopadhyay et. al, 2002;  Hruschka et. al, 2004) 
proposes methods to optimize the number of k clusters 
without having to define it beforehand. 
One of the commonly used soft-clustering techniques is 
the Fuzzy K-means commonly referred to as Fuzzy C-
means (FCM) (Bezdek, 1981). The algorithm works 
similar to the K-means where the algorithm minimizes the 
objective function (sum of squares error) until the centroid 
converges. Other algorithms that are a variation of FCM 

to deal with non-numerical data sets include Fuzzy K-
mode, and Fuzzy K-medoid. Some extensions of FCM 
include Possibilistic C-means (Krishnapuram & Keller, 
1996).  
 
The K-Medoid algorithm outlined earlier is more robust to 
outliers compared to the K-means. (Cleuzious, 2009) 
proposed an algorithm OKMED that extends the method 
PAM and Kernel Overlapping K-Means or KOKMф 
(BenN’Cir et al., 2010) both detecting overlapping 
clustering around medoids.  Other works that we will 
discuss are the Overlapping K-means (OKM) (Cleuzious, 
2008), The Weighted-OKM (WOKM) (Cleuzious, 2009), 
Overlapping Partitioning Cluster (OPC) (Chen & Hu, 
2006), the Multi-Cluster Overlapping K-means Extension 
(MCOKE) algorithm (Baadel et. al, 2015; Baadel et. al, 
2016), and Improved Multi-cluster Overlapping K-Means 
Extension Algorithm (IMCOKE) (Danganan, et al., 2021). 

 

A) Fuzzy K-Means 

The algorithm works similar to that of K-means and the 
solution will correspond to the local minimum of the 
objective function. The sum of squared errors (SSE) 
objective function is defined in the Equation (2) below: 

   (2) 

Where Ck is the kth cluster, xi is a point in Ck, ck is the mean 
of the kth cluster and w is the membership weight of point 
xi belonging to cluster Ck. β controls the fuzziness of the 
memberships such that when it approaches one it acts like 
k-means algorithm assigning crisp memberships.  
 

The algorithm minimizes this SSE iteratively and updates 
the membership weightage and clusters until convergence 
criteria are met or improvement over the previous iteration 
does not meet a certain threshold.  By assigning the 
memberships a weightage degree between 0 and 1, the 
objects are able to belong to more than one cluster with a 
certain weight hence generating soft partitions or clusters. 
The overall weight however must add to unity i.e. 1.  
Objects are eventually assigned to clusters that have the 
highest degree of membership. If the highest degree of 
membership is not unique, then an object is assigned to an 
arbitrary cluster that achieves the maximum. By adding a 
constraint where the data object must belong to a cluster 
with the highest membership degree, a “1” is imposed on 
every object in the matrix thus degenerating it to crisp-
partitioning. 

B) Overlapping K-Means (OKM) and Weighted OKM 
(WOKM) 

The framework of the Overlapping K-means is given in 
the pseudo-Algorithm 5 below. 
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Algorithm 5 : Overlapping K-Means 

Input: a set of data vectors, max number of iterations, 
threshold on the objective  

Output: final coverage of the points 

1: Draw K points as initial cluster prototypes  

2: repeat 

3:             Assign the data points to its closest prototype                

4:         Re-compute the cluster prototypes and re-
compute the assignments based on the new coverage 

5: until  convergence criteria is met and no change on 
each cluster or maximum number of iterations are 
achieved or a threshold on the decreasing number of the 
objective function 
 

 
The algorithm proposed by (Cleuzious et. al, 2008) 
initializes a random cluster prototype with random 
centroids as an image of the data. Optional threshold value 
can be entered by the user during the initialization step. 
The aim is to minimize the objective function given in the 
Equation (3) below. 

   (3) 

Where 𝜋! represents the cth cluster with xi ∈ ℝ .  
 

After calculating the SSE of the data objects to their 
centers using the Euclidean square distance, it assigns 
these objects to their nearest centroids. The algorithm then 
computes the SSE of the prototype and compares these 
objects with the prototype center assignments to determine 
the mean of the two vectors to become the threshold to 
assign the objects to multiple clusters. Once the initial 
assignment of objects to their centroids is done, the mean 
between each cluster (threshold) is used to determine if the 
object should belong to the next nearest cluster as well. 
OKM uses heuristic to determine the set of possible 
assignments by sorting the clusters from nearest to furthest 
and assigning the object to the nearest cluster. If the mean 
mx of the clusters already associated with the object plus 
the mean my of the next nearest cluster is lower than the 
threshold (mean of all the clusters associated with the 
object), then these two clusters are associated and the 
object will belong to that cluster as well. This assignment 
procedure is iterated until the stopping criteria or the 
maximum number of iterations is met resulting into a new 
coverage of the data objects in multiple clusters.  

The WOKM is an extension of the OKM and Weighted K-
means (Huang et al., 2005) that introduces a weighting 
vector 𝜆! of a subset of attributes relative to a given cluster 
c that may be assigned to that cluster and a vector 𝛾"of 
weights relative to the representative 𝜙(xi) with the aim of 
minimizing the objective function given by Equation (4) 
below 

   (4) 

The objective function is optimized by first assigning each 
data object to the nearest cluster while minimizing the 
error, and secondly by updating both the cluster 
representatives and the set of cluster weights. In this 
algorithm the distance feature is also weighted by the 
feature weights contrary to the standard K-means which 
ignores the weights of any particular feature and considers 
all of the features to be equally important. 

C) Overlapping Partitioning Cluster (OPC) 

The framework of the Overlapping Partitioning Cluster is 
given in the pseudo-Algorithm 6 below. 
 

Algorithm 6 : Overlapping Partitioning Cluster 

Input: k number of clusters, similarity level   

Output: final coverage of the points 

1: Create 2 tables, distance table (based on the data 
objects) and similarity table (based on the distance table 
and the minimum similarity threshold entered by user) 

2: repeat 

3:            Assign the data points to its closest centroid 
that satisfies the similarity threshold                

4:            If the new objective value is greater than 
maximal one, maximal is new objective 

5: until  convergence criteria is met  

 
(Chen & Hu, 2006) proposed the algorithm which accepts 
the k number of clusters and the s similarity level or 
threshold as inputs. It first does some preprocessing work 
which creates two separate tables; a distance table which 
has the distances between all object pairs and a similarity 
table that stores the similarity of the objects based on the 
threshold entered by the user. If the distance between the 
two objects is greater than the top 5% percentile of all 
object pairs then the similarity level is 0 otherwise a 1 is 
assigned that indicates it should be included. Random 
initial centroids are selected based on heuristics and objects 
are assigned to the nearest centroid. The objective function 
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works in two folds, minimizes the intra-distance between 
the object and the centroid while maximizing the inter-
distance between the centroids. The objects are assigned 
meeting the objective function and the cluster centroids are 
adjusted iteratively with the new objects until the objective 
function converges. The OPC is based on the K-medoid 
algorithm and inherits similar characteristics and 
performance as its parent algorithm. 

 

D) Multi-Cluster Overlapping K-Means Extension 
(MCOKE) 

The framework for the MCOKE algorithm is given in the 
pseudo-Algorithm 7 below. 
 

Algorithm 7: MCOKE: Multi-Cluster Overlapping K-
means Extension  

Input: Number of clusters K, a set of data vectors 

Output: Membership matrix 

1:              Select K points as initial cluster centers 
(centroids)  

2: repeat 

3:                Assign each data points to its closest centroid 
using the Euclidean distance 

4:               Re-compute and update the centroids 

5: until   convergence criteria is met and no change on 
each cluster or maximum number of iterations are 
achieved 
6.      Return assignment vector, final centroid vector, 
and the maximum Euclidean distance (maxdist) 
allowed in the initial assignments 
7.             Draw an initial membership matrix table 
8.    Compare each data point to the final centroid vector 
distance with maxdist and update membership table if 
distance is shorter 
         

 
The MCOKE algorithm introduced by (Baadel et. al, 
2015) consists of two procedures. The first part is the 
standard K-means clustering that iterates through the data 
objects in order to attain a distinct partitioning of the data 
points given a priori number of k clusters by minimizing 
the distance between the objects and the cluster centroids. 
The second part creates a membership table that compares 
the matrix generated after the initial K-means run to 
maxdist (the maximum distance of an object to a centroid 
that an object was allowed to belong to any cluster). This 
maxdist is used as the threshold to allow objects to belong 

to multiple clusters. Overlapping objects are not assigned 
degree of memberships but rather a 1 if it belongs and a 0 
otherwise.  
The first part of the algorithm is that of K-means and the 
solution will correspond to the local minimum of the 
objective function. The sum of squared errors (SSE) 
objective function is defined in the Equation (3.1) above 
for the K-means. K-means clustering being a greedy-
descent nature algorithm, it will converge to a local 
minimum. After an initial run of the first step (that 
includes steps 1 to 5 above), the algorithm will return 3 
things. Firstly, a vector of all the data objects with their 
assignment to each cluster. Secondly, a vector containing 
the final list of the cluster centroids. This vector of all 
centroids will be used in the second part of the algorithm 
to determine if the objects should belong to them. Thirdly, 
the maxdist as determined by the Euclidean distance of the 
objects to the centroids is made the global threshold to 
compare similarity of the objects to other clusters. 
The second part of the algorithm draws an initial 
membership matrix table with hard clustering result of the 
data objects and softens these partitioning by iterating 
through the membership matrix and comparing the objects 
to the final centroids vector using the threshold maxdist 
and reassigning them to the clusters if the distance of the 
object to those centroids is less than maxdist. 
 

E) Enhanced Multi-cluster Overlapping K-Means 
Extension (ehMCOKE) 

eHMCOKE is an improvement of Improved MCOKE 
(Danganan et al., 2018) that was built to identify 
overlapping objects while avoiding some of the 
shortcomings identified in MCOKE. The algorithm, 
proposed by Danganan et al. (2021) incorporates median 
absolute deviation (MAD) to detect outliers in the dataset. 
To improve the performance of eHMCOKE, the authors 
deployed a three-step process in the algorithm. 

Step 1 used MAD to identify and prune any outliers in the 
dataset. The second step utilized MCOKE algorithm to 
cluster the data. Finally, the last step uses the maxdist 
technique identified in MCOKE with additional parameters 
that were deployed in step 1 to assign the datapoints into 
overlapping clusters. 

5. CONCLUSION 
In this paper we mentioned the different forms of 
clustering algorithms. Most of the algorithms discussed 
are hard clustering where an object belongs to one cluster 
i.e. single membership. The Fuzzy K-means and its 
variations are the most commonly used soft-clustering 
algorithms where an object belongs to one or more clusters 
i.e. multiple memberships. Object memberships in Fuzzy 
techniques are based on variation of degrees on their 
belonging to each cluster and must add to unity. The 
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OKM, WOKM, and OPC algorithms break away from the 
fuzzy concept but require a threshold be set for the 
similarity function in determining the belonging of 
objects. This may not be easily done by novice users. 
MCOKE and eHMCOKE algorithms differs from other 
overlapping algorithms in that they do not require a 
similarity threshold to be defined a priori which may be 
difficult to set depending on the data samples. It instead 
uses the maximum distance (maxdist) allowed in K-means 
based on the SSE on Euclidean distance to assign objects 
to a given cluster as the global threshold. However, while 
the maxdist can be significantly affected in the presence of 
outliers rendering it not very effective (as in MCOKE), 
eHMCOKE algorithm prunes the outliers prior to applying 
clustering. 

Finally, the algorithms require users to enter the number 
of k clusters and assign the objects based on the defined 
number of k clusters. There is a need for new algorithms 
to be able to assign and add new clusters on the fly on top 
of the k depending on the data set, i.e., data sets that are 
updated frequently or contain outliers deemed as noise 
without pruning them.  
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