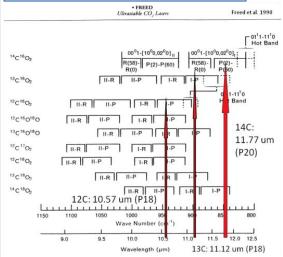
CLIMATE CHANGE TO THE NUCLEAR FUEL CYCLE: EXPANDING THE ¹⁴CO₂ DATABASE FOR NON-AMS FIELD MEASUREMENT SYSTEMS

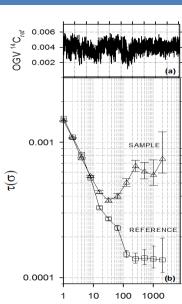
Bruno D.V. Marino, David E. Tolliver, Robert G. O'Donnell Planetary Emissions Management Inc., 711 Atlantic Ave. Boston, MA

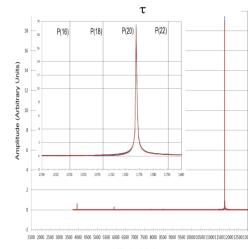
Abstract

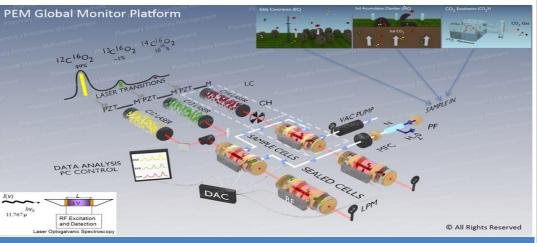
Accelerator Mass Spectrometry is well known and universally employed for radiocarbon analysis but is not adaptable to field measurements limiting applications. ${}^{14}CO_2$ is a key tracer for fossil fuel CO₂ as well as for release of enriched ¹⁴CO₂ characteristic of the nuclear fuel cycle with $D^{14}CO_2$ values ranging from -1000 to \sim +500 per mil. However, to exploit the full value of in situ ¹⁴CO₂ data in diverse climate change and nuclear fuel cycle applications high data rate temporal and spatial field measurement systems are required. The development of non-AMS methods based on quantum cascade laser, cavity ring down and optogalvanic spectroscopy are emerging applications but not fully developed for field use or widely accepted. Spectral data for lasing transitions for ¹⁴CO₂ are lacking in contrast to HITRAN data available for ¹²CO₂ (626) and ¹³CO₂ (636) (among other isotopologues 628, 638, etc.) in the spectral databases limiting development and innovation in non-AMS ¹⁴CO₂ analytical systems. We review the corpus of ¹⁴CO₂ spectral data spectral data available in the literature and document grating tuned isotopic lasers (e.g., Freed 1990; Bradley et al., 1986) well suited for expanded spectral studies of ¹⁴CO₂ and inclusion in the HITRAN database. Available isotopic lasers for ¹⁴CO₂ collaborative studies are described.

Objectives

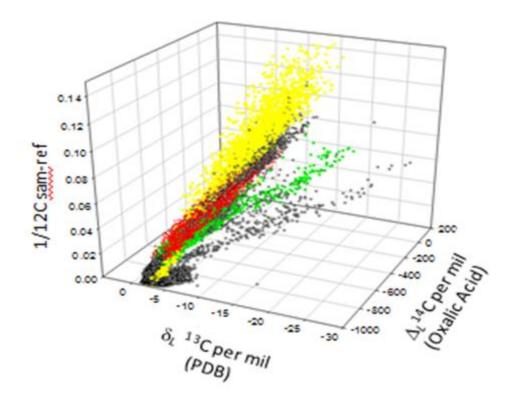

- \Box Expand spectral database for ¹⁴CO₂
- □ Integrate spectral data with new non-AMS field analyzers
- Develop laboratory for ¹⁴CO₂ spectroscopy
- □ Collaborative instrument development

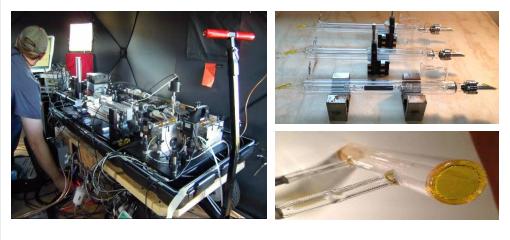

□ Field testing of applications for fossil fuel & nuclear CO₂ emissions quantification

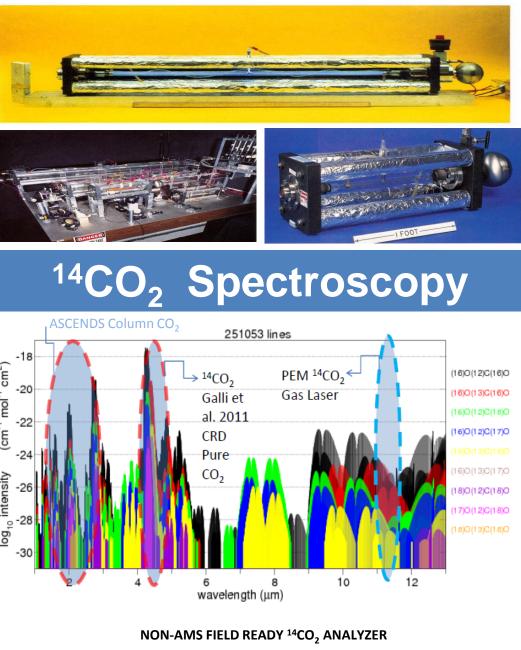

Status


¹⁴CO₂

- Ideal DIRECT FF-CO₂ Tracer
- Large Δ (~1050 °/₀₀)
- Use natural radiocarbon
- Project lifetime MVA
- Avoids tracers
- External precision ~50 °/₀₀
- Limited by technical noise
- Not an AMS replacement
- Leakage Rate Data Product






CCUS Leakage MVA

Eddy Covariance Results, Soda Springs, ID Marino, ms in preparation

¹⁴CO₂ Gas Lasers

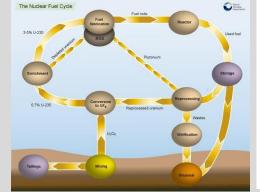
Free running and grating tuned ¹⁴CO₂ lasers available for development research

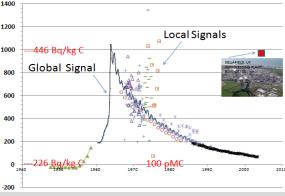
PEM is establishing a ¹⁴CO₂ spectroscopy laboratory using modular lasers developed by Charles Freed and colleagues of MIT LL

<u>Methods</u>

Laser Optogalvanic Spectroscopy (LOGS D_L), ICLAS **Implementation**

Murnick et al. 2008 **Requirements**


Narrowband ¹⁴CO₂ Laser. Intracavity, High Sensitivity Detection Cell, Standard Reference Cells, Calibration Routines, Integration with Diverse Field Instruments


<u>Status</u> Field Deployment Demonstrated (4 Sites), Integration with Soil, EC, Exsolvation Instrumentation, 14C Internal Precision (`2 per mil), 14C External Precision (~50 per

Problems

Resetability & Exernal Precision, OGE Cell Noise, Component Upgrades, 14C Laser Fabrication, Persson et al. 2013 Kinetic OGE-C isotopologue model lacking

Nuclear Fuel Cycle

Twin Perils: Energy & Climate Change Proliferation Risk Increases

(undeclared/denied)

□ Challenge for IAEA Global Detection & Monitoring

Expanded Safeguards Needed

□ NFC MVA on Local-to-Global Scales

□ Improved Field Analyzers (e.g., QCL) Needed

¹⁴CO₂ Collaboration

- **QCL**, CRD laser fabrication
- **Expansion of line positions**, strengths
- □ Spectroscopy for field systems
- □ Testing evaluation of systems
- □ Satellite sensor systems
- **G** Fossil-fuel emissions
- □ Nuclear fuel cycle emissions
- □ Integrated instrumentation platforms
- Landscape scale sensor networks
- Commercialization

References/Contacts

Bruno D.V. Marino, bruno.marino@pem-carbon.com David. E. Tolliver, detolliver@icloud.com

• Freed, C., 1990. Ultrastable CO₂ Lasers. The Lincoln Laboratory Journal, 3(3), pp.480–496. • Freed, C., Bradley, L. & O'Donnell, R., 1980. Absolute frequencies of lasing transitions in seven

CO₂ isotopic species. *IEEE Journal of Quantum Electronics*, 16(11), pp.1195–1206. Marino, B.D.V., 2014. Near Surface Leakage Monitoring for the Verification and Accounting of Geologic Carbon Sequestration Using a Field Ready 14C Isotopic Analyzer. OSTI ID: 1130969. DOE Contract #: FE0001116. Technical Report. 2014-04-14.

• Marino, B.D.V., Michelle Bright, and Glen Gronniger., 2011. "Design and package of a ¹⁴CO₂ field analyzer: the Global Monitor Platform (GMP)." SPIE Optical Engineering+ Applications. International Society for Optics and Photonics.

 Murnick, D.E., Dogru, O. & Ilkmen, E., 2008. Intracavity optogalvanic spectroscopy. An analytical technique for 14C analysis with subattomole sensitivity. Analytical chemistry, 80(13), pp.4820-4

Persson, A. et al., 2013. Evaluation of intracavity optogalvanic spectroscopy for radiocarbon measurements. Analytical chemistry, 85(14), pp.6790-8.