
NAISS Activity Report 2023/22-202
Peter Kuma*, Frida A.-M. Bender and Thorsten Mauritsen

Department of Meteorology (MISU) and Bolin Centre for Climate Research, Stockholm University,
Stockholm SE-106 91, Sweden

*E-mail: peter.kuma@misu.su.se, Web: https://peterkuma.net

30 May 2024

Introduction
We applied for the NAISS Small Compute allocation 2023/22‐202 to support our research
as part of the NextGEMS project (https://nextgems‐h2020.eu), funded through the European
Union’s Horizon 2020 research and innovation programmeunder the grant agreement num‐
ber 101003470. NextGEMS is focused on the research and development of high resolution
(km‐scale) storm‐resolving climate models, which are going to be the next generation of
production‐ready climatemodels. Because of the high resolution, some previously parame‐
terised physical processes can be resolved on themodel grid. Thus, such parameterisations
and related uncertainties can be eliminated.

The main aim of our research is to evaluate a high‐resolution version of the Icosahedral
Nonhydrostatic Weather and Climate Model (ICON), developed by NextGEMS jointly with
DeutscherWetterdienst (DWD) and theMax‐Planck‐Institute for Meteorology (MPI‐M). Pre‐
vious studies have identified substantial large‐scale biases in climate model clouds over the
Southern Ocean, affecting sea surface temperature and the Earth’s albedo overall. Our aim
is to quantify how well the high‐resolution ICON model is simulating clouds in this region,
particularly in light of the fact that subgrid‐scale clouds are not parameterised in thismodel.
This region ismostly dominated by boundary layer clouds generated by shallow convection,
and these are problematic to observe by spaceborne lidar and radars, which are affected by
attenuation by overlapping and thick clouds and ground clutter, respectively. Therefore, we
chose to use a large set of ship‐based observations conductedwith ceilometers and lidars on
board of the RV Polarstern and other voyages and stations.

Altogether, we analysed over 1500 days of data from 31 voyages and 1 sub‐antarctic station
covering diverse longitudes of the Southern Ocean. To achieve a like‐for‐like comparison
with the model, we used a ground‐based lidar simulator called the Automatic Lidar and
Ceilometer Framework (ALCF) (Kuma et al., 2021). We contrasted the results with the Euro‐
pean Centre forMedium‐RangeWeather Forecasts (ECMWF) Reanalysis 5 (ERA5) (ECMWF,
2019) and the Modern‐Era Retrospective analysis for Research and Applications, Version 2
(MERRA‐2) (Gelaro et al., 2017).

The outlined research is still ongoing and we have not finalised our analysis. Intermediate
results were presented at two conferences in the form of posters: the 15th Bolin Days in
Stockholm on 29–30 November 2023 (Kuma and Bender, 2023) and the 2nd Swedish Climate
Symposium inNorrköping on 15–17May 2024 (Kuma and Bender, 2024a). We also presented
some of the intermediate results at the NextGEMS hackathon in Hamburg on 4–8 March
2024. A manuscript covering this work is currently in preparation and will be submitted
later in 2024 (Kuma and Bender, 2024b).

We used the NAISS Small Compute allocation for compiling and test‐running ICON in an
atmosphere‐only configuration.
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Figure 1 |Map showing voyage tracks and a station analysed.

Sections 1 and 2 briefly outline the methods used and the main scientific results. These are
presented in more detail in the referenced posters (available online). The results will be
described fully in the manuscript in preparation.

1 Methods

1.1 Voyage and station data

Together, we analysed data from 31 voyages of RV Polarstern, RSV Aurora Australis, RV Tan-
garoa, RV Nathaniel B. Palmer, HMNZS Wellington and one sub‐Antarctic station (Macquarie
Island) in the Southern Ocean south of 40°S between year 2010 and 2021 (Fig. 1).

These data sources contained ceilometer (lidar) observations with the Vaisala CL51 operat‐
ing at 910 nm and the Lufft CHM‐15k operating at 1064 nm. A ceilometer is a low‐power ver‐
tically pointing lidar with the purpose of measuring the cloud base, but it also measures the
full vertical structure of clouds as long as the laser signal is not attenuated by thick clouds.
A total of about 1500 days of lidar observations were included in our analysis.

Apart from lidar observations, radiosondes were launched on weather balloons at regular
synoptic times on the RV Polarstern voyages, and surface meteorological quantities were
measured continuously.

1.2 ICON

The storm‐resolving version of the ICONmodel is in development by the NextGEMS project
(Hohenegger et al., 2023). NextGEMS has so far produced four cycles of model runs. In our

2



research, we used the Cycle 3 run due to limited data availability in Cycle 4. The horizontal
resolution is about 5 km. Unlike current general circulation models (GCMs), it does not
use convective and cloud parameterisation but relies on explicit simulation of convection
and clouds on the model grid. While this makes the code development simpler without
having to rely on uncertain parameterisations, it can miss smaller‐scale clouds below the
grid resolution. Turbulence and cloud microphysics are still parameterised in this model.
In our analysis, we used 4 years of coupled simulation output between years 2021 and 2024
(inclusive). Because the model is free‐running, weather and climate oscillations are not
equivalent to reality at the same time and place. To comparewith observations taken during
different years (2010–2021), we compared the model output with observations at the same
time of year and geographical location.

1.3 ALCF

TheAutomatic Lidar andCeilometer Framework (ALCF) is a ground‐based lidar simulator. It
performs radiative transfer calculations to derive equivalent lidar backscattered radiation in
an atmosphericmodel, which can then be comparedwith observed lidar backscatter (Kuma
et al., 2021). For this purpose, it takes atmospheric fields of cloud fraction, liquid and ice
mass mixing ratio, temperature and pressure fields as an input and can be run offline (on
the model output rather than inside the model code). The lidar simulator in the ALCF is
based on the instrument simulator Cloud FeedbackModel Intercomparison Project (CFMIP)
Observation Simulator Package (COSP) (Bodas‐Salcedo et al., 2011). After the backscattered
radiation is calculated, a cloudmask, cloud occurrence by height and the total cloud fraction
are determined.

1.4 Precipitation identification usingmachine learning

It was not possible to include precipitation simulation in the ALCF due to the absence of
required fields in our model output and reanalysis data (liquid and ice precipitation mass
mixing ratios) because the required radiation calculations are not implemented in theALCF.
At the same time, it is relatively difficult to distinguish precipitation backscatter from cloud
backscatter in lidar observations, especially when only one wavelength channel and no po‐
larisation channel are available.

In order to get a fair comparison of observations and models, one needs to exclude profiles
with precipitation either manually or using an automated method. In models, this can be
accomplished relatively easily by excluding profiles with an amount of surface precipitation
flux exceeding a threshold. In observations, this can be more complicated, especially on
voyages, because rain gauges are known to be unreliable on ships.

On the RV Polarstern voyages, regular synoptic observations were available. These included
precipitation observations by an observer. We used this dataset to train a convolutional ar‐
tificial neural network (ANN) of the U‐Net type (Ronneberger et al., 2015) to recognise pre‐
cipitation in the lidar data. Samples of short time intervals (10min) of near‐surfacebackscat‐
ter (0–250m) were classified as clear, rain, snow and fog, using the synoptic observations as
a training set. From these, a binary classification of profiles as wet or dry was derived.

The ANN achieved 65% sensitivity and 87% specificity when the true positive rate (26%) was
made tomatch observations. We considered these success rates satisfactory for the purpose
of filtering precipitation profiles.
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2 Results

2.1 Cloud occurrence

Weused the ALCF to derive cloud occurrence by height and the total cloud fraction from ob‐
servations, ICONand two reanalysesMERRA‐2 andERA5 (Fig. 2). We aggregated the sources
by calculating the averages and percentiles of all individual profiles (Fig. 3). The analysis
shows that the total cloud fraction (determined as the fraction of profiles with clouds at any
height in the lidar cloudmask) is underestimated in ICON and reanalyses by about 10% and
20%, respectively.

Inparticular, ICONoverestimates cloudoccurrencebelow1kmandunderestimates it above,
MERRA‐2 underestimates cloud occurrence at all heights, especially near the surface, and
ERA5 simulates cloud occurrence relatively well above 1 km, but strongly underestimates it
near the surface. We note that fog or near‐surface clouds are strongly lacking in the reanal‐
yses. As shown in Fig. 2, the biases are relatively consistent across voyages and longitudes.
The ICON results are overall better matching the observations than the reanalyses.

The ICONcomparison is limited by the fact that themodel is free‐running. Thus, the vertical
profiles are not expected to represent the same weather conditions as in observations, but
long‐term statistical comparison is still possible. Only profiles with the same sea ice condi‐
tions (present or not) were included to avoid comparing sea ice with open sea conditions.

2.2 Thermodynamic profiles

We compared about 2000 radiosonde profiles from 24 RV Polarstern voyages between the
observations and the model. Profiles in the model were taken at the same geographical lo‐
cation and time relative to the start of the year. Only profiles for which the sea ice conditions
(sea ice present or absent) are the same in the observations and the model were included.
We derived potential temperature profiles, lifting condensation level (LCL), and aggregated
the profiles by sea ice conditions (Fig. 4).

We found that the variability of potential temperature in themodel to be smaller than in the
observations. This indicates that the model does not represent the entire natural variabil‐
ity. The LCL peaks at the surface in the observations, but the peak in the model is higher
(about 200 m). This probably relates to the greater occurrence of fog and the peak of cloud
occurrence at the surface in observations, whereas in the model the peak is higher.

3 Code developments

3.1 ALCF

As part of this research, many code improvements were made to the open source software
ALCF. The following non‐exhaustive list highlights some of the improvements:

• adding support for the ICONmodel
• adding support for the Atmospheric Radiation Measurement (ARM) format of Vaisala
CL51 data

• adding support for the Antarctic Mesoscale Prediction System (AMPS) GRIB format
• implementing faster vertical interpolation
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Figure 2 | Cloud occurrence by height for 32 voyages and stations in observations (OBS),
ICON, MERRA‐2 (M2) and ERA5. Total cloud fraction is shown in the legend.
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Figure 3 |Cloud occurrence by height aggregated for all voyages and stations. The total cloud
fraction is shown in the legend. The ranges are from the 16th to the 84th percentile.

Figure 4 | Radiosonde profiles of potential temperature and lifting condensation level (LCL)
on all RV Polarstern voyages.
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• implementing new vertical interpolation algorithms
• parallel processing of model input
• automatic downloading of MERRA‐2 and ERA5 data for a specified station or voyage
track

• various improvements in handling of voyage tracks and time intervals
• various improvements in the documentation

The improvements are listed inmoredetail at https://alcf.peterkuma.net/installation/#releases.

3.2 Data processing and comparison code and the ANN

A substantial amount of newcodehas beendeveloped for voyage and station data processing
and comparison with the models, as well as the ANN described in Section 1.4. All of the
developed code will be published under an open source license together with our upcoming
manuscript.

Conclusions
We show that themodel underestimates the total cloud fraction by about 10%, with an over‐
estimation of clouds below 2 km, and an underestimation of clouds above 2 km. The reanal‐
yses also underestimate the total cloud fraction by about 20%. ERA5 overestimates cloud be‐
low1kmbut underestimates near‐surface cloudor fog. In addition to lidar data, we compare
radiosonde profiles acquired on the RV Polarstern voyages with ICON. Notably, themodel ex‐
hibits smaller natural variability than observations, and its lifting condensation level tends
to be higher. This might explain why cloud occurrence is peaking higher in the model (at
500 m) than in observations (at the surface).

We compared radiosonde profiles acquired on the RV Polarstern voyages with ICON. The
ICON model exhibits smaller internal variability than observations, and its LCL level tends
to be higher, whichmight explain why a peak of cloud occurrence in observations is located
at the surface, while in ICON it is located higher, corresponding to the LCL.

The results imply that Southern Ocean cloud biases are still a significant issue in a km‐
scale resolution model, even though an improvement over the lower‐resolution reanalyses
is notable. More effort is needed to improve model cloud simulations in this fast‐changing
and understudied region. The advancement from convection and cloud parameterisation
to cloud‐resolving models might not solve this bias without additional effort.

Further analysis will focus on investigating the role of cyclones in the identified biases by us‐
ing cyclone tracking and the role of local thermodynamic stability using lower tropospheric
stability and estimated inversion strength.

As part of our researchwe also continued the development of the open‐source ground‐based
lidar simulator ALCF, which has already been used by several research teams formodel and
reanalysis evaluation (Kuma et al., 2020; Kremser et al., 2021; Guyot et al., 2022; Pei et al.,
2023; Whitehead et al., 2023).

We thank the National Academic Infrastructure for Supercomputing in Sweden for their
support.
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