
Conversational agents for simulation applications and video games

Ciprian Paduraru, Marina Cernat, and Alin Stefanescu
Department of Computer Science, University of Bucharest, Romania

ciprian.paduraru@unibuc.ro, marina.cernat@unibuc.ro, alin.stefanescu@unibuc.ro

Keywords: Natural Language Processing, video games, active assistance, simulation applications

Abstract: Natural language processing (NLP) applications are becoming increasingly popular today, largely due to recent
advances in theory (machine learning and knowledge representation) and the computational power required
to train and store large language models and data. Since NLP applications such as Alexa, Google Assistant,
Cortana, Siri, and chatGPT are widely used today, we assume that video games and simulation applications
can successfully integrate NLP components into various use cases. The main goal of this paper is to show
that natural language processing solutions can be used to improve user experience and make simulation more
enjoyable. In this paper, we propose a set of methods along with a proven implemented framework that uses
a hierarchical NLP model to create virtual characters (visible or invisible) in the environment that respond to
and collaborate with the user to improve their experience. Our motivation stems from the observation that in
many situations, feedback from a human user during the simulation can be used efficiently to help the user
solve puzzles in real time, make suggestions, and adjust things like difficulty or even performance-related
settings. Our implementation is open source, reusable, and built as a plugin in a publicly available game
engine, the Unreal Engine. Our evaluation and demos, as well as feedback from industry partners, suggest that
the proposed methods could be useful to the game development industry.

1 INTRODUCTION

NLP is one of the most important components in the
development of human-machine interaction. It stud-
ies how computers can be programmed to analyze
and process a large amount of natural language data.
Some of the most challenging topics in natural lan-
guage processing are speech recognition, natural lan-
guage generation, and natural language understand-
ing. According to literature and surveys, simulation
applications and video games are one of the most
valuable sectors in the entertainment industry [Bal-
tezarevic et al., 2018]. Our main contribution to this
area is to work with our industry partners to iden-
tify and develop methods based on modern NLP tech-
niques that could potentially help the simulation soft-
ware and video games industry. The main problem
we are addressing is how to help the player and re-
spond live to his feedback. The person or entity
assisting the user can be rendered virtually in the
simulation environment, i.e., as a non-playable char-
acter (NPC) or as a narrator/environmental listener.
Together with industry partners, several specific use
cases of NLP in simulation applications and game de-
velopment industry were investigated. The first cate-

gory investigated relates to classical sentiment analy-
sis [Wankhade et al., 2022] problem. An example of
this is when a user is playing with an NPC and indi-
cates, either through speech or text, that the difficulty
level of the simulation has some problems (e.g., too
difficult or not challenging enough). In this case, one
solution would be to dynamically adjust the difficulty
level to provide an engaging experience for the user.
Another concrete case: imagine the user is playing a
soccer game such as FIFA1, and is disappointed by
a referee’s decision. The decision could then attract
different unusual noises made by the user. The in-
game referee could then react accordingly and make
the feedback more severe or even penalize the user’s
behavior.

Moreover, we found that NLP techniques can
be used to create NPC companions that physically
appear in the simulated environment and can be
prompted by a voice or text command to help the user.
Concrete situations could be that the user is blocked
at an objective or cannot find the way to a needed lo-
cation. In this case, the NPC companion could under-
stand the user’s request and guide them to a desired
location or provide hints to solve various puzzles.

1https://www.ea.com/en-gb/games/fifa
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Another source of frustration for users when in-
teracting with simulated environments is that they
cannot understand various designed mechanics. This
problem is common in the industry and causes users
to abandon the applications before developers can
generate any revenue or enough game satisfaction. In
this case, we see NLP as a potential solution where the
user can ask questions that a chatbot can answer live
to help them. Concrete examples could be questions
about healing mechanisms, finding different items on
a given area, things needed or missing to achieve cer-
tain goals, etc.

The novelty of our work is that it uses modern
NLP techniques to address the above mentioned prob-
lems. We summarize our contributions below.

• Identify concrete problems in simulation applica-
tions and video games that can be solved with
NLP techniques, together with industry partners.

• A reusable and extensible open source frame-
work to help simulation and game developers
add NLP support to their products. The solu-
tion we provide at https://github.com/AGAPIA/
NLPForVideoGames is designed as a plugin for
a game engine commonly used in both industry
and academia, the Unreal Engine2. For the ba-
sic part, we use very recent deep learning meth-
ods from the NLP literature, which are suitable
for real-time inference as needed for today’s ap-
plications. User input can be either in the form of
voice or text messages. For evaluation purposes, a
demo is built on top of the framework. Along the
repository, an example from the demo application
can be found on voice commands at https://youtu.
be/Z0JqyTO724M, while for text commands at
https://youtu.be/v2Ls9pboXxc.

• Identify some best practices and specifics for ap-
plying NLP to simulation software and video
games.

The rest of the paper is organized as follows. Sec-
tion 2 presents use cases of NLP application in vari-
ous other industries that provide similar solutions in
a context different from ours. Section 3 presents the
theoretical and technical methods we propose within
our framework for using NLP in video games and
simulation applications. The evaluation from a quan-
titative and qualitative perspective, along with details
about our setup, observations, and datasets are pre-
sented in Section 4. The final section presents our
conclusions and ideas for future work.

2https://www.unrealengine.com

2 RELATED WORK

As described in the review paper [Allouch et al.,
2021], Conversational Agents (CA) are used in many
fields such as medicine, military, online shopping, etc.
These agents are usually virtual agents that attempt
to engage in conversation with interested humans and
answer their questions, at least until they receive in-
formation from them, which is then passed on to real
human agents. To the authors’ knowledge, however,
there is no previous work that uses modern NLP tech-
niques to achieve the goals we seek in the area of sim-
ulation applications and/or game development. While
the literature for the use of NLP for the defined pur-
pose of this project is new, we establish our founda-
tions by following or referencing existing work in the
literature and transferring, as much as possible, the
methods used by CA from other domains.

An overview of the use of CAs in healthcare is
presented in [Laranjo et al., 2018]. The work in
[Dingler et al., 2021] explores CAs for digital health
that are capable of delivering health care at home.
Voice assistants are built with context-aware capabili-
ties to provide health-specific services. In [Sezgin and
D’Arcy, 2022], the authors explore how CAs can help
collect data and improve individual well-being and
healthy lifestyles. The use of CAs has also been ap-
plied to specific topics such as assessing and improv-
ing individuals’ mental health [Sedlakova and Trach-
sel, 2022] and substance use disorders [Ogilvie et al.,
2022].

Another interesting use case of CAs is in emer-
gency situations, as explored in [Stefan et al., 2022],
which describes the requirements and design of ap-
propriate agents in different contexts. An adjacent
remark is made by [Schuetzler et al., 2018], which
shows that people are more willing to discuss with vir-
tual CAs, especially sensitive information, than with
real human personnel.

CAs have also been used for gamification pur-
poses. In [Yunanto et al., 2019], the authors propose
an educational game called Turtle trainer that uses an
NLP approach for its non-playable characters (NPCs).
In the game, NPCs can automatically answer ques-
tions posed by other users in English. Human users
can compete against NPCs, and the winner of a round
is the one who answered the most questions correctly.
While their methods for understanding and answer-
ing questions are based on classical NLP methods,
we follow their strategy of evaluation based on qual-
itative feedback from two perspectives: (a) How do
human users feel about how well their competitors,
i.e., the NPCs, understand and answer the questions,
(b) Does the presence of NPCs in this form repre-
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sent a greater interest for the learning game itself? A
common platform for teaching different languages is
Duolingo. With its support, various learning games,
e.g., language learning through gamification [Mun-
day, 2017], and machine learning-based methods for
performance testing are developed. Using the plat-
form itself and NLP methods, the authors proposed
the use of automatically generated language tests that
can be graded and psychometrically analyzed without
human effort or supervision.

3 METHODS

3.1 Overview

The inference process starts with a user message and
ends with an application-designated component that
resolves the query made at game runtime, as shown
in Figure 1. The first part is to detect the type of mes-
sage and translate it into a text format. Input from the
user side can be both voice and entered text messages.
For speech recognition and synthesis, a locally instan-
tiated model based on the DeepPavlov suite [Burtsev
et al., 2018] is used. The output is then sent to a pre-
processing component that uses classic NLP opera-
tions required for other modules, such as removing
punctuation, making the text lowercase, adding be-
ginning and ending markers for sentences, etc., as de-
tailed in BERT model [Devlin et al., 2018] and ex-
plained below in this section. Spelling mistakes and
abbreviations for the text are also taken into account
for the BERT input [Hu et al., 2020].

3.2 Foundational NLP models

We first motivate BERT [Devlin et al., 2018] instead
of GPT [Brown et al., 2020] model as the core of our
methods. In short, both models are based on Trans-
former architectures [Vaswani et al., 2017] trained
on large plaintext corpora with different pre-training
strategies that the reader can explore in the recom-
mended literature. Probably the fundamental archi-
tectural difference between the two is that in a trans-
former’s mindset, BERT is the encoder part, while
GPT-3 is the decoder. Therefore, BERT can be more
easily used to refine its encoding and further learn
by appending output layers to produce desired cus-
tomized functions and categories. This architectural
implication of BERT makes it suitable for domain
specific problems, which is also our target case. Each
application has its own data, text, locations, charac-
ters, etc., and the underlying NLP model has to adapt
to these individual use cases. This point of view is

also supported by the work in RoBERTa [Liu et al.,
2019], which fine-tuned BERT to learn a new lan-
guage data set, confirming that the model is better
suited for downstream tasks. Since BERT is pre-
trained on large scale text using two strategies i.e.
masked language model and next sentence, it can pro-
vide contextual features at sentence level. With this
benefit and the fact that it can be easily customized for
custom datasets, the base model chosen can be used
for tasks like intent classification and slot filling, two
of the main tasks we need for our goal.

3.3 Intent classification and slot filling

Intent classification is the assignment of a text to a
particular purpose. A classifier analyzes the given
text and categorizes it into intentions of the user. Fill-
ing slots is a common design pattern in language de-
sign, usually used to avoid asking too many or de-
tailed questions to the user. These slots represent a
goal, starting point, or other piece of information that
needs to be extracted from a text. A shared model
performs multiple tasks simultaneously. Because of
its structure, the intent classification model can easily
be extended to a shared model for classifying inten-
tions and filling slots [Chen et al., 2019b].

To understand a user’s message, a model is used
that processes the data and provides two outputs: (a)
the intent of the message, (b) the slots that represent
parts of the text that can be semantically categorized
and make connections with the application’s knowl-
edge base. To this end, the framework relies primar-
ily on the methods described by [Chen et al., 2019b],
which provide a model for computing the two re-
quired outcomes simultaneously. One feature we have
identified as useful, at least from a real-time simula-
tion perspective, is replacing the WordPiece tokenizer
from the original model with a faster version with to-
kenization complexity O(n) [Song et al., 2021].

This task corresponds to the SemanticExtraction
block from Figure 1 and is described in the following
text with examples and the connection to our current
implementation.
The intent. Describes the category of the message.
This is formalized as a set, I = {I1, I1, . . . , Ini}. This
can be customized depending on the needs of the de-
veloper. For illustration, three types of concrete in-
tentions are used in our current demo attached to the
repository.

• SentimentAnalysis
The message sent by the user is considered as gen-
eral live feedback to the application, e.g. too dif-
ficult or not challenging enough, graph too low.
In return, the application should take appropriate
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Figure 1: Overview of data flow from user message to execution of in-application requests. In the first part, the message is
always converted into a textual representation. Then a series of preprocessing operations are performed so that the output text
is compatible with the needs of the next component in the flow. The SemanticExtraction component extracts the intent of the
message and makes the semantic connections with the application’s custom database to understand what actions are required
to provide feedback on the user message. Details on each individual component are presented along Section 3.

action.

• AnswerQuestion
This category includes user questions related to
the application. Some common examples are
questions about mechanisms that are not clear to
the user. This is a way for the user to request help
with common things, which can increase their en-
gagement with the application.

• DoActionRequest
In general, this category is reserved for messages
addressed to companion NPCs, asking the user
for help in solving various tasks. Typical exam-
ples in simulation applications and games include
asking for help in solving a puzzle or challeng-
ing a character, pointing the way to a certain lo-
cation, or assisting the user with various actions.
This kind of category is usually divided into dif-
ferent sub-actions, e.g. in our demo into three
sub-actions: FollowAction - help in finding a re-
gion or place, i.e. the companion NPC shows the
way (see our supplementary video examples in the
suggested links in Section 1), EliminateEnemy -
ask the NPC to eliminate a particular enemy NPC
or user, and HealSupport - ask the NPC to do
whatever it takes to improve the user’s health in
the virtual simulated environment.

The slots. Describes the slots in the message that
are important for understanding their connections to
the simulation environment. For each identified slot,
its category type and corresponding values are output
from the message. The slot types form a set derived
from the Inside-Outside-Beginning (IOB or BOI in
the literature) methodology [Zhang et al., 2019]. In
this method, B marks the beginning of a sequence of
words belonging to a particular slot category, I marks
the continuation of words in the same slot, and O
marks a word that is outside an identified slot cate-
gory. Each of the words in the message is assigned
one of these three markers. Examples can be found
in Listing 1. The set of slots is further formalized
as S = {S1,S1, . . . ,Sns}. Note that different intentions

and multiple semantic parts of different B-types may
occur in the same sentence (especially in longer sen-
tences). In this case, the sentence is split into simpler
sentences as much as possible, so that each sentence
has a different intention. Each of the propositions/in-
tentions and their associated slots are passed along as
different messages.

1 Example 1:

2 -Player input text: "Show me where the potion shop

is"

3 -Intent: FollowAction

4 -Slots: [O O O O B-location I-location O]

5

6 Example 2:

7 -Player input text: "Find me anything to get my

health fixed cause I will be over soon".

8 -Intent: HealSupport

9 -Slots: [O O O O B-heal I-heal I-heal I-heal O O O

O O O]

Listing 1: Examples of two user inputs and their classified
intents and slots

The classification of intentions and slots follows
the work in [Song et al., 2021]. We briefly describe
the classification methods and mechanisms behind
it. First, as required for the BERT [Devlin et al.,
2018] model, the user-input text message is tagged
with markers indicating the beginning of a question
([CLS]) and the end of each sentence [SEP]. We de-
note the input sequence as x= (x1, . . . ,xT ), where T is
the sequence length. This is then processed by BERT,
Figure 2, which outputs a hidden state representation
for each input token, i.e. H = (h1, . . . ,hT ). Given that
this is a bidirectional model and the fact that the first
token is always the injected [CLS] marker, the intent
of the question can be determined by calculating the
probability of each intent category i ∈ I according to
the formula in Eq. 1 can be determined. This categor-
ical distribution can then be sampled to determine the
intent of each question at runtime.

yi = softmax
(
Wih1 +bi) (1)

For slot prediction, all hidden states must be con-
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Figure 2: The SemanticExtraction from Figure 1 component in detail. The input is a preprocessed sequence x of tokens,
which is encoded into a sequence of hidden states by the model BERT [Devlin et al., 2018]. Both inputs are passed to the joint
classification model for intention and slots [Chen et al., 2019b]. A semantic correlation is then made between the database
knowledge provided by the developer, specific to each application, and the identified slots. The result of this correlation is a
tree of tasks that must be solved by the application in order to provide appropriate feedback. The subcomponents are explained
in more detail in Section 3.3

sidered when they are fed into the softmax layer so
that the distribution can be calculated as shown in Eq.
2.

ys
n = softmax(Wshn +bs) , n ∈ 1 . . .ns (2)

The goal of the training phase is to maximize
the conditional probability of correct classification of
joint slots and intent (Eq. 3), in a supervised man-
ner using the database of application knowledge cre-
ated as mentioned in Section 4. The model BERT is
also fine-tuned to this objective function by minimiz-
ing cross-entropy loss.

p
(
yi,ys | x

)
= p

(
yi | x

) ns

∏
n=1

p(ys
n | x) (3)

The proposed framework architecture provides a
way to bring in custom knowledge bases for appli-
cations that are generally specific between develop-
ers and titles. This is also shown in Figure 2, where
the AppKnowledgeDB component is used for this pur-
pose by matching identified slot categories, texts, and
actions that need to be performed for the application.
The component that semantically transitions from slot
information to actions to be performed in the applica-
tion is called AppActionTranslator. Its implementa-
tion in our current framework is based on a behav-
ior tree [Paduraru and Paduraru, 2019], which can be
adapted or extended with various methods by any ap-
plication. The method used on the game side can be
as simple as an expert system judging by the intents,
slots and the strings attached to them that relate to the
game units and actions, but behavior trees were pre-
ferred by default to have a better semantic description.
At the lowest level, a Levenshtein distance [Miller
et al., 2009] is used for string comparisons to identify
the application’s slot data and knowledge base. When
processing the inputs, the model assigns a probabil-
ity of match between the application knowledge and

the identified slots. If the threshold is not above a pa-
rameter set by the developer, the framework provides
feedback that the message was not understood. In the
current implementation, a threshold of 0.5 was used,
and the identification score was based on Levenshtein
distance and averaged across slots.

3.4 Question-response model

To answer user questions, the models and tools avail-
able in the DeepPavlopv library3, called Knowledge
Base Question Answering, are adapted to our require-
ments and reused. In short, the strategy used by the
tools is to provide a ready-to-use general question an-
swering model based on the large Wikidata corpus
[Vrandečić and Krötzsch, 2014]. Then, the library
allows the insertion of custom knowledge represen-
tations to enable custom retraining/fine-tuning of the
existing models. At the core of the methods, the same
BERT model is reused to perform the following oper-
ations:

• Recognize a query template from the user mes-
sage. Currently there are 8 categories in our
framework. This is also extensible on the devel-
oper side. The model behind it is based on BERT.

• detection of entities in the message and their as-
sociated strings. Recognized entities are linked to
the entities contained in the knowledge base. Top-
k matches are evaluated based on Levenshtein dis-
tance and stored. The same BERT model is be-
hind the operation.

• ranks the possible relationships and paths in the
set of recognized and linked entities. Thus, this
step provides an evaluation of the valid combi-
nations of entities and semantic relations. For
this step, modified from the original version for

3https://docs.deeppavlov.ai/en/master/features/models/
kbqa.html
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our needs of better linking of entities and a user-
defined knowledge base, we use the methods of
BERT-ER [Chatterjee and Dietz, 2022].

• A generator model, based at its core on BERT, is
used to populate the answer query templates. The
slots are filled with the candidate entities and re-
lations found in the previous steps.

4 EVALUATION

This section presents the design used for the evalu-
ation, the creation of the dataset used for the train-
ing, the results of the quantitative and qualitative eval-
uation using automatic and human perception tests,
and finally performance-related aspects to demon-
strate the usefulness of the proposed methods.

4.1 Experimental design and discussion

The framework implementation and the demo based
on it work as a plugin in both Unreal Engine ver-
sions 4 and 5 and are available at https://github.com/
AGAPIA/NLPForVideoGames. Examples from the
demo can be viewed in our repository and Figures 3,
4, and 5. The architectural decision to use a plugin
was made to achieve separation of concerns and mini-
mal dependencies between the application implemen-
tation and the proposed framework. During develop-
ment and experimentation, Flask4 was used to quickly
switch between different models and parts, parame-
ters used for training or inference, etc. In the produc-
tion phase and in our evaluation phase, the models
were deployed locally and accessed through Python
bindings to C++ code, since the engine source code
specific to the application implementation was writ-
ten in C++.

In our evaluation,we used the BERT-Base English
uncased model5, which has 12 layers, 768 hidden
states, and 12 multi-attention heads. To fine-tune the
model for the common goal of classification and slot
filling, the maximum sequence length was set to 30
and the batch size to 128. Adam [Kingma and Ba,
2014] with an initial learning rate of 5e-4 is preferred
as the optimizer. The dropout probability was set to
0.1. On our custom dataset provided in the demo,
the model was then fine-tuned for approximately 1000
epochs. The threshold for confidence is set to 0.5 in
our evaluation, meaning that the output of the behav-
ior tree must be deemed correct with a probability of

4https://flask.palletsprojects.com/en/2.2.x
5https://github.com/google-research/bert

Figure 3: Demo capture of the user requesting details of
self-healing either by speech or text, and then asking the
NPC companion to help them find the healing location.
Note that for speech input for debugging purposes, the un-
derstood message is also displayed as text

.

Figure 4: A similar message exchange as in Figure 3, this
time with the request for the teleport action

.

Figure 5: The user asks for details about some quests he
can play with the current level, and then asks the NPC to
accompany them there.

.

at least 0.5, otherwise the feedback from the applica-
tion side is that the user’s message is not understand-
able.
Fine-tuning and transfer learning. As described
in Sections 3.3 and 3.4, the methods proposed in
our work are divided into several small modules.
Fine-tuning by reusing parts of the existing state-of-
the-art model architecture and pre-trained parameters
on publicly available datasets helps considerably in

https://github.com/AGAPIA/NLPForVideoGames
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answering questions. Without most of the knowl-
edge coming from large scale corpuses, the text an-
swers generated by the application looked unnatural.
Therefore, little fine-tuning is required for question-
answering models or entity linking models to perform
well. On the other hand, more fine-tuning is required
for the models used to classify messages in query
masks or to identify the entities in the messages. This
is necessary because the semantic information for un-
derstanding user messages must come primarily from
the application knowledge bases, rather than from
Wikidata or other public datasets that were used to
pretrain the models.
Hierarchical Contexts. We decided to add another
layer for both identifying intentions/slots and for the
models to answer questions. This came out of our
evaluation process, where we found that there were
a few different contexts in the application that could
improve feedback results. A specific example from
our demo: when the user is in the shopping area in
the simulated environment, a context variable is set
to shopping. This information was provided in the
training dataset and considered as input to each of the
models during training or fine-tuning. The additional
information is helpful in understanding simple ques-
tions that the user may have difficulty understanding,
e.g., they might ask for what would you recommend
I buy from here? The answer to this question could
vary depending on the context, e.g. shopping oppor-
tunities, locations of craft items, a simple map section
with items that can be collected, etc.

4.2 Datasets used

The dataset was created by 15 different volunteer stu-
dents from University of Bucharest during their un-
dergraduate studies. We use the 80/20 rule for split-
ting training and evaluation datasets. To train the
models containing slots and intentions on our demo,
the dataset of examples looks like the examples in
Listing 1. In total, there were 1500 pair examples,
split between 8 contexts, and almost the same num-
ber for each of the three classes (SentimentAnalysis,
AnswerQuestion, and DoActionRequest).

For the AnswerQuestion category, each example
also contained a sequence of words that described the
desired answer as text from the annotator’s perspec-
tive. For the other two categories, the example con-
tained the specific application action to be performed
in the demo application with numeric IDs between 1
to 5. Specifically, we had two actions in our demo
for the SentimentAnalysis case: change the difficulty
level and show instructions for performing various
contextual operations. For the DoActionRequest, we

use the three subcategories mentioned in Section 3.3:
FollowAction, EliminateEnemy, HealSupport.

As an aside, participants were asked to include ty-
pos and abbreviations in their texts so that the models
could adapt to them as well.

4.3 Quantitative evaluation

The quantitative assessment of the joint model is
based on the two outputs of the model, i.e., intentions
and slot identification. For intentions, common met-
rics such as precision, recall, and F1 score are used,
while for slots, only the F1 score is useful due to the
highly imbalanced data. As Table 1 shows, the in-
tent classification model manages to give the correct
answers in most cases, with an overall lower scoring
value for the DoActionRequest, since there is a more
diverse set of actions in the training set.

For the slot classification, where the models were
re-trained to better fit the application knowledge
database, as explained above, an F1 score of 89.621%
is obtained.

The metric METEOR [Banerjee and Lavie, 2005]
is used to score the question response. Since this met-
ric comes from the field of machine translation, it can
also be easily adapted for question answer scoring.
Briefly, the idea behind it is to match the sequence
of words in the (correct) target answer with the pre-
dicted answer, taking into account stemming and syn-
onymy matching between words. The score is formed
from a harmonic mean of precision and recall, with
more weight given to recall. In addition, the method
penalises answers that do not consist of consecutive
paragraphs in the target text, as this is natural to the
human comprehension process. In our dataset of An-
swerQuestionCategory, the METEOR metric scored
0.7095, which is a reliable value that answers look al-
most natural according to the literature [Chen et al.,
2019a].

4.4 Qualitative evaluation

The experiments and statistical results evaluating our
framework and demo from a qualitative point of view
come from a group of 12 people (volunteers from the
quality assurance departments of our industry part-
ners and students from the University of Bucharest)
who played the demo for two hours and tried to
move through the application asking questions to the
NPCs about different topics. There are three research
questions that we explored during our qualitative
evaluation.



Table 1: Quantitative evaluation of the classification model for predicting intentions.

Metric Category
AnswerQuestion SentimentAnalysis DoActionRequest

Precision 0.91744841 0.89811321 0.95881007
Recall 0.978 0.952 0.838
F1-score 0.94675702 0.92427184 0.89434365

RQ1. Do the application or NPCs provide correct
feedback, i.e., do they seem to correctly understand
the questions or requests asked and respond correctly
in the context?

To assess this, each of the 12 participants played
the demo for 2 hours and were asked to give 100 mes-
sages to the application/NPCs, with equal amounts of
input via voice and text. After each response from
the application (including a 1 minute delay for action
types such as path tracking or other user support op-
erations that cannot be evaluated immediately), they
were asked whether the NPCs or the application re-
sponded correctly.

Table 2 shows the averaged feedback from
participants for both types of input, broken down
by category of message. The results show that
users are generally satisfied with the feedback, with
lower ratings for speech input, as expected, due to
the need for another layer to convert speech to text
and, of course, performance degradation along the
way. Scores are also lower in the DoActionRequest
category, as it is more difficult in two ways: (a)
to correctly understand the requested action, (b) to
execute it through application mechanisms, which
also implies using the behaviour trees in the Ap-
pActionTranslator component, as shown in Figure 2.
This can be further improved by providing a larger
dataset of such action requests and dividing them into
a larger set of subcomponents and/or categories.

RQ2. Is the method suitable for real-time use? When
run on a separate thread on a CPU -only, Core i7
gen11 processor, the average time for a full pipeline
inference was 13.24 milliseconds for user input
through a text message. For a voice input, the time
to process and convert the voice to text (Figure 1)
averaged 1.96 seconds for sentences of about 15
words (Figure 1). This proves that the method can
be used in real-time and without bottlenecks on the
simulation side when running on a separate thread.
The time needed to understand the question can be
disguised as a natural process anyway, since humans
also need to understand, process, and formulate an
answer, rather than expecting it in the same frame
when it is asked.

RQ3. Do users feel that conversing with the applica-
tion or NPCs helps them in general (e.g., better under-
standing of the mechanics of the simulation environ-
ment, removal of obstacles, assistance with difficult
puzzles or actions, etc.)?

To assess this question, a response template was
given to each participant at the end of the test. Over-
all, 10 out of 12 participants felt that the discussions
helped them during the demo, while 2 of them wished
they could discover the application and mechanisms
themselves. In contrast to the correctness results
shown in Table 2, users felt that the DoActionRequest
category was the most useful, as it really helped them
get through difficult parts of the demo.

5 CONCLUSION AND FUTURE
WORK

In this paper, we propose a set of methods and tools
for applying NLP techniques to simulation applica-
tions and video games. We provide an open source
software that can be used for both academic and
industrial evaluation purposes. The requirements,
dataset creation, and evaluation of the results have
been created in collaboration with industry partners
that publish software in the relevant field. From our
point of view, this contributes significantly to under-
standing and addressing the right problems and then
evaluating how the proposed methods correctly solve
the requirements and existing problems. Both the
quantitative and qualitative evaluation show that the
use of NLP as an active assistant for the user within
the simulation software can increase user satisfac-
tion and improve user engagement. Our ideas for
future work include first introducing an active learn-
ing methodology where users can provide live feed-
back and improve the models online, rather than just
training them on collected datasets in a supervised
manner. This could greatly improve the models be-
cause once deployed, a large amount of data and users
could interact with the models and tell the algorithms
where they went wrong in providing feedback or un-
derstanding intent. Another planned research topic
is to create an ontology for simulation software and



Table 2: Qualitative evaluation of the correctness of the feedback depending on the type of input and the respective category
of the message.

Input
type

Category

AnswerQuestion SentimentAnalysis DoActionRequest
Text 91% 87% 79%
Voice 88% 85% 71%

games in general, similar to the ontology used in web
development, so that common terms and notations can
be used. This would facilitate the adoption and reuse
of the tools in multiple projects.
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