

Superconducting motor associated with cryogenics power electronics for aircrafts

Remi Dorget², Christophe Viguier¹, Sabrina Ayat², Min Zhang³, Jean Lévêque⁴ ¹SAFRAN TECH, Blagnac, ²SAFRAN TECH, Magny-les-Hameaux, ³UNIVERSITY OF STRATHCLYDE (USTRATH) Glasgow, ⁴GREEN Université de Lorraine

> **** * ****

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 875006

23-28/10/2022

IMOTHEP's top level ambition

Imhotep - Egyptian architect, doctor and philosopher A great and innovative builder...

"Investigation and Maturation of Technologies for Hybrid Electric Propulsion"

- **H2020 project (**Call 2019 "Mobility for Growth" "towards a hybrid/electric aircraft")
- Achieving a key step in assessing potential benefits of HEP for emissions reductions of commercial aircraft
- Building the overall European development roadmap for HEP

First level objectives

- Identifying propulsion architecture & aircraft concepts benefiting from HEP
- Investigating technologies for HE power train architecture and components
- Analysing required tools, infrastructures, demonstrations and regulatory adaptations for HEP development
- Synthesising results through the elaboration of the development roadmap for HEP

4

IMOTHEP project

Four-year research project (2020-2024)

Coordinated by ONERA

e 29 partners

- 9 European countries + international partners from Canada
- Output States 10.4 M€ EC funding (+ contribution of international partners)

Project's scope & targets

Reference missions

- **Short/medium range:** minimum segment for a significant impact on aviation emissions
- **Regional:** more accessible, potential intermediate step toward SMR

Mission	ΡΑΧ	Speed	Range
Regional	40	Mach 0,4	600 nm (typ. 200 nm)
SMR	150	Mach 0,78	>= 1200 nm (typ. 800 nm)

EIS: 2035+

Technological scope

- Central focus on thermal hybrid with drop-in fuel
 - + some investigations on fuel cells at conceptual level (aircraft + fuel cell specific issue for aircraft)
- Main focus on conventional conductivity
 - + Exploration of superconductivity as a potential enabler
- Ambition : reaching 10% more emissions reductions than Clan Sky 2 targets with conventional technologies

Project's suporting configurations

- Build-on / complement previous studies (e.g. CS2, CENTRELINE, etc.)
- Explore a range of architectures with consistent assumptions

Initial supporting configurations

General description of the studied system

All system is cooling by LH2, number propeller not fixed

WP5 PERIMETER

Hypothesis for WP5.5

Overall description of the approach and hypothesis

Electrical machine Hypothesis

- > The operating temperature is 20° K \rightarrow liquid hydrogen.
- > Full superconducting synchronous motor is considered to provide best performances.

Power electronics Hypothesis

- > The operating temperature is between 50°K to 70°K.
- ➤ Semi-conductor technology: IGBTs have sufficient ratings and good performance at cryogenic temperatures → the most suitable device to build the cryogenic inverter.

SUPERCONDUCTING MOTOR AND GENERATOR

Superconducting motor or generator

Synthesis of the main results for the superconducting

- Superconducting EM Preliminary results (Active parts)
 - ➢ Motor with high airgap → 2 Cryostats

Parameter	Value	Unit
Length	200	mm
Radius of the machine	150	mm
Power	2.9	MW
Power to Mass ratio	54	kW/kg
Efficiency	99.7	%

> Motor with small airgap \rightarrow 1 Cryostat

Parameter	Value	Unit
Length	200	mm
Radius of the machine	140	mm
Power	2.6	MW
Power to Mass ratio	51	kW/kg
Efficiency	99.7	%

Quick estimate of the amount of cryogenic fluid results in a consumption of 55kg/h of liquid hydrogen

Parameter	Value	Unit
Length	200	mm
Radius of the machine	140	mm
Thickness of backiron	20	mm
Stator slot depth	10	mm
Number of stator slot	6	
Airgap	5	mm
Rotor slot depth	10	mm
Number of rotor slot	8	
Thickness of rotor backiron	10	mm
Current density in stator	100	A/mm ²
Bmax on stator coil	1.8	Т
Current density in rotor	500	A/mm ²
Bmax on Rotor coil	1.08	Т
Power	2.6	MW

POWER ELECTRONICS AT LOW TEMPERATURE

Cryogenic power electronic

Synthesis of the main electronic component for cryogenic use

		Devices					
		Diode	SIC MOSFET	Si MOSFET	IGBT	GaN HEMT	JFET
	Forward Voltage	Increases by 20-260% for all devices but GaAS	-	-	Decreases by 5- 30%	-	-
Characteristic		which decreases by 20%					
	Gate-source threshold voltage	-	Increases by 50%	Increases by 50%	Increases by 20%	Range from: -35% to +15%	Not mentioned in the reviewed literature
	On-state resistance	Decrease for (20-70%): Silicon diode MBRS Schottky ES2A Superfast Increased for (20-80%) Silicon Ultrafast Silicon Schottky Cree SiC	Increases by 300%	Decreases by 80- 95%	Decreases by 30-70%	Decreases by 80-90%	Decreases (the exact amounts not mentioned in the reviewed literature)
	Breakdown Voltage	Increased by 5% SiC Schottky Cree SiC ES2A Superfast Decreased by 20% MBRS Schottky Ultrafast Diode Silicon Schottky	Decreases by 20%	Decreases by 15- 35%	Decreases by 20-70%	0%	Sparse data
	Switching Time	Reverse recovery time decreases by 30%	Sparse data	Rise and fall time decrease by 60%	Decrease by 60- 80%	Lower switching losses (Not specified in literature)	Sparse data

Cryogenic power electronic

Comparison beetwen different multilevel converter

Type of converter	Advantages	Disadvantages
2L-VSI	-Simple control	-Switches need to have a large breakdown voltage
	-Small number of switches	-Large THD
		-Efficiency lower than other converters
3L-NPC	-Highest efficiency	-Complicated control
	-Low THD	-Unequal loss distribution
3L-ANPC	-Highest efficiency	-Complicated control
	-Low THD	
4L-NPC	-High efficiency	-A large number of series components, lower efficiency
3L-FLC	-Small filter is required at the output	-Complicated control
	-High efficiency	
9L-CHB	-Good fault ride-through capability	-Complicated control
	-Modular	
	-High efficiency	

ANPC Converter proposed

Cryogenic power electronic

Synthesis of the main results for the cryogenic power electronics

Preliminary results (without cooling systems, EMI filter)

INFINEON Manufacturer

Туре	Device	Manufacturer	Weight (grams)	Total (kg)
IGBT(9 modules)	FF1800R17IP5BPSA 1	INFINEON	1400/unit	12,6
Capacitors	Still under review	-	300-400/unit	0,4
Connections	Copper bar	-	650/module+ interconnections	5,0 (initial estimate)
Total	INFINEON (initial estin	18,0		
Power to mass ratio		127 kW/kg		

Туре	Device	Manufacturer	Weight (grams)	Total (kg)
IGBT(9 modules)	5SNA 1600N170100 (Press pack)	ABB	820/unit	7,4
Capacitors	Still under review	-	300-400/unit	0,4
Connections	Copper bar	-	650/module+ interconnections	5,0 (initial estimate)
Total	ABB (initial estimate)			12,8
Power to mass ratio				180 kW/kg

To conclude

Overall goals

- Evaluation of the **benefits of superconductivity** technology for **HEP architecture**
- Trade-off between liquid cooling and cryocooler approach for superconductive component cooling

Activities

- Superconducting machines
 - SOA and study of superconducting machine topology and comparison between liquid cooling and cryocooler cooling
 - Pre-design of superconducting motors and generators taking into account the coupling to a propulsive (fan, propeller) and a mechanic power generating element (turbines) respectively
- Cryogenic power electronics
 - Study on the impact and advantage of cryogenic temperatures on power electronics

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 875006

