

Static characterization on-state of an industrial Si Power MOSFET at cryogenic temperature

<u>Yanis Laïb¹</u>, Kévin Berger¹, Stéphane Raël¹, Jean Lévêque¹, Christophe Viguier², Abdelrahman El-Wakeel³, Min Zhang³

¹ University of Lorraine, GREEN, F-54000 Nancy, France
² SAFRAN TECH, Blagnac, France
³ University of Strathclyde, Glasgow, UK

EUCAS2023

Bologna, Italy 3rd-7th September

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 875006 IMOTHEP - Copyright© 2022 by IMOTHEP.

- I General introduction
- II Cryogenic system
- III Component description and measurements
- IV Conclusion

Imothep Project : "Investigation and Maturation of Technologies for Hybrid Electric Propulsion" H2020 project ("Mobility for Growth" - "towards a hybrid/electric aircraft") Coordinated by ONERA

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 875006 29 partners - 9 European countries + international partners from Canada - 10.4 M€ EC funding

- ASCEND (Advanced Superconducting and Cryogenic Experimental powertraiN Demonstrator)
- SUPERMAN (Superconducting Electrical Machines for Zero Emission Aviation)
- SuperRail (railway network)

How a power electronic component behaves at cryogenic temperature?

Cryogenic system – Temperature management

Equipment used

- Cryocooler ARS 4K model
- LakeShore model temperature control
- Temperature control between 10 K and 320 K
- CERNOX Temperature sensors

Electrical features

- 300 A pulsed
- 100 A DC
- Electrical breakdown voltage: 1200 V

Characterizations

- I(V) curves
- Resistance measurement
- Voltage/Current Threshold
- Capacity measurement (Coming soon)

2 structures:

- Trench MOSFET (under 100 V)
- Planar MOSFET

Static losses of a MOSFET:

$$P = R_{DSon} \times I_D^2$$

power MOSFET structure

To estimate static losses at cryogenic temperature the evolution of resistance R_{DSon} with temperature must be evaluated

The STE180NE10 MOSFET is a 180 A 100 V MOSFET and has been selected

Electric schematic of a power MOSFET

To measure R_{DSON} , a 4 wires measurement technique is used:

A Drain current I_D of 1 A with milliamp accuracy is applied

Then the voltage V_{DS} is measured with microvolt accuracy.

Static measurement:

$$R_{\rm DSON} = \frac{V_{\rm DS}}{I_{\rm D}}$$

Measurements description – R_{DSON}

Minimum losses at 80 K

Unexpected behavior under 40 K

V _{GS}	300 K	80 K	Variation
15	3.98 mΩ	0.81 mΩ	-79.65%
13	4.03 mΩ	0.82 mΩ	-79.65%
11	4.10 mΩ	0.85 mΩ	-79.27%
9	4.23 mΩ	0.89 mΩ	-78.96%
7	4.52 mΩ	1.08 mΩ	-76.11%
5	6.51 mΩ	2.69 mΩ	-58.68%

Evolution of R_{DSon} with temperature for $I_D = 1$ A and different V_{GS} .

For each value of V_{GS} a pulsed current of 180 A is applied.

The on-state duration is 0.85 ms

The component is then <u>cooled for 10 seconds</u>

Groupe de Recherche en Energie Electrique de Nancy

During the pulse:

the voltage V_{DS} is measured with an accuracy of 2% thanks to a Tektronix oscilloscope module for TDS series

the current I_D is measured with an accuracy of 1% thanks to a current probe for Tektronix oscilloscope

The results are finally obtained by averaging 16 pulses.

Measurements description -I(V) Measurement

Power MOSFET structure

Conclusion

Value	<i>T</i> = 300 K	<i>T</i> = 80 K	Difference between <i>T</i> = 300 K
$R_{\rm DSON} @ V_{\rm GS} = 11 V$	4.10 mΩ	0.85 mΩ	-79%
V _{TH}	2.90 V	3.90 V	+35%

The rise in threshold voltage, although significant, does not pose a problem in practice.

The Si MOSFET is a good candidate for cryogenic applications @77K, since its static losses are minimal at 80 K.

Thank you for your attention!

- ✓ The same Schottky Diode effect has been observed on other Si MOSFET.
- ✓ Many other I(V) curves have been carried out:
 - IGBT PT, IGBT NPT, IGBT Trench
 - GaN FET /(V)
 - Si Diode, Si Fast Recovery Diode
 - SiC Schottky Diode and Si Schottky Diode

The study of a Flyback converter at cryogenic temperature is planned. This includes a study of the behavior of capacitors and magnetic components at cryogenic temperature.