Required sample size

The EEG and behavioural results of Chemin et al. (2014) are used as parameters.

EEG-response amplitude

H1a & H3a: Main effect of the session (pre vs. post)

pwr.t.test(n = NULL,
           d = 1.53,
           power = 0.90,
           sig.level = 0.02,
           type = "paired",
           alternative = "greater")

     Paired t test power calculation 

              n = 7.132031
              d = 1.53
      sig.level = 0.02
          power = 0.9
    alternative = greater

NOTE: n is number of *pairs*

H1b & H3b: Movement Condition x Session interaction

# Movement Condition x Session interaction effect
wp.rmanova(n = NULL,
           ng = 2, # 2 learning type
           nm = 2, # 2 sessions
           f = 0.89,
           alpha = 0.02,
           power = 0.90,
           nscor = 1, # non-sphericity correction coefficient
           type = 2)  # "0" for between-effect; "1" for within-effect; and "2" for interaction effect
Repeated-measures ANOVA analysis

          n    f ng nm nscor alpha power
    19.4089 0.89  2  2     1  0.02   0.9

NOTE: Power analysis for interaction-effect test
URL: http://psychstat.org/rmanova
# Simple effect of the movement condition
pwr.t.test(n = NULL,
           d = 1.77,
           power = 0.90,
           sig.level = 0.02,
           type = "paired",
           alternative = "greater")

     Paired t test power calculation 

              n = 5.970644
              d = 1.77
      sig.level = 0.02
          power = 0.9
    alternative = greater

NOTE: n is number of *pairs*

H5a: Group x Metre Frequency interaction

# Group x Metre Frequency interaction effect
wp.rmanova(n = NULL,
           ng = 2, # 2 groups
           nm = 2, # 2 metre frequencies
           f = 0.89,
           alpha = 0.02,
           power = 0.90,
           nscor = 1, # non-sphericity correction coefficient
           type = 2)  # "0" for between-effect; "1" for within-effect; and "2" for interaction effect
Repeated-measures ANOVA analysis

          n    f ng nm nscor alpha power
    19.4089 0.89  2  2     1  0.02   0.9

NOTE: Power analysis for interaction-effect test
URL: http://psychstat.org/rmanova
# Simple effect of the metre frequency
pwr.t.test(n = NULL,
           d = 1.77,
           power = 0.90,
           sig.level = 0.02,
           type = "paired",
           alternative = "greater")

     Paired t test power calculation 

              n = 5.970644
              d = 1.77
      sig.level = 0.02
          power = 0.9
    alternative = greater

NOTE: n is number of *pairs*

H6a: Group x Metre Frequency interaction

# Group x Metre Frequency interaction effect
wp.rmanova(n = NULL,
           ng = 2, # 2 groups
           nm = 2, # 2 metre frequencies
           f = 0.89,
           alpha = 0.02,
           power = 0.90,
           nscor = 1, # non-sphericity correction coefficient
           type = 2)  # "0" for between-effect; "1" for within-effect; and "2" for interaction effect
Repeated-measures ANOVA analysis

          n    f ng nm nscor alpha power
    19.4089 0.89  2  2     1  0.02   0.9

NOTE: Power analysis for interaction-effect test
URL: http://psychstat.org/rmanova
# Simple effect of the group
pwr.t.test(n = NULL,
           d = 1.77,
           power = 0.90,
           sig.level = 0.02,
           type = "two.sample",
           alternative = "greater")

     Two-sample t test power calculation 

              n = 8.293783
              d = 1.77
      sig.level = 0.02
          power = 0.9
    alternative = greater

NOTE: n is number in *each* group

H7a: Group x Movement Condition interaction

# Group x Movement Condition interaction effect
wp.kanova(n = NULL,
          ng = 4, # 2 groups x 2 movement conditions
          ndf = 1,
          f = 0.89,
          alpha = 0.02,
          power = 0.90)
Multiple way ANOVA analysis

           n ndf      ddf    f ng alpha power
    19.77242   1 15.77242 0.89  4  0.02   0.9

NOTE: Sample size is the total sample size
URL: http://psychstat.org/kanova
# Simple effect of the group
pwr.t.test(n = NULL,
           d = 1.77,
           power = 0.90,
           sig.level = 0.02,
           type = "two.sample",
           alternative = "greater")

     Two-sample t test power calculation 

              n = 8.293783
              d = 1.77
      sig.level = 0.02
          power = 0.9
    alternative = greater

NOTE: n is number in *each* group

Clapping-response amplitude

H2a & H4a: Main effect of the session (pre vs. post)

pwr.t.test(n = NULL,
           d = 1.77,
           power = 0.90,
           sig.level = 0.02,
           type = "paired",
           alternative = "greater")

     Paired t test power calculation 

              n = 5.970644
              d = 1.77
      sig.level = 0.02
          power = 0.9
    alternative = greater

NOTE: n is number of *pairs*

H2b & H4b: Movement Condition x Session interaction

# Movement Condition x Session interaction effect
wp.rmanova(n = NULL,
           ng = 2, # 2 learning type
           nm = 2, # 2 sessions
           f = 0.89,
           alpha = 0.02,
           power = 0.90,
           nscor = 1, # non-sphericity correction coefficient
           type = 2)  # "0" for between-effect; "1" for within-effect; and "2" for interaction effect
Repeated-measures ANOVA analysis

          n    f ng nm nscor alpha power
    19.4089 0.89  2  2     1  0.02   0.9

NOTE: Power analysis for interaction-effect test
URL: http://psychstat.org/rmanova
# Simple effect of the movement condition
pwr.t.test(n = NULL,
           d = 1.77,
           power = 0.90,
           sig.level = 0.02,
           type = "paired",
           alternative = "greater")

     Paired t test power calculation 

              n = 5.970644
              d = 1.77
      sig.level = 0.02
          power = 0.9
    alternative = greater

NOTE: n is number of *pairs*

H5a: Group x Metre Frequency interaction

# Group x Metre Frequency interaction effect
wp.rmanova(n = NULL,
           ng = 2, # 2 groups
           nm = 2, # 2 metre frequencies
           f = 0.89,
           alpha = 0.02,
           power = 0.90,
           nscor = 1, # non-sphericity correction coefficient
           type = 2)  # "0" for between-effect; "1" for within-effect; and "2" for interaction effect
Repeated-measures ANOVA analysis

          n    f ng nm nscor alpha power
    19.4089 0.89  2  2     1  0.02   0.9

NOTE: Power analysis for interaction-effect test
URL: http://psychstat.org/rmanova
# Simple effect of the metre frequency
pwr.t.test(n = NULL,
           d = 1.77,
           power = 0.90,
           sig.level = 0.02,
           type = "paired",
           alternative = "greater")

     Paired t test power calculation 

              n = 5.970644
              d = 1.77
      sig.level = 0.02
          power = 0.9
    alternative = greater

NOTE: n is number of *pairs*

H6b: Group x Metre Frequency interaction

# Group x Metre Frequency interaction effect
wp.rmanova(n = NULL,
           ng = 2, # 2 groups
           nm = 2, # 2 metre frequencies
           f = 0.89,
           alpha = 0.02,
           power = 0.90,
           nscor = 1, # non-sphericity correction coefficient
           type = 2)  # "0" for between-effect; "1" for within-effect; and "2" for interaction effect
Repeated-measures ANOVA analysis

          n    f ng nm nscor alpha power
    19.4089 0.89  2  2     1  0.02   0.9

NOTE: Power analysis for interaction-effect test
URL: http://psychstat.org/rmanova
# Simple effect of the group
pwr.t.test(n = NULL,
           d = 1.77,
           power = 0.90,
           sig.level = 0.02,
           type = "two.sample",
           alternative = "greater")

     Two-sample t test power calculation 

              n = 8.293783
              d = 1.77
      sig.level = 0.02
          power = 0.9
    alternative = greater

NOTE: n is number in *each* group

H7b: Group x Movement Condition interaction

# Group x Movement Condition interaction effect
wp.kanova(n = NULL,
          ng = 4, # 2 groups x 2 movement conditions
          ndf = 1,
          f = 0.89,
          alpha = 0.02,
          power = 0.90)
Multiple way ANOVA analysis

           n ndf      ddf    f ng alpha power
    19.77242   1 15.77242 0.89  4  0.02   0.9

NOTE: Sample size is the total sample size
URL: http://psychstat.org/kanova
# Simple effect of the group
pwr.t.test(n = NULL,
           d = 1.77,
           power = 0.90,
           sig.level = 0.02,
           type = "two.sample",
           alternative = "greater")

     Two-sample t test power calculation 

              n = 8.293783
              d = 1.77
      sig.level = 0.02
          power = 0.9
    alternative = greater

NOTE: n is number in *each* group

SESOI

The smallest effect size of interest (SESOI) is computed using the small-telescopes approach based on Chemin et al. (2014).

pwr.t.test(n = 14,
           d = NULL,
           power = 0.33,
           sig.level = 0.02,
           type = "paired",
           alternative = "greater") # "greater" for t test SESOI; "two.sided" for TOST SESOI

     Paired t test power calculation 

              n = 14
              d = 0.4690511
      sig.level = 0.02
          power = 0.33
    alternative = greater

NOTE: n is number of *pairs*
LS0tCnRpdGxlOiAiUG93ZXIgQW5hbHlzaXMiCm91dHB1dDogCiAgaHRtbF9ub3RlYm9vazoKICAgIHRoZW1lOiB1bml0ZWQKICAgIHRvYzogeWVzCi0tLQoKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CiMgLS0tLS0tIENMRUFOSU5HIFIgU0VTU0lPTiAjIyMjCnJtKGxpc3Q9bHMoKSkgIyBjbGVhbiBlbnZpcm9ubWVudCB3aW5kb3cKZ3JhcGhpY3Mub2ZmKCkgIyBjbGVhbiBwbG90IHdpbmRvdwoKIyAtLS0tLS0gUEFDS0FHRSBMT0FESU5HICMjIyMKbGlicmFyeShwd3IpICMgZm9yIHQgdGVzdCBhbmQgY29ycmVsYXRpb24KbGlicmFyeShXZWJQb3dlcikgIyBmb3IgQU5PVkEKYGBgCgojIFJlcXVpcmVkIHNhbXBsZSBzaXplCgpUaGUgRUVHIGFuZCBiZWhhdmlvdXJhbCByZXN1bHRzIG9mIFtDaGVtaW4gZXQgYWwuICgyMDE0KV0oaHR0cHM6Ly9kb2kub3JnLzEwLjExNzcvMDk1Njc5NzYxNDU1MTE2MSkgYXJlIHVzZWQgYXMgcGFyYW1ldGVycy4KCiMjIEVFRy1yZXNwb25zZSBhbXBsaXR1ZGUKCiMjIyBIMWEgJiBIM2E6IE1haW4gZWZmZWN0IG9mIHRoZSBzZXNzaW9uIChwcmUgdnMuIHBvc3QpCgpgYGB7ciBzZXNzaW9uIGVmZmVjdH0KcHdyLnQudGVzdChuID0gTlVMTCwKICAgICAgICAgICBkID0gMS41MywKICAgICAgICAgICBwb3dlciA9IDAuOTAsCiAgICAgICAgICAgc2lnLmxldmVsID0gMC4wMiwKICAgICAgICAgICB0eXBlID0gInBhaXJlZCIsCiAgICAgICAgICAgYWx0ZXJuYXRpdmUgPSAiZ3JlYXRlciIpCmBgYAoKIyMjIEgxYiAmIEgzYjogTW92ZW1lbnQgQ29uZGl0aW9uIHggU2Vzc2lvbiBpbnRlcmFjdGlvbgoKYGBge3J9CiMgTW92ZW1lbnQgQ29uZGl0aW9uIHggU2Vzc2lvbiBpbnRlcmFjdGlvbiBlZmZlY3QKd3Aucm1hbm92YShuID0gTlVMTCwKICAgICAgICAgICBuZyA9IDIsICMgMiBsZWFybmluZyB0eXBlCiAgICAgICAgICAgbm0gPSAyLCAjIDIgc2Vzc2lvbnMKICAgICAgICAgICBmID0gMC44OSwKICAgICAgICAgICBhbHBoYSA9IDAuMDIsCiAgICAgICAgICAgcG93ZXIgPSAwLjkwLAogICAgICAgICAgIG5zY29yID0gMSwgIyBub24tc3BoZXJpY2l0eSBjb3JyZWN0aW9uIGNvZWZmaWNpZW50CiAgICAgICAgICAgdHlwZSA9IDIpICAjICIwIiBmb3IgYmV0d2Vlbi1lZmZlY3Q7ICIxIiBmb3Igd2l0aGluLWVmZmVjdDsgYW5kICIyIiBmb3IgaW50ZXJhY3Rpb24gZWZmZWN0CgojIFNpbXBsZSBlZmZlY3Qgb2YgdGhlIG1vdmVtZW50IGNvbmRpdGlvbgpwd3IudC50ZXN0KG4gPSBOVUxMLAogICAgICAgICAgIGQgPSAxLjc3LAogICAgICAgICAgIHBvd2VyID0gMC45MCwKICAgICAgICAgICBzaWcubGV2ZWwgPSAwLjAyLAogICAgICAgICAgIHR5cGUgPSAicGFpcmVkIiwKICAgICAgICAgICBhbHRlcm5hdGl2ZSA9ICJncmVhdGVyIikKYGBgCgojIyMgSDVhOiBHcm91cCB4IE1ldHJlIEZyZXF1ZW5jeSBpbnRlcmFjdGlvbgoKYGBge3J9CiMgR3JvdXAgeCBNZXRyZSBGcmVxdWVuY3kgaW50ZXJhY3Rpb24gZWZmZWN0CndwLnJtYW5vdmEobiA9IE5VTEwsCiAgICAgICAgICAgbmcgPSAyLCAjIDIgZ3JvdXBzCiAgICAgICAgICAgbm0gPSAyLCAjIDIgbWV0cmUgZnJlcXVlbmNpZXMKICAgICAgICAgICBmID0gMC44OSwKICAgICAgICAgICBhbHBoYSA9IDAuMDIsCiAgICAgICAgICAgcG93ZXIgPSAwLjkwLAogICAgICAgICAgIG5zY29yID0gMSwgIyBub24tc3BoZXJpY2l0eSBjb3JyZWN0aW9uIGNvZWZmaWNpZW50CiAgICAgICAgICAgdHlwZSA9IDIpICAjICIwIiBmb3IgYmV0d2Vlbi1lZmZlY3Q7ICIxIiBmb3Igd2l0aGluLWVmZmVjdDsgYW5kICIyIiBmb3IgaW50ZXJhY3Rpb24gZWZmZWN0CgojIFNpbXBsZSBlZmZlY3Qgb2YgdGhlIG1ldHJlIGZyZXF1ZW5jeQpwd3IudC50ZXN0KG4gPSBOVUxMLAogICAgICAgICAgIGQgPSAxLjc3LAogICAgICAgICAgIHBvd2VyID0gMC45MCwKICAgICAgICAgICBzaWcubGV2ZWwgPSAwLjAyLAogICAgICAgICAgIHR5cGUgPSAicGFpcmVkIiwKICAgICAgICAgICBhbHRlcm5hdGl2ZSA9ICJncmVhdGVyIikKYGBgCgojIyMgSDZhOiBHcm91cCB4IE1ldHJlIEZyZXF1ZW5jeSBpbnRlcmFjdGlvbgoKYGBge3J9CiMgR3JvdXAgeCBNZXRyZSBGcmVxdWVuY3kgaW50ZXJhY3Rpb24gZWZmZWN0CndwLnJtYW5vdmEobiA9IE5VTEwsCiAgICAgICAgICAgbmcgPSAyLCAjIDIgZ3JvdXBzCiAgICAgICAgICAgbm0gPSAyLCAjIDIgbWV0cmUgZnJlcXVlbmNpZXMKICAgICAgICAgICBmID0gMC44OSwKICAgICAgICAgICBhbHBoYSA9IDAuMDIsCiAgICAgICAgICAgcG93ZXIgPSAwLjkwLAogICAgICAgICAgIG5zY29yID0gMSwgIyBub24tc3BoZXJpY2l0eSBjb3JyZWN0aW9uIGNvZWZmaWNpZW50CiAgICAgICAgICAgdHlwZSA9IDIpICAjICIwIiBmb3IgYmV0d2Vlbi1lZmZlY3Q7ICIxIiBmb3Igd2l0aGluLWVmZmVjdDsgYW5kICIyIiBmb3IgaW50ZXJhY3Rpb24gZWZmZWN0CgojIFNpbXBsZSBlZmZlY3Qgb2YgdGhlIGdyb3VwCnB3ci50LnRlc3QobiA9IE5VTEwsCiAgICAgICAgICAgZCA9IDEuNzcsCiAgICAgICAgICAgcG93ZXIgPSAwLjkwLAogICAgICAgICAgIHNpZy5sZXZlbCA9IDAuMDIsCiAgICAgICAgICAgdHlwZSA9ICJ0d28uc2FtcGxlIiwKICAgICAgICAgICBhbHRlcm5hdGl2ZSA9ICJncmVhdGVyIikKYGBgCgojIyMgSDdhOiBHcm91cCB4IE1vdmVtZW50IENvbmRpdGlvbiBpbnRlcmFjdGlvbgoKYGBge3J9CiMgR3JvdXAgeCBNb3ZlbWVudCBDb25kaXRpb24gaW50ZXJhY3Rpb24gZWZmZWN0CndwLmthbm92YShuID0gTlVMTCwKICAgICAgICAgIG5nID0gNCwgIyAyIGdyb3VwcyB4IDIgbW92ZW1lbnQgY29uZGl0aW9ucwogICAgICAgICAgbmRmID0gMSwKICAgICAgICAgIGYgPSAwLjg5LAogICAgICAgICAgYWxwaGEgPSAwLjAyLAogICAgICAgICAgcG93ZXIgPSAwLjkwKQoKIyBTaW1wbGUgZWZmZWN0IG9mIHRoZSBncm91cApwd3IudC50ZXN0KG4gPSBOVUxMLAogICAgICAgICAgIGQgPSAxLjc3LAogICAgICAgICAgIHBvd2VyID0gMC45MCwKICAgICAgICAgICBzaWcubGV2ZWwgPSAwLjAyLAogICAgICAgICAgIHR5cGUgPSAidHdvLnNhbXBsZSIsCiAgICAgICAgICAgYWx0ZXJuYXRpdmUgPSAiZ3JlYXRlciIpCmBgYAoKIyMgQ2xhcHBpbmctcmVzcG9uc2UgYW1wbGl0dWRlCgojIyMgSDJhICYgSDRhOiBNYWluIGVmZmVjdCBvZiB0aGUgc2Vzc2lvbiAocHJlIHZzLiBwb3N0KQoKYGBge3J9CnB3ci50LnRlc3QobiA9IE5VTEwsCiAgICAgICAgICAgZCA9IDEuNzcsCiAgICAgICAgICAgcG93ZXIgPSAwLjkwLAogICAgICAgICAgIHNpZy5sZXZlbCA9IDAuMDIsCiAgICAgICAgICAgdHlwZSA9ICJwYWlyZWQiLAogICAgICAgICAgIGFsdGVybmF0aXZlID0gImdyZWF0ZXIiKQpgYGAKCiMjIyBIMmIgJiBINGI6IE1vdmVtZW50IENvbmRpdGlvbiB4IFNlc3Npb24gaW50ZXJhY3Rpb24KCmBgYHtyfQojIE1vdmVtZW50IENvbmRpdGlvbiB4IFNlc3Npb24gaW50ZXJhY3Rpb24gZWZmZWN0CndwLnJtYW5vdmEobiA9IE5VTEwsCiAgICAgICAgICAgbmcgPSAyLCAjIDIgbGVhcm5pbmcgdHlwZQogICAgICAgICAgIG5tID0gMiwgIyAyIHNlc3Npb25zCiAgICAgICAgICAgZiA9IDAuODksCiAgICAgICAgICAgYWxwaGEgPSAwLjAyLAogICAgICAgICAgIHBvd2VyID0gMC45MCwKICAgICAgICAgICBuc2NvciA9IDEsICMgbm9uLXNwaGVyaWNpdHkgY29ycmVjdGlvbiBjb2VmZmljaWVudAogICAgICAgICAgIHR5cGUgPSAyKSAgIyAiMCIgZm9yIGJldHdlZW4tZWZmZWN0OyAiMSIgZm9yIHdpdGhpbi1lZmZlY3Q7IGFuZCAiMiIgZm9yIGludGVyYWN0aW9uIGVmZmVjdAoKIyBTaW1wbGUgZWZmZWN0IG9mIHRoZSBtb3ZlbWVudCBjb25kaXRpb24KcHdyLnQudGVzdChuID0gTlVMTCwKICAgICAgICAgICBkID0gMS43NywKICAgICAgICAgICBwb3dlciA9IDAuOTAsCiAgICAgICAgICAgc2lnLmxldmVsID0gMC4wMiwKICAgICAgICAgICB0eXBlID0gInBhaXJlZCIsCiAgICAgICAgICAgYWx0ZXJuYXRpdmUgPSAiZ3JlYXRlciIpCmBgYAoKIyMjIEg1YTogR3JvdXAgeCBNZXRyZSBGcmVxdWVuY3kgaW50ZXJhY3Rpb24KCmBgYHtyfQojIEdyb3VwIHggTWV0cmUgRnJlcXVlbmN5IGludGVyYWN0aW9uIGVmZmVjdAp3cC5ybWFub3ZhKG4gPSBOVUxMLAogICAgICAgICAgIG5nID0gMiwgIyAyIGdyb3VwcwogICAgICAgICAgIG5tID0gMiwgIyAyIG1ldHJlIGZyZXF1ZW5jaWVzCiAgICAgICAgICAgZiA9IDAuODksCiAgICAgICAgICAgYWxwaGEgPSAwLjAyLAogICAgICAgICAgIHBvd2VyID0gMC45MCwKICAgICAgICAgICBuc2NvciA9IDEsICMgbm9uLXNwaGVyaWNpdHkgY29ycmVjdGlvbiBjb2VmZmljaWVudAogICAgICAgICAgIHR5cGUgPSAyKSAgIyAiMCIgZm9yIGJldHdlZW4tZWZmZWN0OyAiMSIgZm9yIHdpdGhpbi1lZmZlY3Q7IGFuZCAiMiIgZm9yIGludGVyYWN0aW9uIGVmZmVjdAoKIyBTaW1wbGUgZWZmZWN0IG9mIHRoZSBtZXRyZSBmcmVxdWVuY3kKcHdyLnQudGVzdChuID0gTlVMTCwKICAgICAgICAgICBkID0gMS43NywKICAgICAgICAgICBwb3dlciA9IDAuOTAsCiAgICAgICAgICAgc2lnLmxldmVsID0gMC4wMiwKICAgICAgICAgICB0eXBlID0gInBhaXJlZCIsCiAgICAgICAgICAgYWx0ZXJuYXRpdmUgPSAiZ3JlYXRlciIpCmBgYAoKIyMjIEg2YjogR3JvdXAgeCBNZXRyZSBGcmVxdWVuY3kgaW50ZXJhY3Rpb24KCmBgYHtyfQojIEdyb3VwIHggTWV0cmUgRnJlcXVlbmN5IGludGVyYWN0aW9uIGVmZmVjdAp3cC5ybWFub3ZhKG4gPSBOVUxMLAogICAgICAgICAgIG5nID0gMiwgIyAyIGdyb3VwcwogICAgICAgICAgIG5tID0gMiwgIyAyIG1ldHJlIGZyZXF1ZW5jaWVzCiAgICAgICAgICAgZiA9IDAuODksCiAgICAgICAgICAgYWxwaGEgPSAwLjAyLAogICAgICAgICAgIHBvd2VyID0gMC45MCwKICAgICAgICAgICBuc2NvciA9IDEsICMgbm9uLXNwaGVyaWNpdHkgY29ycmVjdGlvbiBjb2VmZmljaWVudAogICAgICAgICAgIHR5cGUgPSAyKSAgIyAiMCIgZm9yIGJldHdlZW4tZWZmZWN0OyAiMSIgZm9yIHdpdGhpbi1lZmZlY3Q7IGFuZCAiMiIgZm9yIGludGVyYWN0aW9uIGVmZmVjdAoKIyBTaW1wbGUgZWZmZWN0IG9mIHRoZSBncm91cApwd3IudC50ZXN0KG4gPSBOVUxMLAogICAgICAgICAgIGQgPSAxLjc3LAogICAgICAgICAgIHBvd2VyID0gMC45MCwKICAgICAgICAgICBzaWcubGV2ZWwgPSAwLjAyLAogICAgICAgICAgIHR5cGUgPSAidHdvLnNhbXBsZSIsCiAgICAgICAgICAgYWx0ZXJuYXRpdmUgPSAiZ3JlYXRlciIpCmBgYAoKIyMjIEg3YjogR3JvdXAgeCBNb3ZlbWVudCBDb25kaXRpb24gaW50ZXJhY3Rpb24KCmBgYHtyfQojIEdyb3VwIHggTW92ZW1lbnQgQ29uZGl0aW9uIGludGVyYWN0aW9uIGVmZmVjdAp3cC5rYW5vdmEobiA9IE5VTEwsCiAgICAgICAgICBuZyA9IDQsICMgMiBncm91cHMgeCAyIG1vdmVtZW50IGNvbmRpdGlvbnMKICAgICAgICAgIG5kZiA9IDEsCiAgICAgICAgICBmID0gMC44OSwKICAgICAgICAgIGFscGhhID0gMC4wMiwKICAgICAgICAgIHBvd2VyID0gMC45MCkKCiMgU2ltcGxlIGVmZmVjdCBvZiB0aGUgZ3JvdXAKcHdyLnQudGVzdChuID0gTlVMTCwKICAgICAgICAgICBkID0gMS43NywKICAgICAgICAgICBwb3dlciA9IDAuOTAsCiAgICAgICAgICAgc2lnLmxldmVsID0gMC4wMiwKICAgICAgICAgICB0eXBlID0gInR3by5zYW1wbGUiLAogICAgICAgICAgIGFsdGVybmF0aXZlID0gImdyZWF0ZXIiKQpgYGAKCiMgU0VTT0kKClRoZSBzbWFsbGVzdCBlZmZlY3Qgc2l6ZSBvZiBpbnRlcmVzdCAoU0VTT0kpIGlzIGNvbXB1dGVkIHVzaW5nIHRoZSBzbWFsbC10ZWxlc2NvcGVzIGFwcHJvYWNoIGJhc2VkIG9uIFtDaGVtaW4gZXQgYWwuICgyMDE0KV0oaHR0cHM6Ly9kb2kub3JnLzEwLjExNzcvMDk1Njc5NzYxNDU1MTE2MSkuCgpgYGB7cn0KcHdyLnQudGVzdChuID0gMTQsCiAgICAgICAgICAgZCA9IE5VTEwsCiAgICAgICAgICAgcG93ZXIgPSAwLjMzLAogICAgICAgICAgIHNpZy5sZXZlbCA9IDAuMDIsCiAgICAgICAgICAgdHlwZSA9ICJwYWlyZWQiLAogICAgICAgICAgIGFsdGVybmF0aXZlID0gImdyZWF0ZXIiKSAjICJncmVhdGVyIiBmb3IgdCB0ZXN0IFNFU09JOyAidHdvLnNpZGVkIiBmb3IgVE9TVCBTRVNPSQpgYGAK