
Generosity Pays Off: A Game-Theoretic Study
of Cooperation in Decentralized Learning

G. Di Giacomo†, F. Malandrino‡,∗, C. F. Chiasserini†,‡,∗
†Politecnico di Torino, Italy; ‡CNR-IEIIT, Italy; ∗CNIT, Italy

Abstract—Decentralized learning, a paradigm enabling the
training of Machine Learning (ML) models using multiple nodes,
is gaining momentum, as it (i) improves data privacy and (ii)
permits to leverage the computational capabilities of a wide
set of nodes, thus being an excellent fit for the support of
edge intelligence applications. However, such nodes, like users’
smartphones or vehicles, cannot be forced to participate in the
learning process, and incentivizing them to do so is one of the
foremost challenges of decentralized learning. To address this
issue, we propose GENIAL – a game-theoretic approach, based
upon generous games, to promote cooperation among user nodes
for training or fine-tuning ML models. By allowing such nodes
to be (moderately) generous, i.e., to contribute to decentralized
training processes more often than what would be convenient for
them in the short term, GENIAL leads to a Nash equilibrium
where all nodes cooperate. Importantly, such equilibrium is also
proven to converge to the Pareto optimal operating point that
ensures a fair treatment to all nodes. Our theoretical findings are
supported by numerical experiments, which further underline the
effectiveness, and the benefits for rational nodes, of being generous
in decentralized training.

Index Terms—Decentralized learning, game theory, incentive
mechanism, node cooperation

I. INTRODUCTION

Machine Learning (ML) and, more specifically, Deep Learn-
ing models are the state-of-the-art methods used across many
different domains. Traditionally, the training of such models
has been performed in a centralized manner; however, that
requires significant quantities of data and large computational
resources, besides posing privacy concerns [1]. On the other
hand, the opposite approach where each node independently
trains its model with its own data, may result in poor learning
performance [2].

To cope with these issues, the decentralized learning
paradigm [3], [4] has emerged as a powerful alternative.
Contrary to centralized learning, the decentralized learning
paradigm leverages the computational power of the partici-
pating nodes, which locally train the model by using their
own data, thus ensuring data locality and privacy [4], and then
exchange such model till convergence is reached.

Such a learning paradigm is especially relevant in the case
where nodes at the edge and/or far-edge of the network have to
be involved for the training or the fine-tuning of ML models,
owing to the diversity of the data they own and the need to
keep such data local. However, in many real-world scenarios,
edge and far-edge nodes belong to different entities or are user
devices, hence, they are under no obligation to participate in

the learning and will do so only if advantageous to them. In
game-theoretic terms, they are rational, and a proper incentive
mechanism must be in place to make them participate [5].

To address this issue, we propose an algorithm called
GENerous Incentive Algorithm for Learning (GENIAL), which
is based on the classic Generous Tit-for-Tat strategy [6], [7]
(GTFT). Under GTFT strategies, nodes start by being willing
to cooperate (hence, “generous”), and then keep doing so only
if they observe that other nodes cooperate as well (hence,
applying “tit-for-tat”). We show that GENIAL yields a Nash
equilibrium, i.e., a profile strategy where no player gains some
profit by unilaterally modifying its strategy. Furthermore, we
prove that such an equilibrium is Pareto optimal and fair, i.e.,
it is not possible to make a player better off without negatively
affecting another one.

Intuitively, reaching a Pareto-optimal Nash equilibrium
means that the system operates in an efficient manner, and
such a result is reached in spite of the fact that all nodes solely
pursue their own interest. GENIAL is able to account for the
most relevant aspects of ML training, most importantly, that
nodes may belong to different classes; the class of a node
dictates the complexity of the models each node needs to
train, its target learning quality, and its available computational
resources. It follows that decisions about whether or not to
cooperate may have different consequences, i.e., impact on the
nodes’ resource consumption, each time they are made.

In the rest of the paper, Sec. II introduces the system model,
while Sec. III formulates the problem of cooperative decentral-
ized learning as a maximization problem of the payoff received
by the nodes. Sec. III derives the Pareto-optimal operating
points. Sec. IV proposes the GENIAL algorithm as incentive
mechanism, and it shows that GENIAL attains the Pareto-
optimal Nash Equilibrium. The performance of GENIAL is
shown in Sec. V. Finally, Sec. VI discusses some related work,
while Sec. VII draws our conclusions.

II. SYSTEM MODEL

We consider a learning orchestrator at the edge of the
network, which assists a cluster N of N nodes with the
training or the fine-tuning of ML models. For simplicity, the
cluster topology is assumed to be fully connected. Further,
each node belongs to one of K classes, with the number of
nodes in class k being denoted with Nk. All nodes in class
k are associated with an average and a maximum computing
capability constraint, denoted respectively by χ̄k and χmax

k ;

without loss of generality, we assume: χ̄1<χ̄2< . . .<χ̄K and
χmax
1 <χmax

2 < . . .<χmax
K . Also, each class k is associated with

a set of models Mk that the nodes in the class may need
to train or update: the complexity of the models in Mk is
denoted with mk. The quantities χ̄k and χ̄max

k are measured
in millions of floating point operations per second (MFLOPS),
while the complexity mk indicates the number of floating point
operations (FLOPs) to process one sample during training.

A node asking for help is referred to as requester, while
a node accepting to help train a model is called learner.
Whenever a training process is concluded, the orchestrator
selects the next node to start a new training process among
the candidate requesters with probability 1/N , so that only
one training session at the time can be performed.

We denote by h+1 the minimum number of nodes needed
to train the model at hand, where one of such nodes is the
requester itself. Fixing a priori the value of h, we can compute
the minimum number of training samples dk that each node
should use to train a model of complexity mk, such that the
target learning quality is achieved. More specifically, in, e.g.,
[8], it is empirically found that the generalization error (i.e.,
the test loss value) exhibits a power-law improvement with
respect to the training set size. The power-law parameters,
however, depend on the specific DNN and dataset at hand;
as also envisioned in [9], to estimate such parameters, one
could run a small-scale profiling for a specific range of test
losses. Thus, given the target test loss value (which is lower
than the values used for the profiling), it is possible to derive
the minimum number of required training samples Dk for
a model of complexity mk. Given Dk and the value of h,
which are inputs to our problem, it is straightforward to
compute the smallest number of required training samples dk,
i.e., dk=⌈ Dk

h+1⌉. For the sake of simplicity, we assume that
each node n∈N owns a dataset Dn such that |Dn|≥dk, with
k = 1, . . . ,K.

A requester will then ask H≥h other nodes in the cluster for
help: indicating with l≤H the number of nodes that accept the
request (hereinafter also referred to as learners), if l<h, the
learning process fails and the next requester has to wait a time
Tw before starting generating a new request. When instead at
least h nodes agree to help, i.e., h≤l≤H , the training session
can start: the set of l learners that accept the request and, thus,
contribute to the training, remains the same till the training of
the model is completed.

A training session is said to belong to type (k, j) when the
requester belongs to class k and the minimum class of the
set of the H nodes receiving the request is equal to j. The
probability that a node accepts to cooperate in a training session
of type (k, j) is denoted by πkj . The dependence of acceptance
probabilities upon the session type allows us to reproduce the
reasoning of potential learners, which will also consider the
expected amount of resources to devote to the process when
deciding whether to accept.

When a training session begins, the requester sends the
model to the l learners, which, in parallel and along with the

requester, perform one learning epoch using their own local
dataset. Nodes then exchange the updated models with each
other, and combine newly-received models with their local
one. A model training is terminated after a number of epochs
ek needed to achieve the target learning quality. Notice that
such a number depends on the requester class k, hence, on the
complexity mk of the model to train, and can be determined
a priori by using an approach similar to the one in [10] if
the model is already characterized. Alternatively, it is possible
to use methods that find convergence bounds, such as the one
proposed in [11]. The time required to perform one epoch is
equal to the processing time taken by the slowest learner; in
general, the local processing time of a node depends on the
number of processed samples, its computing capability, and the
model complexity mk. For the sake of simplicity, we do not
take into account the CPU consumption due to communication,
i.e., to the radio functions enabling the transmission of the
models’ parameters.

To properly describe and assess the performance of the
learning process, we define the following metrics:

• xkj
n (t): number of requests generated by node n for a

training session of type (k, j) accepted till time t;
• Xkj

n (t): number of requests generated by node n for a
training session of type (k, j) till time t;

• ykjn (t): number of requests made to node n for a training
session of type (k, j) accepted till time t;

• Y kj
n (t): number of requests made to node n for a training

session of type (k, j) till time t;
• µkj

n (t)=
xkj
n (t)

Xkj
n (t)

, νkjn (t)=
ykj
n (t)

Y kj
n (t)

, which indicate the quan-
tity of service, (resp.) received and given by n for type-
(k, j) training sessions till time t.

Last, we define the Normalized Received Service of a
generic requester n for training sessions of type (k, j) as
NRSkj

n (t)= limt→∞ µkj
n (t). Beyond its role in the mathemati-

cal formulation of the problem described below, this metric is
very important to assess how willing nodes are to cooperate,
hence, intuitively, how effective our cooperation scheme is. For
simplicity, hereinafter, the NRS indices will be omitted.

III. PROBLEM FORMULATION

As nodes are rational, each node aims to maximize its
own long-term utility, that is its average payoff over all
training sessions. Assuming that a node receives a payoff
of 1 when its training request is successful, we define the
utility of a node n of class k in a type (k, j) session as
Ukj
n = limt→∞

xkj
n (t)
S(t) =P kj

n Πkj , where S(t) indicates the total
number of sessions (accepted and rejected) till time t, P kj

n

denotes the probability that node n is a requester in a type
(k, j) session, while Πkj is the probability for a training session
of type (k, j) to be accepted. The latter event occurs when
the number l of accepting nodes is higher than the required
minimum number h, i.e.,

Πkj = P (l ≥ h) =

H∑
ℓ=h

H!

ℓ!(H − ℓ)!
πℓ
kj(1− πkj)

H−ℓ, (1)

where, as mentioned, we consider that all nodes accept to
contribute to a training session of type (k, j) with the same
probability πkj . We will thus highlight below the dependency
of the node’s utility on πkj by writing Ukj

n (πkj).
Finally, denoting the mean computing expenditure of the

generic node n with cn, the objective of node n, belonging to
class k and acting as a requester, is given by:

max
πkj

∑
j

Ukj
n (πkj), s.t. cn ≤ χ̄k,∀n∈N . (2)

In the objective function above, the decision variables are the
probabilities πkj with which a node accepts to cooperate in a
session of type (k, j). Note that, since all nodes are rational
and are provided by the orchestrator with the same system
information (number of nodes and their class), they will all
end up computing the same optimal values for the πkj’s.

A. Stationary case: closed-form solution

Given the problem above, we now assume stationary condi-
tions in which all nodes consistently use the same πkj values.
This assumption, which will be removed in Sec. IV, is essential
at this stage as it allows us to analytically derive the πkj’s, as
follows. Let us write the mean duration of a session, Ts, as:

Ts =
∑
k

∑
j

pkj

[
TkjΠkj + Tw(1−Πkj)

]
(3)

where the first and second terms on the right-hand side
account for the case when a session is accepted and rejected,
respectively. In particular, pkj is the probability that an oc-
curring session is of type (k, j), while Tkj is the training
time for a session of type (k, j), i.e., Tkj = mkekdk

χmax
min(k,j)

. In
this latter expression, the term mkekdk is the total number of
FLOPs required to finish training the requester’s model, while
χmax
min(k,j) is the smallest across the maximum computational

capability of the nodes participating in the training session.
The time required for transmitting and aggregating the model
parameters is assumed to be negligible when compared to the
computational time. Being Ts the mean session duration, it
must hold: Ts>0.

As a node cannot be simultaneously a requester and a
learner, we model cn as a sum weighted on the probabilities
that such events occur. The mean computing expenditure for a
node n of class k when the node is a requester and a learner
is (resp.) given by:

crn =

K∑
j=1

P kj
n

mkekdk
Ts

Πkj and (4)

cln =

K∑
j=1

k∑
i=1

q
(k)
ji

mjejdj
Ts

πjiΩji, where (5)

• q
(k)
ji the probability for a node of class k to receive a

training request in a session of type (j, i);
• Ωji denotes the probability that out of the remaining H−1

nodes that receive the request at least h−1 accept.

It follows that cn=crn + cln, where the weights of the sum
are inherently contained in crn and cln. By considering the
constraint of the node’s computing capability in (2), we get K
inequalities and K2 unknown variables. To solve the system,
we need to reduce the number of variables to K, which can be
done by exploiting the nodes’ rationality, as described below.

Rationality. Consider a system with only N=2 nodes be-
longing to the same class, i.e., K=1 and N1=N . By rationality,
each node must have the same NRS value. Indeed, having the
same average computing capability constraint, one node cannot
increase its NRS without reducing the NRS of the other node;
the latter, however, would not find such an operating point
acceptable. Therefore, the NRSs must be equal for both nodes.
This can be extended to the case where all N>2 nodes belong
to the same class: also in this scenario, by rationality, each
node must have the same value of NRS. In this case, it is
straightforward to derive the value of π11 that maximizes the
objective function while satisfying the computing capabilities
constraint.

Next, consider a system with N1=n1, N2=1, H=h=1,
and that the quantity of received service is the same for all
requesters when the learner belongs to class 1, i.e.,

m1e1d1Π11 = m2e2d2Π21 . (6)

Further, by rationality, the quantity of service received by class
1 nodes from the node in class 2 must be equal to the quantity
of service received by the latter from the nodes in class 1.
Indeed, the class-2 node has no interest in being more generous
to the nodes of class 1 than what the latter ones are to the class-
2 node, since the latter will not receive a higher service share
anyway. Thus, we have:

m1e1d1 Π12 = m2e2d2 Π21 . (7)

From (6) and (7), it derives that: Π11=Π12. Notably, in this
simple scenario where H=h=1, from (1) one can derive that
Πkj=πkj for all possible session types (k, j).

We now extend (6) and (7) to the most general case, i.e.,
with K≥1, H≥1 and h≥1. In this case, we have:

(i) the values of Πkj are such that Πkk=Πkj , 1≤k≤j≤K,
which implies

πkk = πkj , 1 ≤ k < j ≤ K; (8)

(ii) when a node receives a training request for a session of
type (j, k), the rational values of Πjk are such that

mkekdk Πkj = mjejdj Πjk, 1 ≤ k < j ≤ K, (9)

from which one can compute the ratio between πkj and
πjk, 1≤k<j≤K.

Thus, given (8) and (9), and solving the aforementioned
system of K inequalities by using (1) and (3)-(5), one can
compute the πkj values that maximize (2) and allow obtaining
the Pareto optimal NRS values, i.e., values such that no node
can improve its NRS without decreasing another node’s NRS,

while meeting the constraint on the mean computing expen-
diture. Importantly, (8) and (9) guarantee, in their respective
cases, equal service shares received by all nodes; hence the
Pareto optimal πkj values are fair.

IV. GENIAL: ALGORITHM AND PROPERTIES

In the previous section, we have derived the πkj’s under the
stationary assumption, which implies that all nodes consistently
use such values. However, since the nodes are rational, they
cannot be relied upon to do so; intuitively, nodes will try to
exploit their peers’ naivety by first accepting the cooperation
of other nodes, and then refusing to reciprocate. It follows that
no stationary acceptance policy would be feasible; therefore,
to effectively foster cooperation among nodes, a behavioral
strategy is required, whereby nodes decide their actions based
upon past history. Specifically, we propose a novel game-
theoretic approach called GENerous Incentive Algorithm for
Learning (GENIAL), which is based on the GTFT strategy
and allows attaining the derived πkj’s.

Consider a node n receiving at time t a request from a node
of class k, that the smallest class among the H nodes that have
received the request is j; thus the learning session is of type
(k, j). To accept or deny the request, n applies the GENIAL
algorithm, that is:

• if νkjn (t)>πkjΩkj or µik
n (t)< Πik

πkjΩkj
νkjn (t)−γ reject;

• else accept.
According to this strategy, n rejects the requests if at least

one of the following two conditions holds:
• νkjn (t)>πkjΩkj , i.e., in sessions of type (k, j) node n has

performed more training than what it should have;
• µik

n (t)< Πik

πkjΩkj
νkjn (t) − γ, with γ>0, i.e., the amount

of help received by node n in type-(i, k) sessions is
lower than the amount of help it has given in type-(k, j)
sessions, normalized by the term Πik

πkjΩkj
, which is the

value to which the ratio µik
n (t)

νkj
n (t)

should converge. Since γ

is a small positive value, nodes are a little generous by
agreeing to train for others even if they have not received
as much help as they should have.

We now prove that GENIAL yields a Nash Equilibrium, first
in the simple case where all nodes belong to the same class and
only one learner is necessary for training (i.e., K=H=h=1).

Theorem 1. Consider a system of N nodes, all belonging
to class 1, with mean and maximum computing capability
constraint (resp.) χ̄1 and χmax

1 . Models have complexity m1,
which implies that d1 samples and e1 epochs are required to
reach the target learning quality. Also, H=h=1, and if the
node receiving the training request accepts, the time required
for the training is T11, otherwise a time Tw is waited. Then:

1) if all nodes, except for node n, employ GENIAL, then
lim supt→∞ µ11

n (t)≤π11=
χ̄1N
2

Tw

m1d1e1− χ̄1N
2 (T11−Tw)

;
2) if all nodes apply GENIAL, then

limt→∞ µ11
n (t)=π11=

χ̄1N
2

Tw

m1d1e1− χ̄1N
2 (T11−Tw)

, ∀n∈N .

TABLE I
SMALL-SCALE SCENARIO: ADDITIONAL SETTINGS

Class 1 Class 2 Class 3
Dataset size 3×103 5×103 7×103

Model complexity [FLOPs] 2×103 3×103 4×103

Epochs required 40 55 70
χmax [MFLOPS] 45 60 75
χ̄ [MFLOPS] 8.4 12 15

Proof: Please see the Appendix available at [12].
Next, we move to the multi-class case.

Theorem 2. Consider a system of N nodes and K classes,
H=h=1, and Nk nodes in class k. Also, the computing
capabilities constraints are as follows: χ̄1<χ̄2< . . . < χ̄K and
χmax
1 <χmax

2 < . . . < χmax
K . Then:

1) if all nodes, except for node n, employ GENIAL, then
lim supt→∞ µkj

n (t)≤πkj;
2) if all nodes apply GENIAL, then limt→∞ µkj

n (t)=πkj ,
∀n∈N and k, j=1, . . . ,K.

Proof: Please see the Appendix available at [12].
From Theorems 2 and 3, it is easy to show, by using random-

izing arguments, that GENIAL constitutes a Nash Equilibrium
and allows converging to the fair Pareto optimal operating point
also when considering more than one node receiving a training
request (H>1), and more than one learner (h>1).

Theorem 3. Consider a system with N nodes, K classes,
H>1, h>1 and Nk nodes in class k, k=1, . . . ,K. As
for the computing capabilities constraints, assume that
χ̄1<χ̄2< . . .<χ̄K and χmax

1 <χmax
2 < . . .<χmax

K . Then:
1) if all nodes, except for node n, use GENIAL,

lim supt→∞ µkj
n (t)≤Πkj;

2) if all nodes apply GENIAL, then limt→∞ µkj
n (t)=Πkj ,

∀n∈N and k, j=1, . . . ,K.

Proof: Please see the Appendix available at [12].

V. NUMERICAL RESULTS

In this section, we experimentally analyze the behavior of
the nodes when applying GENIAL, as well as the effects of
GENIAL on the social utility of the system.

Small-scale scenario. We consider a set of N=12 nodes
and K=3 classes, with four nodes in each class training the
models in Tab. I. Also, we set H=h=2, i.e., the requester asks
two nodes for help and both need to accept for the training to
take place. All nodes employ GENIAL, with Tw set to 1 s.

The Πkj values (hence, the Pareto optimal NRSs) are ob-
tained by solving the equations (3)–(5) jointly with (8), (9) and
the K inequalities stating the computing capability constraints.
Fig. 1 depicts such values (black markers), along with the
temporal evolution of the requesters’ NRS. Specifically, the
plots refer to requesters belonging, respectively, to class 1
(left), 2 (center), and 3 (right). One can observe that, when
γ=0.01 (solid lines), the NRS values converge to the fair Pareto
optimal values, while they reach much smaller values for γ=0
(dotted lines). The results thus confirm that being moderately

0.0 0.2 0.4 0.6 0.8 1.0
Time [s] ×106

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

ce
iv

ed

 S
er

vi
ce

 (N
RS

),
μ

0.0 0.2 0.4 0.6 0.8 1.0
Time [s] ×106

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

ce
iv

ed

 S
er

vi
ce

 (N
RS

),
μ

Learner class: 1
Learner class: 2
Learner class: 3

γ= 0.01
γ= 0
Pareto-optimal

0.0 0.2 0.4 0.6 0.8 1.0
Time [s] ×106

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

ce
iv

ed

 S
er

vi
ce

 (N
RS

),
μ

Fig. 1. Small-scale scenario: Time evolution of the NRS of a requester in class 1 (left), 2 (center), and 3 (right), with the fair Pareto optimal values indicated
by the black markers. NRSs converge to the target value only for γ=0.01 (solid lines), while for γ=0 (dotted lines), they converge to much lower values.

generous (γ=0.01) yields much better performance, even if the
nodes are self interested.

We now consider the same scenario, but with one and two
nodes per class, hence, a total of (resp.) 3 and 6 nodes, that use
γ=−0.02 and, hence, are slightly selfish. Hereinafter we refer
to such nodes as parasites. Fig. 2 presents the NRS values for
each session type in such scenarios, and compares them to the
case without parasite nodes. Notice how, with 3 parasite nodes
out of 12 (i.e., 25% parasites), the NRSs are lower than in
the case with all nodes being generous, and, with 6 parasites
(i.e., 50% parasites), the performance degrades to such an
extent that the NRSs approach 0. Importantly, this outcome
underlines that, by using GENIAL, all nodes get lower NRSs
if a selfish (i.e., non-collaborative) behavior is adopted; as a
consequence, rational nodes have no incentive to follow an
ungenerous behavior.

Fig. 3 sheds light on the resource usage for generous and
parasite nodes. When no parasites are present (solid, grey
bars), the nodes fully exploit the available resources, hence,
the resource-usage constraint is met with an equal sign. This is
what we can expect from a system that works well, adequately
exploiting the available resources. On the contrary, in the
scenario with 3 parasites (green), parasite nodes consume a
slightly smaller amount of resources (checked bars), but, as
shown by Fig. 2, at a cost of a lower NRS. With 6 parasites
(purple), the computational expenditure drops dramatically for
all nodes, as, essentially, very few models get trained.

The NRS values are an indicator of individual utility, as
they refer to each single node. To analyze the social utility,
i.e., the benefit for the set of nodes as a whole, we show in
Tab. II the normalized number of accepted, and, hence, carried
out, training sessions. The obtained social utility values are
consistent with the results presented above: the scenario where
all nodes are generous (all use γ=0.01) yields the larger social
utility, confirming the importance of being generous also from
the social utility point of view.

In conclusion, these results emphasize that to foster coop-
eration in a decentralized learning task and reach the Pareto
optimal NRS values, all nodes must employ GENIAL with
γ>0: as nodes are rational, they are motivated to be generous.

Larger-scale scenario. We now consider K=3 and N1=12,
N2=18, and N3=30, for a total of 60 nodes, and we set H=5,
h=4, and Tw=1 s. All nodes employ GENIAL with γ=0.01;

(1,1)(1,2)(1,3) (2,1)(2,2)(2,3) (3,1)(3,2)(3,3)
Session type

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
Re

ce
iv

ed

 S
er

vi
ce

 (N
RS

),
μ w/o parasites

3 parasites
6 parasites

Fig. 2. Small-scale scenario: NRS values for each session type in three
different cases: without parasites, and with 3 (25%) and 6 (50%) parasites
that set γ=− 0.02. The remaining nodes have γ=0.01.

1 2 3
Node class

0

5

10

15
̄χ
[M

FL
OP

S]
w/o parasite
3 parasites
6 parasites

Generous node
Parasite
Constraints

Fig. 3. Small-scale scenario: χ̄ for each class of nodes in three different cases:
without parasites, and with 3 (25%) and 6 (50%) parasites that set γ=−0.02.
The remaining nodes have γ=0.01. Dashed lines depict the χ̄ constraints for
the respective classes of nodes.

TABLE II
SOCIAL UTILITY IN DIFFERENT SCENARIOS

Scenario Social utility

w/o parasites, γ=0.01 0.454
w/o parasites, γ=0 0.011
25% parasites 0.398
50% parasites 0.014

TABLE III
LARGER-SCALE SCENARIO: ADDITIONAL SETTINGS

Class 1 Class 2 Class 3
Dataset size 2×103 2.5×103 3×103

Model complexity [FLOPs] 1×103 2×103 2.5×103

Epochs required 35 40 45
χmax [MFLOPS] 30 45 54
χ̄ [MFLOPS] 15.1 24.9 26.9

TABLE IV
LARGER-SCALE SCENARIO: NRSS AT CONVERGENCE, WITH PARETO

OPTIMAL VALUES IN PARENTHESES

Requester’s class
1 2 3

Learner’s
class

1 0.63 (0.63) 0.22 (0.22) 0.13 (0.13)
2 0.63 (0.63) 0.67 (0.67) 0.40 (0.40)
3 0.63 (0.63) 0.67 (0.67) 0.97 (0.99)

the additional settings for this scenario are reported in Tab. III.
Tab. IV presents the obtained NRSs, which converge to the fair
Pareto optimal values, shown in parentheses. This is consistent
with the small-scale scenario and highlights how GENIAL can
work effectively even when the number of nodes grows.

VI. RELATED WORK

Our study leverages game theory to foster cooperation
among the nodes participating in decentralized learning tasks.
We draw on [7], which considers a wireless ad-hoc network
where source nodes can communicate with their target desti-
nation only if intermediate nodes accept to relay the packets to
be delivered. Here, we extended the game-theoretic framework
in [7] to make it suitable for decentralized learning scenarios,
where nodes are asked to collaborate, by making available their
computational resources to train ML models.

As for decentralized learning, [4] presents a comprehensive
theoretical analysis of convergence in decentralized settings
and introduces a unified framework for Decentralized Stochas-
tic Gradient Descent (SGD) optimization, which generalizes
earlier methods and is proven to achieve the optimal con-
vergence rates for local SGD across different scenarios. [3]
theoretically and experimentally demonstrates the convergence
speedup of a decentralized optimization algorithm on networks
with low bandwidth or high latency, when compared to a
distributed scenario with a central node aggregating the updates
computed by the training nodes. The latter case is generally
referred to as distributed learning, whose most popular repre-
sentative is Federated Learning (FL) [1]. Note that, also when
FL is deployed in real scenarios, nodes must be encouraged to
train by means of an incentive mechanism [13].

Incentive mechanisms can be based on economic or game-
theoretic approaches [14]. In a similar vein, [15], considers a
distributed learning scenario with rational nodes and a Fusion
Center, i.e., the central coordinator, that receives the gradient
updates from the nodes and fosters their cooperation by using
a reward mechanism based on zero-determinant strategies.
Such interactions are treated as repeated games. Similarly, [16]
models the interactions between the FL coordinator and the
clients by using a Stackelberg game.

The study in [17] introduces an incentive mechanism for
cross-silo FL, specifically designed to account for participating
organizations’ heterogeneity and the concept of public goods.
This mechanism achieves social welfare maximization, while
ensuring individual rationality and budget balance. [18] models
FL as a hedonic game, where players form coalitions based
on a cost, given by the weighted sum of the players’ errors.
Therein the authors propose an algorithm to find an optimal
arrangement of players and analyze the trade-off between
stability and optimality using the Price of Anarchy.

VII. CONCLUSIONS

We considered a set of rational nodes that can cooperatively
train or fine-tune ML models according to the decentralized
learning paradigm. To incentivize the nodes to participate in the

training, we envisioned a game-theoretic mechanism, GENIAL,
that achieves the nodes’ fair Pareto optimal operating points
and constitutes a Nash equilibrium. Our numerical experiments
support the theoretical findings, and indicate that the presence
of parasite nodes seeking to improve their short-term benefit
by deviating from the Nash equilibrium hurts the performance
of both generous and parasite, thus discouraging a parasite
behavior. Future work will also include results concerning the
task of fine-tuning ML models, will address the presence of
malicious as well as misbehaving nodes, and it will evaluate
both the overhead due to the decentralized learning approach
and the overall node’s energy consumption.

ACKNOWLEDGMENT

This work was supported by the European Commission
through Grant No. 101095890 (PREDICT-6G project).

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage et al., “Communication-efficient
learning of deep networks from decentralized data,” in PMLR Artificial
intelligence and statistics, 2017.

[2] Q. Li, Z. Wen, Z. Wu et al., “A survey on federated learning systems:
Vision, hype and reality for data privacy and protection,” IEEE Transac-
tions on Knowledge and Data Engineering, 2021.

[3] X. Lian, C. Zhang, H. Zhang et al., “Can decentralized algorithms out-
perform centralized algorithms? A case study for decentralized parallel
stochastic gradient descent,” Advances in Neural Information Processing
Systems, 2017.

[4] A. Koloskova, N. Loizou, S. Boreiri et al., “A unified theory of de-
centralized SGD with changing topology and local updates,” in PMLR
International Conference on Machine Learning, 2020.

[5] J. Kang, Z. Xiong, D. Niyato et al., “Incentive mechanism for reliable
federated learning: A joint optimization approach to combining reputa-
tion and contract theory,” IEEE Internet of Things Journal, 2019.

[6] M. A. Nowak and K. Sigmund, “Tit for tat in heterogeneous populations,”
Nature, 1992.

[7] V. Srinivasan, P. Nuggehalli, C. Chiasserini et al., “An analytical ap-
proach to the study of cooperation in wireless ad hoc networks,” IEEE
Transactions on Wireless Communications, 2005.

[8] J. Hestness, S. Narang, N. Ardalani et al., “Deep learning scaling is
predictable, empirically,” arXiv preprint arXiv:1712.00409, 2017.

[9] F. Malandrino, C. F. Chiasserini, N. Molner et al., “Network support
for high-performance distributed machine learning,” IEEE/ACM Trans-
actions on Networking, 2023.

[10] F. Malandrino, G. di Giacomo, A. Karamzade, M. Levorato, and C. F.
Chiasserini, “Tuning dnn model compression to resource and data
availability in cooperative training,” 2023, pp. 1–16.

[11] X. Li, K. Huang, W. Yang et al., “On the convergence of fedavg on
non-iid data,” in ICLR, 2020.

[12] https://github.com/Giuse1/generosity/, accessed: 2023-01-12.
[13] W. Y. B. Lim, N. C. Luong, D. T. Hoang et al., “Federated learning in

mobile edge networks: A comprehensive survey,” IEEE Communications
Surveys & Tutorials, 2020.

[14] X. Tu, K. Zhu, N. C. Luong et al., “Incentive mechanisms for federated
learning: From economic and game theoretic perspective,” IEEE Trans-
actions on Cognitive Communications and Networking, 2022.

[15] A. B. Akbay and J. Zhang, “Distributed learning with strategic users:
A repeated game approach,” in Proceedings of the AAAI Conference on
Artificial Intelligence, 2022.

[16] L. U. Khan, S. R. Pandey, N. H. Tran et al., “Federated learning for
edge networks: Resource optimization and incentive mechanism,” IEEE
Communications Magazine, 2020.

[17] M. Tang and V. W. Wong, “An incentive mechanism for cross-silo
federated learning: A public goods perspective,” in IEEE INFOCOM,
2021.

[18] K. Donahue and J. Kleinberg, “Optimality and stability in federated
learning: A game-theoretic approach,” Advances in Neural Information
Processing Systems, 2021.

