
Scalable Computing: Practice and Experience
Volume 15, Number 2, pp. 187–200. http://www.scpe.org

DOI 10.12694/scpe.v15i2.955
ISSN 1895-1767
c⃝ 2014 SCPE

GENERALIZED MATRIX MULTIPLICATION AND ITS OBJECT ORIENTED MODEL

MARIA GANZHA1, MARCIN PAPRZYCKI2, AND STANISLAV G. SEDUKHIN3

Abstract.
Since the beginning of the 21st century, we observe rapid changes in the area of, broadly understood, computational sciences.

One of interesting effects of these changes is the need for reevaluation of the role of dense matrix multiplication. The aim of this
paper is two-fold. First, to summarize developments that point toward a need for reconsidering usefulness of matrix multiplication
generalized on the basis of the theory of algebraic semirings. Second, to propose generalized matrix-matrix multiply-and-update
(MMU) operation and its object oriented model.

Key words: matrix multiplication, algebraic semirings, algebraic path problem

AMS subject classifications. 65F30, 13A99

1. Introduction. Recently, a number of changes can be observed in computational sciences. They concern
all levels of the computational stack. First, evolution of computer hardware, forced by limits imposed by physics,
resulted in practical disappearance of processors with a single computational unit. As a matter of fact, today it
is possible to have a quad-core processor in a cell phone (e.g. in the newest Samsung Galaxy 4) and even 8 cores
(in the Motorola X8 Mobile Computing System [10]). Furthermore, it is already possible to have more than a
thousand fused multiply and add (FMA) units in a single GPU processor [33]. Second, there is a constantly
growing gap between the capacity of the processor to consume the data and hardware’ ability to feed it. Third,
rapidly decreasing cost of the FMA unit, combined with appearance of processors with thousands FMAs, lead to
suggestions that a complete reevaluation of approach to computing is needed [34, 35]. Here, the basic assumption
is that data access/movement is “expensive,” while arithmetic operations are “cheap.” Fourth, it is time to
(re)consider complexity of codes that try to match (and effectively utilize) current computer hardware with as
much as seven levels of data access latency. Finally, rapid proliferation of devices with matrix-like sensor input
(e.g. digital cameras, medical imaging devices, radio telescopes, etc.) forcefully reminds us that, in multiple
applications, actual data consists of 2D and/or 3D matrix-structures that are fed with high speed, and should
not be stored but processed in-place as they elements are delivered to the processing units.

In this paper we will argue that the time has come for a meta-reflection and general change of approach
to large-scale (primarily “scientific”) computing. In particular, it is important to look into efficient solution of
matrix-based problems, and this is precisely the scope of the current contribution. This paper modifies and
extends our two conference papers [69, 30], and it is organized as follows. First, we discuss the interaction
between progress in computer hardware and computational linear algebra in the early days of supercomputing.
Second, we consider dense matrix multiplication, as one of key elements of large number of linear algebraic
algorithms. Here, we also look into its generalization through the theory of algebraic semirings. Next, we
reflect on the most current trends in hardware and software for computational linear algebra and combine
these considerations to propose a generalized matrix multiply and update (MMU) operation. Finally, we use
the discussion of the state-of-the-art in object oriented BLAS to propose an object oriented realization of the
generalized MMU.

2. Computer hardware and computational linear algebra in the long gone past.

2.1. Single-processor computers. Let us start our discussion from late 1970’s, when it became clear
that many algorithms for matrix computations consist of similar building blocks (e.g. a vector update, or a
dot-product). As a result, in the Cray-1 supercomputer, vector operation ȳ ← ȳ + αx̄ (where x̄ and ȳ are

1Systems Research Institute, Polish Academy of Sciences, Warsaw and Institute of Informatics, University of Gdańsk, Gdańsk,
Poland (Maria.Ganzha@ibspan.waw.pl),

2Systems Research Institute, Polish Academy of Sciences, Warsaw and Department of Management and Technical Sciences,
Warsaw Management Academy, Warsaw, Poland (Marcin Paprzycki@ibspan.waw.pl),

3Distributed Parallel Processing Laboratory, The University of Aizu, Aizuwakamatsu City, Fukushima 965-8580, Japan
(sedukhin@u-aizu.ac.jp)

187



188 M. Ganzha, M.Paprzycki and S.G. Sedukhin

n-element vectors, while α is a scalar) has been efficiently implemented. Specifically, S. Cray proposed vector
processors with chaining of multiply and update operations [66], where results of the multiply operations have
been forwarded directly from the “multiplication unit” to the “addition unit.” A few years later, the IBM
build the 3090 series of vector computers with efficient implementation of the dot-product operation [40]. In
the meantime, in 1979, the level 1 BLAS standard was proposed [44], which defined a set of core vector-
vector operations. The assumption behind the level 1 BLAS was that the computer vendors would provide
efficient hardware (and software) realizations of these operations. In this spirit, the Cray Inc. build computers
with efficient vector updates, that became a part of the scilib library [39]; while the IBM developed the ESSL
library [38], with highly optimized dot-products. This library was later ported to the IBM RS/6000 workstations;
the first commercial computer to implement the fused multiply-and-add (FMA) operation [52]. Note that the
FMA operation appears in both vector updates and dot products. Following this path, currently, processors
from IBM, Intel, AMD, Nvidia, and others [18, 20, 24, 41, 53, 55, 56], include efficient hardware supported
scalar floating-point fused multiply-add operation.

The FMA combines two basic floating-point operations (flops) into one (three-read-one-write) operation
with only one rounding error, throughput of two flops per cycle, and a few cycles latency – depending on the
depth of the FMA pipeline. There exist two FMA standards: FMA3 and FMA4. The difference is that the
FMA4 has four operands (d ← c + a ∗ b), while the FMA3 has three operands (it is an update c ← c + a ∗ b).
Since it is not our aim to discuss the philosophical differences between these two approaches, for the purpose
of this paper, let us assume that the term “FMA” covers both standards. Besides the increased accuracy, the
FMA minimizes operation latency, reduces hardware cost, and chip busing [52]. The standard floating-point
add, or multiply, are performed by taking a ← 1.0 (or b ← 1.0) for addition, or c ← 0.0 for multiplication.
Therefore, the two floating-point constants, 0.0 and 1.0, need to be available within the processor. As a result,
in the current computer hardware, one cannot “practically distinguish” between (faster/simpler) addition and
(slower/more complex) multiplication. This fact has important consequences for some classes of divide-and-
conquer algorithms (see, below).

The development of software for computational linear algebra continued, with introduction of level 2 BLAS,
standardizing matrix-vector operations [28]. Next, the level 3 BLAS was introduced in [27], defining matrix-
matrix operations. Following, the supercomputer vendors developed highly optimized implementations of BLAS
kernels for their hardware (e.g. the Cray Inc. provided Cray Assembly Language based implementations [39]).
Furthermore, on the basis of the level 3 BLAS, the LAPACK library was proposed [14], defining templates for
solving dense matrix problems.

It is also during these years, when the disparity between the speed of the processor and the memory access
time became apparent (see, for instance [17]). In response to this trend, computers with hierarchical memory
(introduced for data reuse) have been proposed. To match these architectures, block-oriented realizations of
fundamental linear algebra algorithms for dense matrices have been introduced and experimented with (this
is precisely the class of algorithms that constituted the core of the “LAPACK approach”). Here, blocking
allowed data reuse and minimization of data movement. Since the process of finding perfect blocking was rather
tedious, and only few programmers were ready to do this for the highly complex computer hardware (see, for
instance, [31]), auto-tuners have been introduced. Among them, the ATLAS project [76] became the most
popular.

2.2. Parallel computers. Let us now look into historical trends in parallel computer hardware. In the
1990’s three main designs for the parallel computers were: (1) array processors, (2) shared memory parallel
computers, and (3) distributed memory parallel computers. While quite popular initially, array processor
supercomputers disappeared by approximately 1995. The main reason was an apparent lack of flexibility to
deal with problems that do not natively appear in the “matrix-form.” Furthermore, it is worthy observing that,
regardless of the array organization of processors, no truly efficient implementation of matrix multiplication
has been realized. Next, the shared memory parallel supercomputers started to fade away. Here, the main
problem was the bottleneck caused by the connection between the memory and the processors. It turned out
that, in computational practice, scaling such machines to more than 32 processors was extremely difficult and
economically unfeasible. As the result, by the end of 20th century, the dominating supercomputer architecture
became the distributed memory parallel computers.



Generalized Matrix Multiplication and its Object Oriented Model 189

As what concerns computational linear algebra, while the LAPACK library was focused on single-processor
and shared-memory parallel computers, the ScaLAPACK [21] was to provide the same standardization for
the distributed memory computers. The ScaLAPACK is based on the single program multiple data (SPMD)
programming model. In addition to the computational kernels, parallel BLAS kernels [22], and communication
routines (BLACS [5]) have been defined. Overall, the main assumption remained that the hardware/software
vendors are going to provide efficient low-level realization of the needed functionality. Interestingly, while the
LAPACK project became quite successful, the ScaLAPACK did not match its reach and popularity. There exist
multiple of reasons for this fact. Among others: (1) programming distributed memory computers turned out to
be more difficult than expected, (2) end of the Cold War cut funding for development of hardware and software
on the large scale, (3) raise of cluster (COTS) computers moved the interest to low-cost solutions on the small
scale (where highly optimized routines were not the biggest concern), (4) extending / updating Fortran 77
turned out to be a complete failure, (5) implementers of codes for computationally intensive problems turned
to C and next to C++ and object oriented scientific computing (however, object orientation did not result in
unification of the field; see, section 7).

In summary, there was a time when development of “high performance” hardware and software worked
hand-in-hand. However, their pathways have diverged and software developers have been left to catch up with
the computer hardware. Nevertheless, matrix multiplication remained the workhorse of a very large class of
algorithms in computational linear algebra (in particular, their block-oriented implementations). Therefore, we
will now focus on high performance matrix multiplication.

3. Dense matrix multiplication in scientific computing. While dense matrix-matrix multiplication
appears in many computational problems, its most popular application is in the update step of block algorithms
and has the form: C ← C + A × B (where A, B and C are appropriately dimensioned matrices; note that,
in general, A and /or B can be in transposed form, which leads to four different variants of this operation).
Despite its simplicity, the arithmetic complexity, and data dependencies, make it a challenging problem to reduce
the run-time complexity. The two basic approaches to speeding matrix multiplication were, first, lowering the
arithmetic complexity – achieved by reducing the number of scalar multiplications (complex/expensive), while
increasing the number of scalar additions/subtractions (simple/cheap). Here, one could list Strassen [73],
Pan [57], and Coppersmith-Winograd [23] algorithms (further discussion and references can be found in [65]).
Second, by the parallel implementation [13, 75, 42, 29, 19, 47]. Of course, a combination of these two approaches
is also possible (see, for instance, [72, 37, 32, 49]).

The recursive matrix multiplication “worked well” from the point of view of theoretical analysis of arith-
metical complexity, and when implemented on early computers. However, its implementation started to became
a problem on computers with hierarchical memory (e.g. to reach optimal performance of a Strassen-type al-
gorithm, recursion had to be stopped when the size of the divided submatrices approximated the size of the
cache memory – differing between machines; see, [15]). Furthermore, practical implementation of Strassen-type
algorithms requires extra memory (e.g. the Cray’s implementation of Strassen’s algorithm required extra space
of order 2.34n2 [25]). Here, recall two facts. First that in the modern FMA units, there is no distinction
between time of addition and multiplication (these two operations cannot be “separated” into cheap and expen-
sive). Second that the speed of memory access is one of the key factors limiting advances of high performance
computing.

It is worthy recalling that recursive matrix multiplication has been successfully used within other algorithms,
e.g. within blocked Gaussian Elimination [15, 61, 60, 58]. Unfortunately, recursive approaches result in problems
with numerical stability. While, as proved by N. J. Higham in [36], these problems should not be extremely
pronounced, in [61] it was shown that they may prevent solution of at least some practical problems. Specifically,
for a class of PDE problems, substituting matrix multiplication by a fast one, in the block-oriented linear
equation solver, resulted in a failure to reach the solution.

The second approach to speeding matrix multiplication is through the design of parallel algorithms, which
have been implicitly or explicitly based on a time-space scheduling of FMAs in the 3D computational index
space. This scheduling directly affects data reuse, by orchestrating data movement between different scalar
operations. One of the key differences between this and the recursion-based approaches is that in the parallelized
matrix multiplication, patterns of data movement remain relatively simple and well structured. Moreover, in



190 M. Ganzha, M.Paprzycki and S.G. Sedukhin

the recent paper [70], it was shown that, actually, there exist only four basic classes of schedules and, therefore,
classes of algorithms. In other words, all existing parallel matrix multiplication algorithms are extensions
of these four basic schedulings, with respect to different matrix shapes, blocking or tiling, dimensionality of
parallel implementation, underlined (assumed) computer architecture, etc. (see, also [46]). Furthermore, it
was observed that all four schedulings can be used to implement the level 3 BLAS operation GEMM [27] of
the form C ← C + A × B; the matrix multiply-update (MMU ). Out of the four classes of parallel MMU
algorithms defined in [70]: (i) Broadcast-Compute-Shift; (ii) All-Shift-Compute (or Systolic); (iii) Broadcast-
Compute-Roll; and (iv) Compute-Roll-All (or Orbital), the last one is characterized by regularity and locality
of data movement, maximal data reuse without data replication, recurrent ability to involve into computing
all matrix data at once (focal-plane I/O), etc. This makes it well suited for the computer hardware that is
likely to materialize in the near future (see, Section 5). Interestingly, the recently proposed 2.5D approach to
matrix multiplication [71], represents a hybrid between a Broadcast-Broadcast-Compute (BBC) and a Compute-
Roll-All (CRA). Specifically, when no extra memory is available the approach reduces to the CRA (Cannon
Algorithm), while when N extra copies of appropriate matrices (where N is the size of the, square, matrices
involved in multiplication) can be stored in the system, the matrix multiplication operation becomes a version of
the Broadcast-Compute-Roll. However, an in-depth discussion of this point is out of scope of this contribution.

Obviously, it is possible to combine recursive and parallel approaches to dense matrix multiplication. Here,
the situation becomes even more complex, as irregularity of data movement is exaggerated through the complex-
ity of the underlying hardware (e.g. extra levels of latency of data access). However, with a lot of programmer’s
work, hybrid approaches outperformed the standard parallel matrix multiplication [72, 37, 32, 59]. Interestingly,
the most recent research seems to contain two contradictory claims. First, results presented in [26] support
the conclusion that Strassen-type approaches are not practically beneficial on current computer architectures.
Second, in [49], benefits of the 2.5D Strassen multiplication are praised. However, careful study of results pre-
sented there (see, [49], Figure 1.f) indicates that the apparent performance gain (reported in, [49], Figure 1.e)
is purely virtual, as it does not result in substantial reduction of the wall-clock time. This could be used as an
argument supporting the conclusions reported in [26].

Let us leave the discussion concerning advantages and disadvantages of specific implementations of parallel
dense matrix multiplication and observe that this operation appears also in a much broader context. Specifically,
matrix multiplication can be generalized through the theory of algebraic semirings. Let us now look into this
topic in more detail.

4. Algebraic semirings in scientific calculations. Since 1970’s, a large number of problems has been
combined under a single umbrella, named the Algebraic Path Problem (APP ; see [45, 16, 67]). Furthermore,
it was established that the matrix “multiply-and-update” (MMU) operations, in different algebraic semirings,
can be used as a centerpiece of various APP solvers.

Let us start from the needed definitions. A closed (scalar) semiring (S,⊕,⊗, ∗, 0̄, 1̄) is an algebraic structure
defined for a set S, with two binary operations: addition ⊕ : S × S → S and multiplication ⊗ : S × S → S, a
unary operation called closure ⊛ : S → S, and two constants 0̄ and 1̄ in S. Here, we are particularly interested
in the set S consisting of matrices. Thus, following [45], we introduce a matrix semiring (Sn×n,

⊕
,
⊗

,⋆, Ō, Ī)
as a set of n×n matrices Sn×n over a closed scalar semiring (S,⊕,⊗, ∗, 0̄, 1̄) with two binary operations, matrix
addition

⊕
: Sn×n × Sn×n → Sn×n and matrix multiplication

⊗
: Sn×n × Sn×n → Sn×n, a unary operation

called closure of a matrix ⋆ : Sn×n → Sn×n, the zero n × n matrix Ō whose all elements equal to 0̄, and the
n × n identity matrix Ī whose all main diagonal elements equal to 1̄ and 0̄ otherwise. Here, matrix addition
and multiplication are defined as usually in the linear algebra.

As stated, large number of matrix semirings appear in well-studied APPs. We summarize some of them in
a table (similar to that presented in [12]). For simplicity of notation, in the Table 4.1, we represent them in a
scalar form.

Note that the Minimum reliability path problem has not been encountered by the authors before. It was
defined on the basis of systematically representing possible semirings—as a natural counterpart to the Maximum
reliability problem (the only difference is the ⊕ operation: min instead of max). Since the maximum reliability
path defines the best way to travel between two vertices of a graph; the Minimum reliability problem could be
interpreted as: finding the worst pathway, one that should not be “stepped into”).



Generalized Matrix Multiplication and its Object Oriented Model 191

Table 4.1
Semirings for various APP problems.

S ⊕ ⊗ ⊛ 0̄ 1̄ Application

0,1 ∨ ∧ 1 0 1
Reflexive and transitive
closure of binary relations

R + × 1/(1− r) 0 1 Matrix inversion
R+ ∪+∞ min + 0 ∞ 0 All-pairs shortest paths
R+ ∪+∞,−∞ max + 0 -∞ 0 Maximum cost (critical path)
[0, 1] max × 1 0 1 Maximum reliability paths
[0, 1] min × 1 0 1 Minimum reliability paths
R+ ∪+∞ min max 0 ∞ 0 Minimum spanning tree
R+ ∪ −∞ max min 0 -∞ 0 Maximum capacity paths

While Table 4.1 summarizes the scalar semirings, and scalar “multiply-and-add” operations, kernels of
blocked algorithms for solving the APP, are based on (block) matrix “multiply-and-update” (MMU) opera-
tions [74, 51]. Therefore, let us present the relation between the scalar (fused) “multiply-and-update” (FMA)
operation (ω), and the corresponding matrix “multipy-and-update” (MMU) kernel (α), for semirings in Table
4.1 (here, Nb is the size of a matrix block; see, also [68]):

• Matrix Inversion Problem (MIP):

(α) a(i, j)← a(i, j) +
∑Nb−1

k=0 a(i, k) ∗ a(k, j);
(ω) c← a× b+ c;

• Shortest Paths Problem (SPP):
(α) a(i, j)← min

{
a(i, j),minNb−1

k=0 [a(i, k) + a(k, j)]
}
;

(ω) c← min(c, a+ b);
• Critical Path Problem (CRP):

(α) a(i, j)← max
{
a(i, j),maxNb−1

k=0 [a(i, k) + a(k, j)]
}
;

(ω) c← max(c, a+ b);
• Maximum Capacity Paths Problem (MCP):

(α) a(i, j)← max
{
a(i, j),maxNb−1

k=0 min[a(i, k), a(k, j)]
}
;

(ω) c← max[c,min(a, b)];
• Maximum Reliability Paths Problem (MaRP):

(α) a(i, j)← max
{
a(i, j),maxNb−1

k=0 [a(i, k)× a(k, j)]
}
;

(ω) c← max(c, a× b);
• Minimum Reliability Paths Problem (MiRP):

(α) a(i, j)← min
{
a(i, j),minNb−1

k=0 [a(i, k)× a(k, j)]
}
;

(ω) c← min(c, a× b);
• Minimum Spanning Tree Problem (MST):

(α) a(i, j)← min
{
a(i, j),minNb−1

k=0 [max
(
a(i, k), a(k, j)]

}
;

(ω) c← min[c,max(a, b)].

Summarizing, application of algebraic theory of semirings allows bringing together multiple problems, so-
lution of which involves generalized matrix multiplication. Let us now look how this fits with current and
predictable trends in computational sciences, in particular in computational linear algebra.

5. Current trends in high performance computing. Recently, high performance computer hardware
found itself “in a box” imposed by physics. As the “floor” we can see the limits on miniaturization. It is
physically impossible to continue reducing the size of the processor without having to deal with quantum
effects. On the “ceiling” we have the heat dissipation problem. The current on-chip processor designs make it
extremely difficult to cool the densely packed (miniaturized) transistors. Finally, the memory “walls” make it
increasingly complex to feed the data-starving processors. Here, the use of hierarchical memory with up to three
levels of cache memory provided only a temporary solution, with a price in workload of software implementers
(see, also, below). An obvious solution to these problems is to combine multiple computational units. However,
here the “speed of light problem” starts to materialize again. To keep the system synchronous, it is possible
to send signal only for a certain distance (within a single clock cycle). This effect can be seen not only when



192 M. Ganzha, M.Paprzycki and S.G. Sedukhin

considering design of systems with billions of processors that fill a room of a size of a football stadium. We
can observe it also within multi-core chips. For instance, the frequency of Pentium processors reached 3.8 GHz
(Pentium 4, Prescott), while the Nvidia Tesla processor runs at about 700 MHz. Here, through the reduction
of frequency, it is possible to keep the multiple cores synchronous.

In this way, we have pointed to two recent trends in design of high performance hardware. First, today’s
multi-core processors can be seen as shared memory parallel computers on-chip. Second, GPU chips represent
ideas originating from the SIMD supercomputers of the old. Both trends feature multiple FMA units (from a
few FMAs in multi-core processors, up to more than a thousand in the newest GPUs). They also follow two
different roadmaps to the exascale computing. One of them involves smaller number of more powerful (more
complex) processors, while the other is based on larger number of less powerful (simpler) processing units. In
a way, high performance computing has spiraled back to the 1990’s. For instance, in 1993, the MassPar MP-
2216 array processor with 2048 “cores” took 180’s position at the TOP500 computer list [9]. It was capable of
delivering 2.4 GFlops. Today’s Tesla K20X GPU, produced by Nvidia, has 896 double precision FMAs (2688
single precision FMAs that work in triples to deliver double precision operations) and is capable of delivering
1.31 TFlops [33]. In other words, a TOP200 computer from 1993 was about 500 times slower than a single
(multi)processor of today, while both had a comparable number of computational units.

As what concerns software, some researchers work on squeezing performance out of existing computer
architectures (see, for instance, recent results from the team led by J. Demmel [49, 71]). Others see the future
of computing in proposing complex kernels that are to replace the BLAS standard (see, [80]). However, it is
also possible to see the problem from the perspective of William of Ockham, who suggested that “one should
proceed to simpler theories.” Taking into account what has been said so far, it should be clear that simplicity
and uniformity of data manipulation should become the driving principle behind exa/zetta-scale computer
system design. Here, the work of Sedukhin et.al. [70] focuses on development of a novel computer architecture
capable, among others, of delivering efficient parallel matrix multiplication. In the same context, for sparse
matrix operations, John Gustafson stated: “Go Ahead, Multiply by Zero!” [34]. His assumption is that in
the hardware of the future, cost of arithmetic operations will be so low, in comparison with data movement
(and indexing), that fundamental assumptions behind current approaches to computational sparse (and dense)
linear algebra will have to be re-evaluated. Interestingly, the team of J. Dongarra has recently initiated a
new project, in which they investigate possibility of reintroduction of systolic architectures to the computing
mainstream [43]. Here, it is also worthy envisioning that this could mean that we may, some time in the future,
forget about rectangular matrices (in computational practice). Instead we will pad them with zeros to make
them square and in this way match the square arrangements of FMA’s within processors. Since the price of an
FMA is currently (June 2013) at about 22 US cents and dropping (see, [77]), such approach does not seem so
unreasonable; especially, taking into account the cost of data manipulations involved in dealing with rectangular
structures. This should be kept in mind when considering the fact that the APP algorithms (mentioned above)
involve square matrices only.

Let us present a few more examples of a slow shift in view on programming modern (and future) high-
performance computers (which are expected to be build of hundreds of thousands of processors with thousands
of FMA units each). First, initial results concerning an implementation of the 2D FFT (2048×2048)-point,
on a 24-wide FMA Cell/B.E.@PS3 processor shows only a moderate difference (∼3 times) in performance over
non-recursive matrix multiply and add-based 2D DFT, despite almost 30 times difference in the number of
arithmetic operations [79]. Moreover, it was recently reported (in [48]) that, by using two quad-core Intel
Nehalem CPUs, the direct convolution approach outperforms the FFT-based approach by at least five times,
even when the associated arithmetic operation count is approximately two times higher. This “imbalance”
towards non-recursive approach is directly related to efficient use of multicore processors achieved through
efficient dense MMU implementation.

Second, the early work in sparse linear algebra was guided by the desperate need of saving memory. As
a result, a number of “compressed matrix formats” has been proposed and experimented with. However, in
the most recent work, instead of dealing with individual matrix entries, the basic element becomes a “dense
block” (of size related to the processor cache; see, for instance [78, 50] and references collected there). Here,
we observe the same general pattern as above, where simplicity of data access pattern(s) compensates for the



Generalized Matrix Multiplication and its Object Oriented Model 193

higher operation count caused by multiplication by zero (note that some of such blocks may have only a few
non-zero elements).

Separately, the work reported in [50] illustrates one more important aspect of using highly optimized,
memory-preserving schema to deal with sparse matrix multiplication. The code generator that allows to deal
with various forms of sparse matrix-vector multiplication, for various data types and matrix formats is approx-
imately 6,000 lines long. However, the generated code is more than 100,000 lines long. This code can efficiently
work on hierarchical memory multicore systems with up to 16 cores (see, [50]), but will require further tuning
for larger number of FMAs (and it is neither GPU nor distributed memory computers oriented). This being
the case, when thinking about fast matrix / matrix-vector multiplication, one needs to consider also the pro-
gramming effort required to develop and later modify (re-optimize) codes based on complex data structures and
movements. This observation provides also context for the question of long-term feasibility of approaches similar
to the GOTOBLAS [31]. Furthermore, the original direction of the BLAS project needs to be considered. Part
of the success of the BLAS was related to its simplicity (including relatively small number of basic routines).
Therefore, it is not clear if proposing a standard with many complex kernels (as in [80]) is going to be successful
in a long run.

Finally, let us look into relation between the APP and the recent trends in computing. While algebraic
semirings can be seen as a simple “unification through generalization” of a large class of computational problems,
they should be viewed in the context of, mentioned above, success of fused multiply-and-add (FMA) units. Note
for instance that, the GPU processors from Nvidia and AMD combine large number of FMA units (e.g. the
Nvidia’s Tesla chip allows 2688 single-precision FMA operations completed in a single clock cycle [33]). In
this context, recent experiments show that FMA-based kernels speed-up (∼2×) solution of many scientific,
engineering, and multimedia problems, which are based on matrix transforms [35]. However, other APPs
“suffer” from lack of hardware support for the needed scalar FMA operations (e.g. those listed in Table 4.1).
The need for min or/and max operations introduces one or two conditional branches, or comparison/selection
instructions, which are highly undesirable for deeply pipelined processors. Recall that each of these operations
is repeated Nb-times in the corresponding kernel (see, Section 4), while the kernel itself is called many times
in the blocked APP algorithm. Here, note the recent results, reported in [68], which involve evaluation of an
MMU operation in different semirings, on the Cell/B.E. processor. They showed that the “penalty” for lack
of a generalized FMA unit may be up to 400%. This can be also interpreted as follows: having an FMA
unit, capable of supporting operations and special elements from Table 4.1 could speed-up solution of APP
problems by up to 4 times. Interestingly, we have just found that the AMD Cypress GPU processor supports
the combined scalar (min,max)-operation through a single call with only 2 clock cycles per result. In this case,
the Minimum Spanning Tree (MSP) problem (see, Table 4.1) could be solved more efficiently than previously
realized. Furthermore, this could mean that the AMD hardware has −∞ and ∞ constants already build-in.
This, in turn, could constitute an important step towards hardware support of generalized FMA operations,
needed to realize all kernels listed in Table 4.1.

6. Proposed generalized multiply-update operation. Let us now summarize the main points made
thus far. First, future parallel computers will involve hundreds of millions (if not billions) of FMA units in a
single (super)computing system. Such systems are likely to remain within the same (inflation adjusted) price
range as today’s largest supercomputers. As a result, price per FMA unit will be further substantially reduced
(likely to reach less than 1 US cent per GFlop). Second, unless a great progress is going to be made in the area
of quantum computing, the limitations imposed by physics will not go away, keeping the design of computer
hardware in a “physics box.” Furthermore, it is unclear if quantum computing will be applicable to all classes
of computational problems. As a result, simplicity and uniformity of data movement has to become the guiding
principle of design of both hardware and software for solving computationally intensive problems. This being
the case, we predict a diminishing role of divide-and-conquer methods. Here, we mean approaches focused
on replacing multiplications with additions/subtractions, and/or reduction of the total number of arithmetical
operations, while introducing complex data movement and need for extra memory. Both of them are precisely
the problems that stand in the way to development of exa/zetta-flop computers. Third, sometimes without
realizing this, scientists solving large number of computational problems, have been working within algebraic
semirings. Algebra of semirings involves not only standard linear algebra, but also a large class of other APPs.



194 M. Ganzha, M.Paprzycki and S.G. Sedukhin

Solutions to these problems involve execution of a large number of matrix “multiply-and-add” operations rooted
in generalized scalar FMA operations. In this context, we have illustrated the positive effects of development of
FMA processing units, and discussed potential benefits of “upgrading” such units to become generalized FMA
units, capable of dealing with semiring-defined operations listed in Table 4.1. Finally, we have stressed that
simplicity of data movement /access concerns also simplicity of code writing. In other words, it seems that
the world of scientific computing has reached the era of Ptolomeic epicycles, investigating methods, which are
effective in squeezing performance of existing supercomputers, but are going to be ineffective in a long run.

Based on these considerations, we can define a generic form of the matrix “multiply-and-update” (MMU)
operation

C← GMMU[⊗,⊕](A, B, C) : C← C⊕ AT/N ⊗ BT/N, (6.1)

where the [⊗,⊕] operations originate from different matrix semirings, while T/N denotes the fact the either (or
both) matrix(ces) A and/or B can be used in a transposed form. Note that, like in the scalar FMA operations,
the generalized matrix addition or multiplication, can be implemented by making matrix A (or B) = Ī for
addition, or matrix C = 0̄ for multiplication (where, the appropriate 0̄ and Ī matrices have been defined in
Section 4).

Finally, observe that the proposed approach leads to new ways of development (design and implementation)
of efficient codes solving variety of APPs. Upon reflection, it should also become clear that this approach can
be seen as a generalization of the level 3 BLAS. In Section 2 we have discussed the development of the BLAS
standard, in the context of development of computer hardware, and growing understanding of the nature of
computational linear algebra. We have also mentioned that the BLAS standard did not move smoothly from
Fortran to the object oriented languages. Let us therefore, summarize the state-of-the-art in the area of object
oriented BLAS and object oriented libraries for computational linear algebra.

7. State-of-the-art in object oriented BLAS. While our work extends and generalizes matrix multi-
plication, taking into account changes in computing that took place within last 30 years, its current realization
should be object oriented. Therefore, let us start from a summary of selected object oriented realizations of
numerical linear algebra in general, and BLAS in particular: MTL [11], uBLAS [4], TNT [8], Armadillo [3] and
Eigen [7]. Other object oriented projects that could be considered pertinent to the material presented here,
have been summarized in [54].

The uBLAS project [4] was focused on design of a C++ template class library for BLAS level 1, 2 and
3; for dense, packed, and sparse matrices. The primary goal of uBLAS was to provide usable software for the
scientific computing community. However, its additional goal was to experimentally evaluate if the abstraction
penalty, resulting from object orientation (use of matrix and vector classes), is acceptable. According to the
information available at [4], the design of the uBLAS was guided by results originating from the following
projects: (i) Blitz++ [1] by Todd Veldhuizen, (ii) POOMA [2] by Scott Haney et al., and MTL [11] by Jeremy
Siek et al. Data found on the Web indicates that the project was completed around 2002 and later its results
have been included in the BOOST [6] library of object oriented mathematical software. Comparing Web pages
of the 2010 and 2012 releases of BOOST it is clear that the uBLAS is not developed further, but only maintained
by the team of the BOOST project.

Year 2004, marks the end of the life cycle of the Template Numerical Toolkit (TNT) project from the
NIST. The TNT is a collection of interfaces for sparse and dense matrices. In addition, a C++ reference
implementations of these objects are provided. The library, while not updated since 2004, can still be downloaded
from the project Web site and experimented with (the site is signed by Roldan Pozo, the last update took place
in March 2004, and the project status is described as: active maintenance).

Interestingly, one of the projects that was taken into consideration while developing the uBLAS, the Matrix
Template Library (MTL), outlived the explicitly traceable activity of the uBLAS project. Specifically, in 2005
the MTL project moved from US to Germany and changed the lead personnel. Furthermore, when designing
the MTL 4, only the main ideas from the MTL 2 were used, but the code has been written from scratch. The
MTL 4 team continued publishing research papers until, approximately, 2009. Since then the project was turned
into a commercial endeavor through the SimuNova company, which provides open source, supercomputing, and
GPU versions of the MTL 4.



Generalized Matrix Multiplication and its Object Oriented Model 195

Finally, there are two projects that are vigorously pursued today. These are the Armadillo (with the last
release on February 20, 2013) and the Eigen (with the last release on November 5, 2012). Both of them provide
support for an extensive set of matrix operations as well as other computational kernels (Eigen, in particular).
While both libraries are open source, the Armadillo provides direct support for vendor optimized matrix libraries:
MKL and ACML. The Eigen, on the other hand, has been optimized for vector processors (and specially
optimized for small matrices), and accommodates large body of supplementary community implemented codes.

8. Initial object oriented model of generalized matrix multiplication. Following the ideas un-
derlying the above summarized projects, as well as the main points discussed above, in Figure 8.1 we depict
our proposed initial object oriented model for the generalized matrix multiplication. The proposed model is
language independent, so that it will have to be appropriately adjusted if it is to be actually implemented,
for instance, in C++ or Java. Here, and in the next section, we follow the lead of the creators of the BLAS
standard, who in [44, 28, 27] have not only discussed the general ideas concerning BLAS, but also introduced
some ideas concerning its implementation.

Fig. 8.1. General schema of the proposed object oriented model of MMU matrix multiplication

The main class of the proposed model is the Matrix class. This class is based on the user defined semirings,
which are represented in the scalar Semiring class. In Figure 8.1, we represent the fact that users can define
different semirings. Specifically, defining a semiring involves defining the abstract (generalized) operations
addition and multiplication (and closure for closed semirings), as well as special elements 0̄ and 1̄ (see, Section 4
and Table 4.1). In the case of the Matrix class, we can see that the matrix is defined by two generic parameters:
matrix size N and type of its elements.

The scalar Semiring class is the basis for the MMU operation (it defines scalar operations within the
generalized MMU). Our assumption is that implementation of this operation will be vendor-supported (in a
similar way that the BLAS operations have been implemented by the Cray or the IBM). For instance, if specific
scalar FMA operations, corresponding to the user defined semiring, are available in the hardware, they will be
utilized in the implementation of the MMU operation. Furthermore, if parallel implementation of the MMU is
supported on a given computer hardware (e.g. on a GPU), it will be used here.

9. Sample realization. Let us now outline the main features of the proposed realization of the above
described approach. Here, let us observe that one of our important goals is to simplify code development (in a



196 M. Ganzha, M.Paprzycki and S.G. Sedukhin

way that the BLAS standard simplified it 30+ years ago). This means, that we want the code to be written by
the programmer to be as simple as possible, with most details of the implementation hidden from her. In what
follows, we distinguish between the user, who will use the proposed model to write codes to solve her problem
and the implementer who will develop complete model of the generalized MMU. With this in mind, let us start
from defining the interfaces. The first one of them is the interface Matrix interface. This interface defines
operations that are made available to the user to write his codes.

1 /* T - type of matrix element */

2

3 interface Matrix_interface {

4 Init(n);/ initialisation of square matrix nxn

5 Matrix matrix0(n) {/* generalized zero matrix */}

6 Matrix matrix11(n) {/* generalized identity matrix */}

7 Matrix operator + /* generalized matrix addition A+B*/

8 Matrix operator * /* generalized matrix product A*B*/

9 Matrix transpose(A) {/* transposition of matrix A*/}

10 /* generalized permutation of column i and j in matrix A*/

11 Matrix Column_Permutation (A,i,j)

12 /* generalized permutation of row i and j in matrix A*/

13 Matrix Row_Permutation (A,i,j)

14 ...

15 }

As we can see, the implementer is provided with ability to create matrix objects, as well and zero and identity
matrices (for a given semiring). Furthermore, we define generalized multiply and add operators, as well as two
permutation matrices. This interface can be extended to include other matrices / operations needed by the
user.

The second interface is the scalar Semiring interface. This is where the scalar semiring is specified.

1 interface scalar_Semiring_interface{

2 /* Operations:*/

3 +,*

4 ...

5 }

6

7 abstract class scalar_Semiring {

8 public:

9 //T -- type of element;

10 zero ,one:T;

11 +: c=a+b;

12 *: c=a*b;

13 }

Here, the generalized scalar operations + and ∗, as well as scalar elements 0̄ and 1̄ are specified, in the abstract
class scalar Semiring. Specification of this class has to be provided by the user to define the semiring that
she would like to work with in her code.

With these two interfaces in place we can now define the core class Matrix. This class is not made visible
to the user (it is internal to the proposed realization of the generalized MMU). It inherits the scalar Semiring

interface and implements the interface Matrix interface.

1 class Matrix inherit scalar_Semiring implement Matrix_interface {

2

3 T: type of element;/*double , single ,...*/

4 n:int;

5 // Methods

6 Init(n);/ initialisation of square matrix nxn

7 Matrix matrix_0(n) {/*0 matrix */}



Generalized Matrix Multiplication and its Object Oriented Model 197

8 Matrix matrix_1(n) {/* identity matrix */}

9 Matrix matrix_1P(i,j,n){

10 /* identity matrix with interchanged columns i and j*/

11 }

12 Matrix transpose(A:Matrix){/*MMU -based transposition of A*/}

13 Matrix operator + {A,B:Matrix}

14 {return MMU(A,matrix_1(n),B,a,b)}

15 Matrix operator * {A,B:Matrix}

16 {return MMU(A,B,matrix_0 ,a,b)}

17 Matrix Column_Permutation (A,i,j){

18 P=matrix_1P(i,j,n);

19 O=matrix_0(n);

20 return MMU(P,A,O)}

21 Matrix Row_Permutation (A,i,j){

22 P=matrix_1P(i,j,n);

23 O=matrix_0(n);

24 return MMU(A,P,O)}

25 ...

26 private MMU(A,B,C:Matrix(n)){

27 return "vendor/implementer specific realization of

28 MMU = C + A*B where

29 + and * are from class scalar_Semiring"}

30 ...

31 }

The most important part of this class is the private function MMU . This is the actual realization of the
MMU operation (see, equation 6.1). It is implementer/vendor specific. In other words, user can perform matrix
operations: A ⊕ B, A ⊗ B, or C ⊕ A ⊗ B, written in the code as A + B, A ∗ B, or C + A ∗ B without any
knowledge that they are actually realized through invocation of the MMU function. Furthermore, the MMU
function can be implementer specified or hardware vendor provided, and be based on any of the existing matrix
multiplication algorithms (see, section 3).

As far as the matrices in transposed form are concerned, we have to distinguish two senses in which the
transpose can materialize. First, transpose may appear as an operation that has to be actually performed on a
matrix. In this case, we will apply the tanspose(A) operation (available within the Matrix class; see, also [64]).
However, transpose may also appear within the context of the MMU operation. Here, as shown in [62], as long
as the transpose concerns only one of the two matrices (A or B), it is possible to complete the MMU operation
without actually transposing the matrix. Therefore we assume here, that the compiler confronted with code
involving C ← C+ transpose(A) ∗B or C ← C+A ∗ transpose(B), will call the appropriate implementation of
the MMU. In the case, when the user asks for C ← C + transpose(A) ∗ transpose(B), the actual transpose will
be performed on one of the two matrices (e.g. transpose(A)) and then the appropriate MMU implementation
will be called to complete the operation (e.g. C ← C +A ∗ transpose(B)).

Observe also, that matrix column permutation and matrix row permutation have been defined as operations
Column Permutation and Row Permutation, which are implemented through a call to the MMU function with
appropriate matrices (see, also [69]).

In the next snippet we show the class scalar Semiring, rewritten for the Shortest Path Problem (point 2,
in Figure8.1). After defining this class the user can simply apply the MMU operation within his implementation
of the solver. Obviously, this operation can be applied to the whole matrix or to appropriate blocks (in a blocked
solver).

1

2 /*T = R+ PLUS infinity , general add = min ,

3 general product = +, ZER0 = infinity , ONE = 0; */

4

5 class scalar_Semiring {

6 zero="infinity";



198 M. Ganzha, M.Paprzycki and S.G. Sedukhin

7 one=0;

8 scalar operator +(a,b:T){return min(a,b)};

9 scalar operator *(a,b:T){return a+b};

10 }

Observe that after this definition, operation defined in the code as C + A ∗ B (with or without the transpose)
will be performed within the needed semiring. Obviously, similar definitions can be easily instantiated on the
basis of the remaining semirings listed in Table 4.1, as well as semirings materializing in other AAPs.

10. Concluding remarks. The aim of this paper was to summarize and extend recent research results
concerning role of dense matrix multiplication in scientific computing. First, it was argued that with the
decreasing price of arithmetical operations and abundance of memory, and the increasing cost of data access
/ move, the old approaches that focused on reducing number of arithmetical operations and memory use need
to be reconsidered. Second, it was shown how the Algebraic Path Problem unifies different problems through
the theory of algebraic semirings. This allowed to define the generalized matrix multiply and update operation.
Finally, a language independent object oriented model of this operation was presented. In the near future we
plan to combine the proposed approach with the, recently introduced, mesh-of-tori based systems (see, [63]) to
show how it can be effectively applied to a larger class of matrix “manipulations” implemented through matrix
multiplications.

Acknowledgment. Work of Marcin Paprzycki was completed while visiting the University of Aizu.

REFERENCES

[1] http://blitz.sourceforge.net/.
[2] http://acts.nersc.gov/pooma/.
[3] Armadillo c++ linear algebra library. http://arma.sourceforge.net/.
[4] Basic linear algebra. http://www.boost.org/doc/libs/1 35 0/libs/numeric/ublas/doc/index.htm.
[5] Blacs.
[6] Boost c++ liberaries. http://www.boost.org/.
[7] Eigen wiki. http://eigen.tuxfamily.org/index.php?title=Main Page.
[8] Template numerical toolkit. http://math.nist.gov/tnt/.
[9] Top500 list – june 1993. http://www.top500.org/list/1993/06/?page=2.

[10] Motorola x8 mobile computing system. http://www.motorola.com/us/X8-Mobile-Computing-System/

x8-mobile-computing-system.html, 2013.
[11] Overview of mtl4. http://www.simunova.com/en/node/24, 01 2013.
[12] S. Kamal Abdali and B. David Saunders. Transitive closure and related semiring properties via eliminants. Theor. Comput.

Sci., 40:257–274, November 1985.
[13] R. Agarwal, F. Gustavson, and M. Zubair. A high performance matrix multiplication algorithm on a distributed-memory

parallel computer, using overlapped communication. IBM J. of Res. and Develop., 38(6):673–681, 1994.
[14] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J. Dongarra, J. Du Croz, S. Hammarling, A. Greenbaum,

A. McKenney, and D. Sorensen. LAPACK Users’ guide (third ed.). Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 1999.

[15] David H. Bailey, King Lee, and Horst D. Simon. Using Strassen’s algorithm to accelerate the solution of linear systems. J.
Supercomputing, 4:357–371, 1991.

[16] V. Batagelj. Semirings for social network analysis. Journal of Mathematical Sociology, 19(1):53–68, 1994.
[17] K. Boland and A. Dollas. Predicting and precluding problems with memory latency. IEEE Micro, 14(4):59–67, 1994.
[18] J.D. Bruguera and T. Lang. Floating-point fused multiply-add: reduced latency for floating-point addition. Computer

Arithmetic, 2005. ARITH-17 2005. 17th IEEE Symposium on, pages 42–51, June 2005.
[19] L.E. Cannon. A Cellular Computer to Implement the Kalman Filter Algorithm. PhD thesis, Montana State University, 1969.
[20] Siddhartha Chatterjee, Leonardo R. Bachega, Peter Bergner, Kenneth A. Dockser, John A. Gunnels, Manish Gupta, Fred G.

Gustavson, Christopher A. Lapkowski, Gary K. Liu, Mark P. Mendell, Rohini D. Nair, Charles D. Wait, T. J. Christopher
Ward, and Peng Wu. Design and exploitation of a high-performance SIMD floating-point unit for Blue Gene/L. IBM
Journal of Research and Development, 49(2-3):377–392, 2005.

[21] Jaeyoung Choi, James Demmel, Inderjit S. Dhillon, Jack Dongarra, Susan Ostrouchov, Antoine Petitet, Ken Stanley, David W.
Walker, and R. Clinton Whaley. Scalapack: A portable linear algebra library for distributed memory computers - design
issues and performance. In PARA, pages 95–106, 1995.

[22] Jaeyoung Choi, Jack Dongarra, Susan Ostrouchov, Antoine Petitet, David W. Walker, and R. Clinton Whaley. A proposal
for a set of parallel basic linear algebra subprograms. In PARA, pages 107–114, 1995.

[23] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions. J. Symb. Comput., 9(3):251–280,
1990.



Generalized Matrix Multiplication and its Object Oriented Model 199

[24] Marius Cornea, John Harrison, and Ping Tak Peter Tang. Intel Itanium Floating-point architecture. In WCAE’03: Proceedings
of the 2003 workshop on Computer Architecture Education, page 3, New York, NY, USA, 2003. ACM.

[25] Cliff Cyphers and Marcin Paprzycki. Multiplying matrices on the cray-practical considerations. CHPC Newsletter, 6(6):77–82,
June 1991.

[26] Paolo D’Alberto and Alexandru Nicolau. Using recursion to boost ATLAS’s performance. In ISHPC, pages 142–151, 2005.
[27] J. J. Dongarra, J. D. Croz, I. Duff, and S. Hammarling. A set of level 3 basic linear algebra subprograms. ACM Trans. Math.

Software, 16:1–17, 1990.
[28] J. J. Dongarra, J. D. Croz, S. Hammarling, and R. J. Hanson. An extended set of FORTRAN basic linear algebra subprograms.

ACM Trans. Math. Software, 14:1–17, 1988.
[29] G. Fox, S. Otto, and A. Hey. Matrix algorithms on a hypercube I: Matrix multiplication. Parallel Computing, 4:17–31, 1987.
[30] Maria Ganzha, Stanislav Sedukhin, and Marcin Paprzycki. Object oriented model of generalized matrix multipication. In

FedCSIS, pages 439–442, 2011.
[31] Kazushige Goto and Robert van de Geijn. High Performance Implementation of the Level-3 BLAS. ACM Transactions on

Mathematical Software, 35(1).
[32] Brian Grayson and Robert Van De Geijn. A high performance parallel Strassen implementation. Parallel Processing Letters,

6(1):3–12, mar 1996.
[33] NVIDIA Group. Tesla K20X GPU Accelerator. Technical report, NVIDIA, November 2012.
[34] John L. Gustafson. Algorithm leadership. HPCwire, Tabor Communications, April 06, 2007.
[35] Fred G. Gustavson, José E. Moreira, and Robert F. Enenkel. The fused multiply-add instruction leads to algorithms for

extended-precision floating point: applications to java and high-performance computing. In CASCON ’99: Proceedings
of the 1999 conference of the Centre for Advanced Studies on Collaborative research, page 4. IBM Press, 1999.

[36] Nicholas J. Higham. Exploiting fast matrix multiplication within the level 3 BLAS. ACM Trans. Math. Softw., 16(4):352–368,
December 1990.

[37] S. Hunold, T. Rauber, and G. Rünger. Combining building blocks for parallel multi-level matrix multiplication. Parallel
Comput., 34(6–8):411–426, 2008.

[38] IBM. Essl library, 2014.
[39] Cray Research Inc. Unicos math and scientific library reference manual sr-2081, 1990.
[40] A. Kamel, M. Kindelan, and P. Sguazzero. Seismic computations on the IBM 3090 vector multiprocessor. IBM Systems

journal, 27(4):510–527, 1988.
[41] Vladik Kreinovich. Itanium’s new basic operation of fused multiply-add: theoretical explanation and theoretical challenge.

SIGACT News, 32(1):115–117, 2001.
[42] S.Y. Kung. VLSI Array Processors. Prentice Hall, 1988.
[43] Jakub Kurzak, Piotr Luszczek, Mark Gates, Ichitaro Yamazaki, and Jack Dongarra. Virtual systolic array for qr decomposition.

Technical report, University of Tennessee, 2012.
[44] C. L. Lawson, R. J. Hanson, R. J. Kincaid, and F. T. Krogh. Basic linear algebra subprograms for FORTRAN usage. ACM

Trans. Math. Software, 5:308–323, 1979.
[45] Daniel J. Lehmann. Algebraic structures for transitive closure. Theor. Comput. Sci., 4(1):59–76, 1977.
[46] J. Li, A. Skjellum, and R. D. Falgout. A poly-algorithm for parallel dense matrix multiplication on two-dimensional process

grid topologies. Concurrency: Practice and Experience, 9(5):345–389, 1997.
[47] Jin Li, Anthony Skjellum, and Robert D. Falgout. A poly-algorithm for parallel dense matrix multiplication on two-dimensional

process grid topologies. Concurrency - Practice and Experience, 9(5):345–389, 1997.
[48] O. Lindtjorn, R. Clapp, O. Pell, Haohuan Fu, M. Flynn, and Haohuan Fu. Beyond traditional microprocessors for geoscience

high-performance computing applications. Micro, IEEE, 31(2):41–49, March-April 2011.
[49] Benjamin Lipshitz, Grey Ballard, James Demmel, and Oded Schwartz. Communication-avoiding parallel Strassen: imple-

mentation and performance. In SC, page 101, 2012.
[50] Michele Martone, Salvatore Filippone, Pawel Gepner, Marcin Paprzycki, and Salvatore Tucci. Use of hybrid recursive csr/coo

data structures in sparse matrices-vector multiplication. In IMCSIT, pages 327–335, 2010.
[51] Kazuya Matsumoto and Stanislav G. Sedukhin. A solution of the all-pairs shortest paths problem on the cell broadband

engine processor. IEICE Transactions, 92-D(6):1225–1231, 2009.
[52] R. K. Montoye, E. Hokenek, and S. L. Runyon. Design of the IBM RISC system/6000 floating-point execution unit. IBM J.

Res. Dev., 34(1):59–70, 1990.
[53] Robert K. Montoye, Erdem Hokenek, and Stephen L. Runyon. Design of the IBM RISC System/6000 Floating-Point Execution

Unit. IBM Journal of Research and Development, 34(1):59–70, 1990.
[54] Claire Mouton. A study of the existing linear algebra libraries that you can use from c++ (une étude des bibliothèques

d’algèbre linéaire utilisables en c++). CoRR, abs/1103.3020, 2011.
[55] S.M. Mueller, C. Jacobi, H.-J. Oh, K.D. Tran, S.R. Cottier, B.W. Michael, H. Nishikawa, Y. Totsuka, T. Namatame, N. Yano,

T. Machida, and S.H. Dhong. The vector floating-point unit in a synergistic processor element of a cell processor.
Computer Arithmetic, 2005. ARITH-17 2005. 17th IEEE Symposium on, pages 59–67, June 2005.

[56] Frank P. O’Connell and Steven W. White. Power3: The next generation of PowerPC processors. IBM Journal of Research
and Development, 44(6):873–884, 2000.

[57] V. Pan. Strassen’s algorithm is not optimal: Trililnear technique of aggregating, uniting and canceling for constructing fast
algorithms for matrix operations. In FOCS, pages 166–176, 1978.

[58] Marcin Paprzycki. Comparison of Gaussian elimination algorithms on a Cray Y-MP. Linear Algebra and Its Applications,
172:57–69, 1992.

[59] Marcin Paprzycki. Parallel matrix multiplication-can we learn anything new? CHPC Newsletter, 7(4):55–59, February 1992.



200 M. Ganzha, M.Paprzycki and S.G. Sedukhin

[60] Marcin Paprzycki. Parallel Gaussian elimination algorithms on a CRAY Y-MP. Informatica, 19(2):235–240, 1995.
[61] Marcin Paprzycki and Cliff Cyphers. Using strassen’s matrix multiplication in high performance solution of linear systems.

Journal of Computers in Mathematics Applications, 31(4/5):55–61, 1996.
[62] Abhijeet A. Ravankar. A new “mesh-of-tori” interconnection network and matrix based algorithms. Master’s thesis, University

of Aizu, September 2011.
[63] Abhijeet A. Ravankar and Stanislav G. Sedukhin. Mesh-of-tori: A novel interconnection network for frontal plane cellular

processors. In ICNC, pages 281–284, 2010.
[64] Abhijeet A. Ravankar and Stanislav G. Sedukhin. An O(n) time-complexity matrix transpose on torus array processor. In

ICNC, pages 242–247, 2011.
[65] Sara Robinson. Towards an optimal algorithm for matrix multiplication. SIAM News, 38(9), 2005.
[66] Richard M. Russell. The Cray-1 computer system. Commun. ACM, 21:63–72, January 1978.
[67] S. G. Sedukhin, T. Miyazaki, and K. Kuroda. Orbital systolic algorithms and array processors for solution of the algebraic

path problem. IEICE Transactions on Information and Systems, E93.D(3):534–541, 2010.
[68] Stanislav G. Sedukhin and Toshiaki Miyazaki. Rapid*closure: Algebraic extensions of a scalar multiply-add operation. In

CATA, pages 19–24, 2010.
[69] Stanislav G. Sedukhin and Marcin Paprzycki. Generalizing matrix multiplication for efficient computations on modern

computers. In PPAM (1), pages 225–234, 2011.
[70] Stanislav G. Sedukhin, Ahmed S. Zekri, and Toshiaki Myiazaki. Orbital algorithms and unified array processor for computing

2D separable transforms. Parallel Processing Workshops, International Conference on, 0:127–134, 2010.
[71] Edgar Solomonik, Bhinav Bhatele, and James Demmel. Improving communication performance in dense linear algebra via

topology aware collectives. In Proceedings of the ACM/IEEE Supercomputing Conference. ACM, November 2011.
[72] Fengguang Song, Shirley Moore, and Jack Dongarra. Experiments with Strassen’s algorithm: from sequential to parallel. In

International Conference on Parallel and Distributed Computing and Systems (PDCS06). ACTA Press, 2006.
[73] V. Strassen. Gaussian Elimination is Not Optimal. Numerische Mathematik, 14(3):354–356, 1969.
[74] Akihito Takahashi and Stanislav Sedukhin. Parallel blocked algorithm for solving the algebraic path problem on a matrix

processor. In HPCC, pages 786–795, 2005.
[75] Robert van de Geijn and Jerrell Watts. SUMMA: scalable universal matrix multiplication algorithm. Technical Report

TR-95-13, The University of Texas, apr 1995.
[76] R. Clinton Whaley, Antoine Petitet, and Jack Dongarra. Automated empirical optimizations of software and the ATLAS

project. Parallel Computing, 27(1-2):3–35, 2001.
[77] Wikipedia. Flops. http://en.wikipedia.org/wiki/FLOPS.
[78] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick, and James Demmel. Optimization of sparse

matrix-vector multiplication on emerging multicore platforms. Parallel Comput., 35:178–194, March 2009.
[79] Syoudai Yokoyama. Porting matrix inversion and 2D DFT algorithms to Cell/B.E. Master’s thesis, The University of Aizu,

Japan, 2011.
[80] Field G. Van Zee and Robert A. van de Geijn. Blis: A modern alternative to the BLAS. Technical report, University of

Texas, 2012.

Edited by: Dana Petcu
Received: May 1, 2014
Accepted: Jun 24, 2014


