
Hierarchical management of extreme-scale
task-based applications

Francesc Lordan1[0000−0002−9845−8890],
Gabriel Puigdemunt1[0000−0002−5576−9912], Pere Vergés1,2[0000−0002−4109−1071],
Javier Conejero1[0000−0001−6401−6229], Jorge Ejarque1[0000−0003−4725−5097], and

Rosa M. Badia1[0000−0003−2941−5499]

1 Barcelona Supercomputing Center, Barcelona, Spain
{francesc.lordan, gabriel.puigdemunt, pere.verges, javier.conejero,

jorge.ejarque, rosa.m.badia}@bsc.es
2 University of California Irvine

pvergesb@uci.edu

Abstract. The scale and heterogeneity of exascale systems increment
the complexity of programming applications exploiting them. Task-based
approaches with support for nested tasks are a good-fitting model for
them because of the flexibility lying in the task concept. Resembling
the hierarchical organization of the hardware, this paper proposes estab-
lishing a hierarchy in the application workflow for mapping coarse-grain
tasks to the broader hardware components and finer-grain tasks to the
lowest levels of the resource hierarchy to benefit from lower-latency and
higher-bandwidth communications and exploiting locality.
Building on a proposed mechanism to encapsulate within the task the
management of its finer-grain parallelism, the paper presents a hierarchi-
cal peer-to-peer engine orchestrating the execution of workflow hierar-
chies with fully-decentralized management. The tests conducted on the
MareNostrum 4 supercomputer using a prototype implementation prove
the validity of the proposal supporting the execution of up to 707,653
tasks using 2,400 cores and achieving speedups of up to 106 times faster
than executions of a single workflow and centralized management.

Keywords: distributed systems, exascale, task-based, programming model,
workflow, hierarchy, runtime system, peer-to-peer, decentralized manage-
ment

1 Introduction

Systems targeting exascale computing are becoming more and more powerful by
interconnecting a growing number of nodes equipping processors and accelera-
tors with an increasing number of physical cores and novel memory hierarchies.
The extreme scale and the heterogeneity of these systems increment the overall
complexity of programming applications while exploiting them efficiently. On
the one hand, developers have to identify enough parallelism inherent in the
application to employ all the compute devices; on the other hand, they have to



2 F. Lordan et al.

face the heterogeneity of the system and deal with the specifics of each device
(i.e. architectures with a different number of physical cores, memory sizes and
hierarchies, network latency and bandwidth, and different programming models
to interact with the device). This results in system-tailored applications that can
not be ported to other systems without a significant performance loss.

Programming models overcome this development difficulty by providing an
infrastructure- and parallelism-agnostic mechanism to describe the logic of an
application. Then, at execution time, a runtime engine automatically handles the
inherent parallelism to exploit the host infrastructure. Task-based programming
models are a popular approach because of their high development productivity
and their flexibility to adapt to the infrastructure. They build on the concept
of task: an asynchronous operation processing a collection of input values to
generate a set of output values. Tasks can take values generated by other tasks
as input; hence, establishing data-dependency relationships among them. These
dependencies define the workflow of the application and determine its inherent
task-level parallelism; runtime engines orchestrate the parallel execution of all
the tasks of an application guaranteeing the fulfilment of these dependencies.

Tasks encapsulate logic operations; however, the actual implementation car-
rying them out can change depending on the available hardware or the current
workload of the system. Thus, the runtime engine can select an implementation
leveraging a specific accelerator, running a multi-threaded implementation on
multi-core processors, or a distributed version using several nodes. Runtime en-
gines usually centralize the parallelism and resource management in one single
node of the infrastructure (the orchestrator); on extreme-scale computers, the
large number of tasks and nodes converts this management into a bottleneck.

Leveraging this task implementation versatility, applications can organize
their parallelism hierarchically embedding finer-grain tasks within intermediate
tasks to distribute the parallelism management overhead. Hence, the orchestra-
tor node handles only the coarsest-grain parallelism and passes on the burden of
managing the finer-grain parallelism along with the execution of the task. The
node running a task decides whether to execute the tasks composing the inner
workflow locally or offload them onto other nodes distributing the management
workload in a recursive manner. For that to succeed, each node of the infras-
tructure must be aware of the computing devices equipped on the node and
the amount of resources available on the other nodes of the infrastructure. This
deprecates the orchestrator node approach in favour of a peer-to-peer model.

This paper contributes with an analysis of what are the requirements to
bundle the fine-grain parallelism management within a task and the description
of the necessary mechanisms to implement in a runtime system to support it.
Besides, the article presents the results of evaluation tests using a prototype
implementation conducted on the MareNostrum 4 supercomputer running two
different applications (GridSearch and Random Forest) achieving higher degrees
of parallelism and reducing the management overhead drastically.

The article continues by casting a glance over related work that can be found
in the literature. Section 3 introduces the concepts of the proposed solution



Hierarchical management of extreme-scale task-based applications 3

and Section 4 describes how runtime systems must handle data, resources and
tasks to adopt it. To validate the proposal, Section 5 contains the results of
the evaluation of a prototype implementation in two use cases. The last section
concludes the article and identifies potential lines for future work.

2 Related Work

Previous work has addressed the support for hierarchical or nested parallel re-
gions, especially in shared memory systems such as multi-core architectures.
Most of the widely-adopted shared memory programming models – e.g., OmpSs [5],
Cilk [19] or OneAPI TBB [10] – support nested parallel regions or tasks, and the
OpenMP standard also supports nested tasks since version 4.5 [16]. The man-
agement of nested parallelism focuses on handling dependencies between differ-
ent nested parallel regions to allow their correct concurrent processing. Having
shared memory simplifies this management since data regions can be directly
identified by their memory addresses, and the different threads processing these
regions have shared access to the control data. The solution presented in this ar-
ticle targets distributed systems where application and control data are spread
across the infrastructure; thus, memory addresses no longer uniquely identify
data regions and control data is not shared among all the computing nodes or
devices making the parallelism management more complex.

In distributed systems, nested parallelism is typically achieved by combining
different programming models, one supporting the distributed system part and
another dealing with the execution within each shared memory system. This is
the case of the hybrid MPI + OpenMP model [18], StarSs [17] or the COMPSs
+ OmpSs combination [6]. Since the runtime systems supporting these models
do not share information, developers must master several models and manage
the coordination of different levels of parallelism. The proposal of this article
uses a single programming model to support parallelism at all granularity levels.

Current state-of-the-art workflow managers have done some efforts to enable
nested parallelism. Most of them allow the explicit sub-workflow definition (e.g.
Snakemake [15], NextFlow [4] and Galaxy [1]), or even allow the definition of
external workflows as modules (e.g. Snakemake), to enable the composition of
larger workflows. However, they rely on the dependency management of the un-
derlying queuing system (e.g., Slurm [21]) and submit each task as an individual
job with the required job dependencies. These systems are centralised and this
methodology leads to floods of jobs. Alternatively, Dask [3] allows launching
nested tasks within the same job by allowing the creation of clients that connect
to the main Dask scheduler to spawn a child task. Unfortunately, this approach
has the same essence as previous workflow managers since it also relies on a cen-
tralized scheduling system; besides, it is considered an experimental feature. The
methodology described in this work differentiates from these solutions by follow-
ing a decentralized approach to deal with this management. This feature has also
been explored by dataflow managers (e.g., Swift/T [20] and TTG [8]); however,
their management approach cannot be applied onto workflow managers.



4 F. Lordan et al.

3 Workflow Management Encapsulation

Task-based approaches with support for nested tasks are a good-fitting model
for extreme-scale systems because of the flexibility of the task concept. Tasks
are asynchronous operations with a defined set of input and output data – in the
context of this article, the term data refers to individual files and objects. The
definition of a task establishes an operation to carry out but specifies nothing
about its implementation. Thus, a task can run sequentially or create new tasks
to open additional parallelism (nested task detection). This establishes relation-
ships among tasks. All the tasks created by the same task are child or nested
tasks of the creating task; inversely, the creating task is the parent of all the
tasks created by it. Tasks sharing the same parent are siblings.

It is during a task execution that nested tasks are discovered; thus, tasks
never start executing earlier than their parent. When it comes to finishing a
task, a parent task must wait until all of its nested tasks have been completed
before it can finish its execution. This is because the output of the parent task
relies on the outputs of its child tasks.

Task-based programming models build on data access atomicity to convert
an application into a workflow by establishing dependency relations among tasks
where the outputs of a task (task predecessor or value producer) are the inputs
of another (task successor or value consumer). By detecting nested tasks, each
task has the potential to become a new workflow, and thus, applications evolve
from being a single workflow into a hierarchy of workflows. The workflow of a
task can define data dependencies among its nested tasks based on the access to
its input data or newly created intermediate data. However, beyond the scope
of the task, only those values belonging to the output on the task definition are
significant; hence, all intermediate data is negligible and can be removed.

As with the implementation, the task definition does not specify which re-
sources should host its execution. Any node with access to such values can host
the execution of the task; thus, by transferring the necessary input data, the
workload of a task-based application can be distributed across large systems
and run the tasks in parallel.

Ensuring that data has the expected value when passed in as a task input
is crucial to guarantee that applications produce their expected results while
making the most of the underlying infrastructure. To identify more parallelism
between tasks, it is possible to maintain a duplicate of every value the data holds
throughout the execution. These replicas allow any task to read the expected
value even if another task has already updated it; thus, false dependencies are
no longer considered. The counterpoint of this method is the additional storage.
To orchestrate the parallel execution of tasks, it is crucial to keep track of the
values held by a data, the location of their duplicate copies, and the pending-
execution tasks reading each value. This tracking enables not only identifying
dependency-free tasks but also detecting obsolete values – i.e, old values with
no tasks reading them – that can be removed to free storage capacity.

Fig. 1a illustrates the different values held by a data (data X ) that enters
as an input value of a task and is updated by three nested workflows. Data X



Hierarchical management of extreme-scale task-based applications 5

data X

v1

v2

v6

v7

v3

v5

v4

(a) Global data versioning

data X

X
v1

X
v2

X
v3

X
v4

Y
v1

Y
v2

Y
v3

Y
v4

Z
v1

Z
v2

Z
v3

data Y data Z

(b) Encapsulated data versioning

Fig. 1: Example of data versioning where all tasks belonging to a three-level
hierarchy of nested workflows update one data.

enters the coarsest-grain task (green oval) as an input value (v1 ) and is updated
by the three-task workflow nested in the task (tasks within this workflow are
blue). The first blue task reads and updates the input value by generating a new
version (v2 ). This new version is passed in as the input of the second blue task,
and, during the execution, another three-task nested workflow is detected (tasks
within this workflow are depicted in orange). The first task of this finer-grain
workflow updates the data (v3 ), and the second task gets it as input. Again,
at run time, this second task becomes a workflow with two inner tasks (white)
modifying the data and, thus, generating two subsequent versions (v4 and v5 ).
Upon completing the second white task, the whole workflow in the second orange
task is completed; v5 becomes the output value of the second orange task, and
v4 becomes an irrelevant intermediate value. The third orange task takes the
v5 value and updates the data generating v6. At this point, the whole workflow
within the second blue task is completed; v6 becomes the output value of the
data for the blue task, and v3 and v5 become deprecated because they are
intermediate values within the second blue task. Finally, the third blue task can
be executed taking v6 as input value to generate v7, which becomes the output
value of the green task deprecating v2 and v6.

Determining an incremental version number at task discovery time, as done
in the previous example, is unfeasible. On the one hand, the execution of the
different tasks is distributed across the whole system; maintaining this version
record to ensure the proper handling of the dependencies requires a centralized
entity or implementing consensus. Both solutions entail a significant communi-
cation overhead. On the other hand, versions generated by a nested workflow
are detected at task execution time and not while the coarser-grain workflow is
detected. Thus, data versions generated by tasks in a parent workflow would be
detected earlier than the versions from its nested tasks. Hence, the data value
discovery would not match the incremental order of the versions.

To workaround these difficulties and overcome both problems, this work pro-
poses registering the intermediate values as versions from a different data and



6 F. Lordan et al.

linking the corresponding versions to share the same copy of the value as depicted
in Fig. 1b. When a new task generates a workflow, all its input data values are
registered as the first version of a new data; intermediate values are considered
versions of that data. Thus, in the same case of the previous example, when the
green task starts executing, it only detects four versions of data X (the input
version: v1, v2 and v3 as intermediate values, and the final version: v4 ). When
the second blue task starts executing, the system registers the first version (v1 )
of a new data data Y, and links v1 of data Y with v2 of data X. The versions
generated by the orange tasks are registered only as versions of data Y. At the
end of the execution of all orange tasks, v4 of data Y is linked to v3 of data X.
Since data Y will no longer be available, all its versions are declared deprecated.
Thus, all the copies of the intermediate versions of data Y (v2 and v3 ) can be
removed. Still, the input and output versions (v1 and v4 ) are kept because they
are accessible through the versions of data X.

Following this proposal, the nested workflow management is encapsulated
within the task creating it. Once a node starts running a task, it can spawn the
nested tasks and orchestrate their execution independently from the execution of
other workflows. As with the computational workload, the management overhead
gets distributed to reduce the management bottleneck of centralized approaches.

4 Runtime System Architecture

The hardware of Exascale computers is already organized hierarchically. Sys-
tems are composed of thousands of nodes physically in racks interconnected by
switches; internally, each node can have several processors with multiple cores
and accelerators attached. This hierarchy can be put to use and define the dif-
ferent domain levels described to distribute the resource management. Thus,
coarser-grained tasks can be mapped to the broader domains of the infrastruc-
ture, and finer-grain tasks, where the bulk of parallelism is, achieve higher per-
formance by exploiting data locality and lower-latency and higher-bandwidth
communications offered within the lowest levels of the resource hierarchy.

To fully achieve their potential performance, task computations require ex-
clusive access to the resources running their logic to reduce the issues of con-
current execution on shared resources such as increasing the number of cache
misses or memory swapping. Runtime systems monitor the resource occupation
to orchestrate the task executions and grant this exclusivity. An orchestrator
node handling a large number of task executions on many workers becomes a
management bottleneck in extreme-scale infrastructures. Given the management
independence provided by workflow hierarchies, peer-to-peer architectures arise
as a promising architecture to efficiently support the detection of nested tasks
and distribute the management overhead. In this approach, each node hosts an
autonomous process (Agent) that establishes a collaborative data space with
other nodes and handles the execution of tasks.

Each Agent controls the computing devices equipped on the node to allocate
task executions and monitors the resources from neighbouring nodes with the



Hierarchical management of extreme-scale task-based applications 7

node 11

16
CPUs

node 12

16
CPUs

node 2

16
CPUs

node 0

16
CPUs

node 21

16
CPUs

node 22

16
CPUs

node 1

16
CPUs

node 211

16
CPUs

node 212

16
CPUs

node 221

16
CPUs

node 222

16
CPUs

node 223

16
CPUs

Subdomain 1

Subdomain 2

Subdomain 21 Subdomain 22

144 48 128 64

1616
160 160

16
160 160

16

48144 64 128

160 160160
16 16 16

Fig. 2: 12-node cluster with a total of 176 cores divided into a hierarchy of do-
mains. From the point of view of node0, the infrastructure is composed of two
domains accessible via node1 (subdomain1) and node2 (subdomain2).

purpose of offloading tasks onto them. Despite not being a limit on the number
of remote nodes, the more nodes being monitored, the larger the management
overhead and the complexity of scheduling task executions. To distribute the
management, the resources can be grouped into disjoint domains, each managed
by one of the nodes within it. Instead of monitoring the state of many nodes,
The orchestrator node only distributes the workload among a few resource-rich
domains interacting with the manager node within each. In the example depicted
in Fig. 2, a cluster is divided into two domains. The orchestrator node (node0)
considers only 3 options to host the execution: its 16 local CPU cores, 48 CPU
cores available in Domain1 through node1, or 128 CPU cores in Domain2 through
node2. The resources within a domain can still be too many to be handled by
a single node. To that end, domains can be subsequently divided into several
subdomains establishing a resource hierarchy as depicted in Domain2 of Fig. 2
where node2 considers 3 options: hosting it in its local 16 CPU cores, delegating
it to one of its subdomains (Subdomain21 with 48 cores or Subdomain22 with 64
cores) pushing it down the hierarchy, or offloading out from the domain ascending
through the hierarchy (64 cores available through node0).

Agents comprise five main components as illustrated in Fig. 3. The Agent
API offers users and other Agents an interaction interface to submit task ex-
ecution requests and notify task completions. The Data Manager establishes a
distributed key-value store used by Agents to register data values and share their
values. The Task Scheduler monitors the data dependencies of the workflows gen-
erated by the tasks running on the node and decides the best moment to start a
task execution or offload it onto a domain. The Local Execution and Offloading
Engine respectively handle the execution of tasks on the local devices and their
offloading onto remote Agents. An internal API allows tasks implemented with
task-based programming models to notify the detection of nested workflows and
request the execution of their child tasks.



8 F. Lordan et al.

Data
Manager

Task
Scheduler

Local
Execution

Task-based
PM

Offload.
Engine

Agent API

Fig. 3: Components of the Agent deployed in node1 from Fig. 2.

Tasks arrive to the Agent through an API indicating the operation to perform
and its parameters (input data values and the expected results). Upon reception,
the Agent registers each parameter as a new piece of data and binds the first
version of all the input values with the corresponding version, as described in
Section 3. Then, the task becomes part of a pool of pending workload; the Agent
schedules the execution of these pending tasks considering the availability of the
local or remote resources, aiming for an optimal distribution while providing
resource exclusivity to the tasks. Arrived the time if the Agent decides to offload
the task onto a remote node, it reserves the resources required by the task in
the corresponding subdomain, submits via the API of the main Agent of the
subdomain, and waits asynchronously for its completion to release the resources.

Otherwise, if the Agent decides to host the execution locally, it allocates the
corresponding local resources, fetches all the missing input values and launches
its execution. If implemented following a task-based programming model, the
task becomes a workflow and spawns nested tasks with dependencies among
them, creating new pieces of data and new versions of the already existing pa-
rameters. As explained in the previous section, this data management, as well
as the parallelism among nested tasks, can be handled within the node with
no need to interact with other peers. Hence, the programming model notifies
the newly detected nested tasks and their dependencies to the local Agent. It
manages their execution with the parent task running them locally or offloading
them onto other nodes.

Workflow executions reach synchronization points where they wait for some
of their nested tasks to end producing data values. Every task that becomes a
workflow reaches at least one synchronization point at its end to wait for the
completion of all its nested tasks. During these waits, the resources allocated
for the parent task remain idle. For better exploitation of the infrastructure,
the task can release these resources so they can host another task execution; for
instance, one of its nested tasks. When the synchronization condition is met and
the nested task being waited for ends its execution, the execution of the parent
task can continue. At this point, the runtime system has to ensure that there are



Hierarchical management of extreme-scale task-based applications 9

enough idle resources to host the parent task execution exclusively. If there are,
the task resumes its execution; otherwise, the runtime will hold the execution
until other tasks release their resources because they complete their execution
or they reach a synchronization point.

Regardless of whether a task has become a workflow or not, upon finishing its
execution (including its nested tasks), the Agent collects all the output values,
binds them to the corresponding version of its parent task data (passed in as
parameters) and removes all the references to the pieces of data created for the
task. At this point, the runtime system considers the task completed, releasing
its resources and dependencies. If the task was detected by a parent task running
in the same node, the Agent releases the local resources allocated for its exe-
cution and any data dependency with its successors. Otherwise, if the task was
offloaded from another node, the Agent notifies the completion of the task to the
Agent from where it was submitted to release the resources of the corresponding
domain. If the notified node is the Agent where the task was detected, it also
releases the dependencies; otherwise, the notification is forwarded to the Agent
that sent it, repeating the process until it reaches the source Agent to release
the data dependencies and continue with the execution of the parent workflow.

5 Evaluation

To validate the proposed idea, several tests have been conducted using a proto-
type implementation building on Colony [14]: a framework to handle task exe-
cutions on distributed infrastructures organizing the resources as a hierarchical
peer-to-peer network. The task-based programming model selected for defining
the nested workflows is COMPSs [13], for which Colony provides native support.

All the experiments have been run on the MareNostrum 4 supercomputer:
a 3,456-node (48 servers of 72 nodes) supercomputer where each node has two
24-core Intel Xeon Platinum 8160 and 96 GB of main memory. A Full-fat tree
100Gb Intel Omni-Path network interconnects the nodes which also have access
to a 14PB shared disk. Each node hosts the execution of an Agent managing its
48 cores. All the Agents within the same server join together as a domain and
one becomes the interconnection node for the domain; in turn, one of these nodes
interconnects all the domains and receives the main task of the application.

The scheduler within each Agent is the default Colony scheduler. Upon the
arrival of a dependency-free task, it attempts to assign it to an idle resource
considering the locality of its input values. If there are no available resources,
the scheduler adds the task to a set of pending tasks. When a task completes,
the scheduler releases the used resources and the successors and tries to employ
any idle resources with one of the just dependency-freed tasks or one from the
pending set computing a locality score for all the combinations and iteratively
selecting the one with a higher value until no task can be assigned. To avoid
loops where a task is being submitted between two Agents back and forth, the
scheduler dismisses offloading the task onto the Agent detecting it or any of its
parents; offloading is always down the hierarchy.



10 F. Lordan et al.

5.1 GridSearch

The first test evaluates the performance of GridSearch [11] with cross-validation:
an algorithm that exhaustively looks for all the different combinations of hyper-
parameters for a particular estimator. With cross-validation, it trains and evalu-
ates several estimators for each combination (splits), and the final score obtained
for a combination is the average of the scoring of the corresponding splits. Grid-
Search is one of the algorithms offered within dislib [2], a Python library built
on top of COMPSs providing distributed mathematical and machine learning al-
gorithms. The conducted test finds the optimal solution among 25 combinations
of values for the Gamma (5 values from 0.1 to 0.5 ) and C (5 values from 0.1 to
0.5) hyper-parameters to train a Cascade-SVM classification model (CSVM) [7].

The implementation of GridSearch provided within dislib – Flat – delegates
the detection of the tasks to the implementation of the estimator and invokes
them sequentially expecting them to create all the finer-grain tasks at a time.
CSVM is an iterative algorithm that checks the convergence of the model at
the end of every iteration; hence, it stops the generation of tasks at the end
of each iteration. This affects the parallelism of GridSearch; it does not detect
tasks from a CSVM until the previous one converges. The Nested version of the
GridSearch algorithm encapsulates the fitting and evaluation of each estimator
within a coarse-grain task that generates the corresponding finer-grain tasks
achieving higher degrees of parallelism. Albeit both versions reach the same task
granularity, the Nested version overcomes the task generation blockage enabling
parallel convergence checks by encapsulating them within nested workflows.

The first test studies the behaviour when training a small dataset (the IRIS
dataset) using 4 Marenostrum nodes. Fig. 4 depicts an execution trace with the
192 cores when executing the Flat (Fig. 4a) and Nested (Fig. 4b) implementa-
tions. Given the small size of the dataset, the corresponding CSVM implemen-
tation does not detect many tasks to run in parallel. In the Flat version case,
where CSVMs run sequentially, the infrastructure is under-utilized and takes
116.27 seconds to run. Enabling nested task detection allows running several
CSVMs simultaneously; this increases the number of finer-grain tasks detected
at a time, and the infrastructure hosts more executions in parallel. The overall
execution time is reduced to 9.33 seconds (12× speedup).

When CSVM processes larger datasets (e.g., the Atrial Fibrillation (AT) com-
posed of 7,500 samples with 100 features characterizing an ECG), it can detect
enough parallelism to fully use the 4 nodes simultaneously as shown in Fig. 5a.
However, convergence checks reduce the parallelism in every iteration and a
large part of the infrastructure is under-used. By overlapping several CSVMs,
the Nested version employs these idle resources to compute tasks from other
CSVMs as depicted in Fig. 5b. For this experiment, the Nested version reduces
the time to find the optimal solution among 25 combinations from 27,887 sec-
onds to 5,687 (4.9x speedup). Aiming at verifying the scalability of the solution,
we run a GridSearch to find the optimal solution among 50 combinations: 250
CSVMs and 707,653 tasks. When processing the AT dataset, a CSVM generates
parallelism to employ up to 4 nodes. With the FLAT version, the estimated



Hierarchical management of extreme-scale task-based applications 11

(a) Flat: 25 combinations - 118 seconds (b) Nested: 25 combinations - 10 seconds

Fig. 4: Execution trace of an IRIS model training with 4 nodes of 48 cores

(a) Flat: 2 combinations - 2,500 seconds (b) Nested: 25 combinations - 5,700 seconds

Fig. 5: Execution trace of an AT model training with 4 nodes of 48 cores

shortest execution time is 55,774 seconds. The Nested version expands this par-
allelism enabling the usage of more nodes. With 16 nodes, it lasts 4,315 seconds
(13x). With 50, the execution already shows some workload imbalance due to
the variability between CSVMs; it takes 1,824 seconds (30x).

5.2 Random Forest

The second experiment consists in training a classification model using the Ran-
domForest algorithm [9], which constructs a set of individual decision-trees –
estimators –, each classifying a given input into classes based on decisions taken
in random order. The model aggregates the classification of all the estimators;
thus, its accuracy depends on the number of estimators composing it. The train-
ing of an estimator has two tasks: the first one selects 30,000 random samples
from the training set, and the second one builds the decision tree. The training
of an estimator is independent of other estimators. The test uses two versions of
the algorithm: one – Flat – where the main task directly generates all the tasks
to train the estimators and the other – Nested – where the main task generates
intermediate tasks grouping the training of several estimators. In the conducted



12 F. Lordan et al.

#Agents

S
pe

ed
-u

p 
(x

)

0

10

20

30

40

5 10 15 20 25 30

(a) Speedup for Flat version

#Agents

S
pe

ed
-u

p 
(x

)

0

50

100

150

5 10 15 20 25 30

(b) Speedup for Nested version

#Agents

S
pe

ed
-u

p 
(x

)

0

25

50

75

100

125

5 10 15 20 25 30

(c) Speedup Nested vs Flat

Fig. 6: Strong scaling results for a 1-, 1024-, 3072-, 6144-, 12288-estimator ran-
dom forest model training

tests, each batch trains at least 48 estimators, and if the number of estimators
allows it, the number of intermediate tasks matches the number of Agents.

Fig. 6 depicts the speedup obtained when running a strong scaling test with
each of the versions when training 1, 1024, 3072, 6144 and 12288 estimators.
The results for the flat version (Fig. 6a) show the scalability limitation due to
the workload imbalance when a parallelism hierarchy is not established (seen in
the 1024-estimator case with not enough parallelism to exploit the 1536 cores
in 32 agents). In addition, this alternative suffers from the delay produced by
generating the tasks sequentially and from a scheduling overhead that grows
exponentially with the number of pending tasks.

Nested tasks diminish the impact of the latter two. Several coarse-grained
tasks can run at a time and generate finer-grain tasks in parallel; the faster tasks
are detected, the faster the runtime system can submit their execution and better
exploit the resources. Besides, the runtime system can distribute the scheduling
of these tasks; hence, its overhead is drastically reduced as the infrastructure
grows. As shown in Fig. 6b, mitigating these two issues allows a 130 times faster
training of a 12,288-estimator model when using 32 times more resources.

Fig. 6c compares the execution times obtained with both algorithms when
training the same model using the same amount of resources. The larger the
model and the infrastructure are, the higher the benefit of establishing a par-
allelism hierarchy is. In the largest test case, training a 12,288-estimator model
using 32 nodes, the Nested algorithm achieves an execution time 106 times faster
than the Flat. The experiments using a single node, where tasks are detected



Hierarchical management of extreme-scale task-based applications 13

sequentially and the scheduler handles the same amount of tasks, do not reveal
any significant overhead due to the handling of the additional parent task.

6 Conclusion

This manuscript describes a mechanism to organize the parallelism of task-based
applications in a hierarchical manner and proposes a mechanism to encapsulate
the management of the nested workflow along with the task to enable the dis-
tribution of the management overhead along the infrastructure. Matching the
application parallelism, the article also proposes a hierarchical approach for or-
ganizing the resources of the infrastructure; thus, the scheduling problem reduces
its complexity by handling fewer tasks and resources. The article also describes
the architecture of a runtime system supporting it.

The paper validates the proposal with two tests on a prototype implementa-
tion running on the MareNostrum 4 supercomputer. The results reveal that, by
establishing a task hierarchy, applications can achieve a higher degree of paral-
lelism without undergoing an in-depth refactoring of the code. Encapsulating the
finer-grain parallelism management within tasks to distribute the corresponding
overhead is beneficial for the application performance; results achieve a speedup
of up to 106 times faster than executions with centralized workflow management.

The tests also reveal some shortcomings of the prototype. The biggest concern
is the limitation of the task scheduler to request task executions to higher layers
of the resource hierarchy. Developing peer-to-peer scheduling strategies based
on task-stealing, reactive offloading or game theory are future lines of research
to improve. Also, the described work considers that the output of the task is
available only at the end of its execution. However, a nested task can compute
an output value of the parent task before its completion. Currently, other tasks
depending on the value must wait for the parent task to end even if the value
is already available. Enabling fine-grain dependency management that releases
the dependency upon the completion of the nested task is also future work.

Acknowledgements and Data Availability

This work has been supported by the Spanish Government (PID2019-107255GB),
by MCIN/AEI /10.13039/501100011033 (CEX2021-001148-S), by the Departa-
ment de Recerca i Universitats de la Generalitat de Catalunya to the Research
Group MPiEDist (2021 SGR 00412), and by the European Commission through
the Horizon Europe Research and Innovation program under Grant Agreements
101070177 (ICOS project) and 101016577 (AI-Sprint project).

The data and code that support this study are openly available in figshare [12].

References

1. Afgan, E., et al.: The Galaxy platform for accessible, reproducible and collaborative
biomedical analyses: 2018 update. Nucleic Acids Res. 46(1), 537–544 (2018)



14 F. Lordan et al.

2. Álvarez Cid-Fuentes, J., et al.: dislib: Large Scale High Performance Machine
Learning in Python. In: Proceedings of the 15th International Conference on
eScience. pp. 96–105 (2019)

3. Dask Development Team: Dask: Library for dynamic task scheduling (2016),
https://dask.org

4. Di Tommaso, P., et al.: Nextflow enables reproducible computational workflows.
Nature biotechnology 35(4), 316–319 (2017)

5. Duran, A., et al.: Ompss: a proposal for programming heterogeneous multi-core
architectures. Parallel processing letters 21(02), 173–193 (2011)

6. Ejarque, J., et al.: A hierarchic task-based programming model for distributed het-
erogeneous computing. The International Journal of High Performance Computing
Applications 33(5), 987–997 (2019)

7. Graf, H., et al.: Parallel support vector machines: The cascade SVM. Advances in
neural information processing systems 17 (2004)

8. Herault, T., et al.: Composition of algorithmic building blocks in template task
graphs. In: 2022 IEEE/ACM Parallel Applications Workshop: Alternatives To
MPI+ X (PAW-ATM). pp. 26–38 (2022)

9. Ho, T.K.: Random decision forests. In: Proceedings of 3rd international conference
on document analysis and recognition. vol. 1, pp. 278–282 (1995)

10. Intel Corporation: OneAPI TBB Nested parallelism (2022), https://oneapi-
src.github.io/oneTBB/main/tbb userguide/Cancellation and Nested Parallelism.html

11. Lerman, P.: Fitting segmented regression models by grid search. Journal of the
Royal Statistical Society Series C: Applied Statistics 29(1), 77–84 (1980)

12. Lordan, F., et al.: Artifact and instructions to generate experimental results for
the Euro-Par 2023 proceedings paper: Hierarchical management of extreme-scale
task-based applications. https://doi.org/10.6084/m9.figshare.23552229

13. Lordan, F., et al.: ServiceSs: An Interoperable Programming Framework for the
Cloud. Journal of Grid Computing 12(1), 67–91 (2014)

14. Lordan, F., et al.: ”Colony: Parallel Functions as a Service on the Cloud-Edge
Continuum”. In: ”Euro-Par 2021: Parallel Processing”. pp. 269–284 (2021)

15. Mölder, F., et al.: Sustainable data analysis with Snakemake. F1000Research
10(33) (2021)

16. Perez, J.M., et al.: Improving the integration of task nesting and dependencies in
OpenMP. In: 2017 IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS). pp. 809–818 (2017)

17. Planas, J., et al.: Hierarchical task-based programming with StarSs. The Interna-
tional Journal of High Performance Computing Applications 23(3), 284–299 (2009)

18. Rabenseifner, R., et al.: Hybrid MPI/OpenMP parallel programming on clusters
of multi-core SMP nodes. In: 2009 17th Euromicro international conference on
parallel, distributed and network-based processing. pp. 427–436 (2009)

19. Vandierendonck, H., et al.: Parallel Programming of General-Purpose Programs
Using Task-Based Programming Models. In: 3rd USENIX Workshop on Hot Topics
in Parallelism (HotPar 11) (2011)

20. Wozniak, J.M., et al.: Swift/t: Large-scale application composition via distributed-
memory dataflow processing. In: 2013 13th IEEE/ACM International Symposium
on Cluster, Cloud, and Grid Computing. pp. 95–102 (2013)

21. Yoo, A.B., et al.: SLURM: Simple Linux Utility for Resource Management. In: Job
Scheduling Strategies for Parallel Processing. pp. 44–60 (2003)


