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Abstract 

Commercialization of printed photovoltaics requires knowledge of the optimal composition 

and microstructure of the single layers, and the ability to control these properties over large 

areas under industrial conditions. While microstructure optimization can be readily achieved 

by lab scale methods, the transfer from laboratory scale to a pilot production line (“lab to fab”) 

is a slow and cumbersome process: first, the difficulty of operating structure-sensitive methods 

in-line impedes proper microstructure characterization, and second, the processing-

functionality relationship must be redetermined for every material combination as the results 

obtained by typical lab-scale spin-coating cannot be directly transferred to other coating 

methods. Here, we show how we can optimize the performance of organic solar cells and at 

the same time assess process performance in a 2D combinatorial approach directly on an 

industrially relevant slot die coating line. This is enabled by a multi-nozzle slot die coating 

head allowing parameter variations along and across the web. This modification allows us to 

generate and analyze 3750 devices in a single coating run, varying the active layer 

donor:acceptor ratio and the thickness of the electron transport layer (ETL). We use Gaussian 

Process Regression (GPR) to exploit the whole dataset for precise determination of the optimal 

parameter combination. Performance-relevant features of the active layer morphology are 



   
 

   
 

inferred from UV-Vis absorption spectra. By mapping morphology in this way, small undesired 

gradients of process conditions (extrusion rates, annealing temperatures) are detected and their 

effect on device performance is quantified. The correlation between process parameters, 

morphology and performance obtained by GPR provides hints to the underlying physics, which 

are finally quantified by automated high-throughput drift-diffusion simulations. This leads to 

the conclusion that voltage losses which are observed for very thin ETL coatings are due to 

incomplete coverage of the electrode by the ETL, which cause enhanced surface 

recombination. 

 

  



   
 

   
 

Introduction 

Printed photovoltaics (PV) is on the brink of commercialization, with several companies 

already producing printed PV modules for different applications, ranging from large-area 

building-integrated PV to small-scale sensors.[1,2] Record efficiencies have increased steeply 

over the past years, especially for organic solar cells (OSCs) [3,4] and modules.[5] The ongoing 

synthesis of new materials, in combination with the improved understanding of the relationship 

between microstructure formation and voltage losses, shows great potential to further increase 

performance.[6,7] High throughput methods, combined with machine learning and statistical 

analysis, have been established to accelerate the screening of these materials [8-12].  

Coating techniques such as spin coating [13] and doctor blading, [14-16] as well as printing 

techniques, such as ink jet printing,[17] have been employed in this context. Simultaneous 

variation of two different parameters on a single substrate has been achieved by applying 

perpendicular gradients of annealing temperature and film thickness [16,18] and by thickness 

gradients of both absorber layers for tandem cells. [19] These techniques allow high throughput 

at low material consumption and are easy to automate but are limited to small device areas. 

Furthermore, the conclusions derived cannot be directly transferred to large-scale production 

methods: for instance, different drying conditions can lead to different morphologies, and there 

are stricter requirements on the environmental compatibility of the solvents that are used. There 

are only a few reports in which industrially compatible methods have been employed, such as 

the determination of the optimum active layer properties by generating 1D gradients of active 

layer thickness or donor:acceptor (D:A) ratio in roll-to-roll (R2R) coating of organic 

photovoltaic (OPV) devices.[19,20]  

In this work, we therefore present a novel high-throughput method for screening materials and 

optimizing coating processes which combines coating on R2R production equipment with the 

generation of 2D combinatorial patterns, meaning that we vary two process parameters 

simultaneously and thus create a large amount of data consisting of two-dimensional matrices 

of input and output parameters. For this purpose, we use our R2R coating line (Figure S2) for 

slot-die coating and laser patterning. Using the D:A  system P3HT:o-IDTBR as a 

benchmark,[22] we validate the potential of this method by varying the electron transport layer 

(ETL) thickness, in cross-web direction, and the D:A ratio of the bulk heterojunction, along 

web direction, thus obtaining 3750 individual devices in a single coating run. To put this 

number into context, gathering this much information by conventional, non-automated 

experiments with an average number of 20 substrates per day would take around half a year, 



   
 

   
 

with an inevitable variation of experimental conditions. In addition, conventional experiments 

require several devices for each parameter set to obtain a statistically relevant result, whereas 

in our combinatorial method, this is no longer required due to the clear trends that can be 

observed.  

Several publications report on the application of statistical methods and machine learning for 

the analysis of device performance and additional spectroscopic information. [18,21] In our 

work, we employ Gaussian process regression (GPR) for the statistical analysis of the huge 

amount of data obtained from the 2D experiment. GPR is a fitting procedure that allows 

interpolating between data points in multi-dimensional parameter space based on assumptions 

about the similarity between adjacent points. This results in the so-called objective function 

representing the interpolated values of, e.g., solar cell efficiency. Since the mathematical 

formalism is based on Gaussian distribution, it automatically provides uncertainties for the 

interpolated values which makes it suitable for choosing a new set of parameter values in 

optimization tasks. The GPR interpolation in our study results in a dramatic reduction of 

uncertainty for determining the optimal process parameters. In combination with 

spectroscopically derived performance-relevant morphology features, [23] we can assess 

process homogeneity. The level of detail extracted from optical spectra allows us to identify if 

individual process parameters are gradually changing during the experiment. Moreover, 

connections between morphology, processing parameters, and performance hint at the 

underlying device physics.  Finally, a novel method for automated, high throughput drift-

diffusion simulations is presented which provides deeper insight into the parameters affecting 

the efficiencies of the resulting devices.  

 

Results and discussion 

In order to demonstrate the potential of our 2D combinatorial approach, we have chosen 

organic solar cells (OSC) with the architecture PET/IMI/SnO2/P3HT:o-

IDTBR/PEDOT:PSS/AgNW, where PET stands for poly(ethyleneterephthalate), IMI for the 

transparent indium tin oxide/silver/indium tinoxide electrode, SnO2 for tin oxide, P3HT:o-

IDTBR for poly-(3-hexylthiophene-2,5-diyl): 5, 5'- [(4, 9- dihydro- 4, 4, 9, 9- tetraoctyl- s- 

indaceno[1, 2- b:5, 6- b'] dithiophene- 2, 7- diyl) bis(2, 1, 3- benzothiadiazole- 7, 4- 

diylmethylidyne) ] bis[3- ethyl- 2- thioxo-4-Thiazolidinone, PEDOT:PSS for poly-(2,3-

dihydrothieno-1,4-dioxin)-poly-(styrenesulfonate), and AgNW for the silver nanowire 



   
 

   
 

electrode. We have further chosen the thickness of the electron transport layer (ETL) and the 

donor:acceptor (D:A) ratio in the absorber layers as the two parameters to vary because of their 

critical influence on the properties of the resulting OSC. Data from solar cells fabricated on 

single substrates by manual blade coating is shown in the SI in Figure S4 – S6.  

To optimize both parameters in a single coating run, a 15 m PET/IMI roll was roll-to-roll laser 

structured with a pattern and markers designed for fast and reliable measurement of the 

resulting solar cells (see Figure S3). The thickness of the ETL was varied perpendicular to the 

coating direction and the D:A ratio was varied along the coating direction. Figure 1a shows a 

schematic drawing of the experimental setup. For ETL thickness variation, five stripes of SnO2 

suspension of different concentrations were coated in parallel on coating station 1 (SD1) with 

a specially designed slot-die, with which up to thirteen separate reservoirs can be fed by 

separate channels (Figure S2). Based on our previous experience with the suitable thickness 

values of SnO2, the concentrations of the suspensions were chosen so that the nominal dry film 

thickness varies on a logarithmic scale from 1.4 nm to 110 nm (1.4nm, 4.1nm, 12.2nm, 36.6nm, 

110nm). Photographs of the coating can be found in Figure 1b and Figure 1 c.  

P3HT and o-IDTBR inks were prepared individually and filled into four syringes (two syringes 

for each material) at coating station 2 (SD2). Here, we used a slot die with three inlets and one 

continuous reservoir (see Figure S2). The two inlets on the outer sides of the die were used for 

the semiconductor ink, whereas the middle inlet was used for degassing to eliminate air 

bubbles. This setup provides an extensive mixing of the two components inside the reservoir, 

as opposed to mixing only in the meniscus. The D:A variation was started with coating only 

the ink containing the o-IDTBR. After the steady-state of o-IDTBR coating had been obtained, 

the supply of o-IDTBR ink was stopped by turning off the corresponding syringe pump and 

the supply of P3HT ink was started by switching on the other syringe pump. At that point in 

time, the reservoir and the channels in the die are still filled with o-IDTBR ink. This ink is 

mixed with the P3HT ink, resulting in a gradual increase of the P3HT content and thus a change 

of the D:A ratio in the printed film, ranging from 0:1 at the start of the experiment to 1:0 at the 

end of the experiment. The fact that the observed change in D:A ratio is gradual indicates 

turbulent mixing, since a plug flow would result in an abrupt change from 100 % o-IDTBR to 

100 % P3HT.  



   
 

   
 

 

Figure 1: (a) Schematic drawing of the high throughput experiment. SnO2 dispersions with 

five different concentrations were coated with a multi nozzle slot die onto a laser-patterned IMI 

substrate in five parallel stripes at Slot Die Coating station 1 (SD1) to provide ETLs of different 

thicknesses. Subsequently, the bulk heterojunction layer was coated at Slot Die station 2 (SD2), 

varying the donor:acceptor ratio along the printing direction from D:A = 0:1 to 1:0 . The coating 

of PEDOT:PSS and AgNW as well as the final laser patterning step are not included in this 

schematic. (b) Slot-die coating of ETL thickness variations, where the numbers 1-5 label the 

different variations of the ETL thicknesses (1=1.4 nm, 2=4.1 nm, 3=12.2 nm, 4=36.6 nm, 5 

=110 nm calculated dry film thickness). (c) Printed active layer on top of SnO2 stripes 

(vertical), photograph taken inline (horizontal stripe belongs to a structure behind the 

substrate). 

 

The D:A ratio was determined at every position of the web by recording absorbance spectra at 

intervals of 4 mm during the coating run, on each of the 5 stripes of the SnO2 variation, thus 

providing the spatial development of the mass fractions of donor and acceptor (Figure 2). 

Figure 2 also shows the photographs of the active layers at three exemplary positions, 

corresponding to the P3HT:o-IDTBR ratios of 0:1, 1:1 and 1:0, along with the corresponding 

absorbance spectra. 



   
 

   
 

With these data, we can assign a D:A ratio to the IV measurements of each individual cell. 

Further data about the spectral data processing and analysis can be found in the SI (Eq. S1, Eq. 

S2 and Figure S1). In the remainder of the manuscript, the D:A ratio will be given in terms of 

the acceptor weight fraction wA since the latter varies between values of 0 and 1 and is therefore 

more convenient for statistical analysis.  

 

 

Figure 2: Inline photographs (top row) of the active layer with D:A ratios of 0:1 (a), 1:1 (b), 

and 1:0 ratio (c). d) Corresponding absorbance spectra for the different D:A ratios. e) Mass 

fraction of donor (wD) and acceptor (wA) during the printing process as calculated from the 

absorbance spectra, plotted against the position on the substrate. 



   
 

   
 

 

Figure 3: Electrical key parameters (PCE – photoelectrical conversion efficiency, VOC – open 

circuit voltage, JSC – short circuit current, FF – fill factor) of the high throughput experiment, 

with different ETL thicknesses (1.4, 4.1, 12.1, 36.6, 110 nm) displayed in different colors and 

symbols. The x-axes show the mass fraction wA of the acceptor. The dashed lines are guides to 

the eye to the corresponding donor:acceptor ratios. 

After completing the solar cells by coating HTL and AgNW electrodes, the web is cut into 

sheets of 18 cm in length, which are divided into 50 solar cells by laser patterning of the top 

electrode. The resulting 3750 cells are subsequently characterized under a sun simulator with 

respect to their current density-voltage (JV) characteristics, using fully automated equipment 

consisting of measurement board, source measurement unit and multiplexer (for details see 

Experimental Part).  

Figure 3 shows the electrical key parameters of the two-dimensional parameter variation, with 

wA ranging from 0 to 1 and the SnO2 layer thickness ranging from dETL = 1.4 nm to 110 nm. 

For this evaluation, it was assumed that the variation in wA within one sheet (18 cm in coating 

direction) is negligible and so every data point is the average of 10 measured cells, which are 

located on the same sheet.  
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It is immediately obvious that intermediate acceptor weight fractions wA and SnO2 thicknesses 

dETL result in the best performance, mostly due to a maximum in short circuit current (Jsc). The 

datapoint with the highest efficiency is obtained for wA = 0.67, or a D:A ratio of 1:2, and a 

SnO2 layer thickness of 12.1 nm. However, the efficiency measurement of a single device is 

subject to statistical uncertainty (see error bars in Figure 3). In fact, considering the 95% 

confidence interval given by the double of the error bars, the optimal D:A ratio could be 

anywhere between 0.45 and 0.82, if the single data points were used to identify the optimum. 

Moreover, the sampling density along the cross-web direction is scarce (only 5 different SnO2 

thicknesses), so the optimal thickness might fall in between the experimentally realized values.  

 

 

Figure 4: Gaussian Process Regression (GPR) to access device photophysics. a) result plot 

showing predicted against experimental PCE. Training and test datasets given as blue and 

orange symbols, respectively, with the corresponding root mean square errors (RMSE) 

indicated as inset, where also the R2 score for a 5-fold cross-validation is given.  b) and c): 

one-dimensional intersections through the approximate objective function PCEGPR =

f(𝒘𝑨, log(𝒅𝑬𝑻𝑳)) (blue solid line), light blue and dark blue areas: 95% confidence intervals for 

the uncertainty of a single prediction and uncertainty of the mean, respectively. d-f): 

approximate objective function TGPR = f(𝒘𝑨, log(𝒅𝑬𝑻𝑳)) (coloured hypersurface), where T 

={VOC, JSC, FF, PCE}, respectively.  



   
 

   
 

The large number of available data points suggests a regression analysis to reduce the 

uncertainty and to predict the optimal parameter combination by exploiting the information 

from the whole dataset, rather than just considering single data points.  

To this end, we use Gaussian Process Regression (GPR), a probabilistic method for fitting a 

general, non-linear objective functions PCE (VOC, JSC, FF) = f(wA , dETL ) to the dataset. The 

quality of the fit is assessed using a so-called result plot (Figure 4a), in which the predicted 

PCE values are displayed against the experimental ones. To avoid overfitting, we exclude 25% 

of the data from the training dataset (blue symbols) and use them to test the objective function 

on unseen experimental points (“test dataset”, orange symbols); Figure 4a shows that test and 

training data sets both show the same root mean square error (RMSE) of 4*10-3, evidencing 

that there is no overfitting. We estimate the uncertainty of the surrogate function by measuring 

its change upon randomly omitting 25% of the data (so-called bootstrap technique). The 

uncertainty of the surrogate function is found to be much smaller than the uncertainty of a 

single observation, as obvious from comparing dark and light blue areas, respectively, in Figure 

4b and c. Especially, Figure 4c shows that the optimal SnO2 thickness should be between the 

experimentally realized values of 12.1 and 36.6 nm. Using this information, we infer the 

optimal parameter combination as wA = 0.59 ± 0.04, corresponding to a D:A ratio of 1:1.44, 

and dETL=17 ± 4 nm (see ESI, Part 5). Thus, the uncertainty along the wA direction is much 

smaller than the one achievable considering individual measurements. Along the dETL 

direction, the spacing of the available experimental data points is large (only 5 different values 

available), so assumptions about the shape of the surrogate function in between these data 

points must be made. In void of a physical model, we adjusted the shape of the surrogate 

function by maximizing the log-likelihood, which is the generally accepted way of optimizing 

an unknown function, and which typically leads to the simplest possible functional form. Under 

this assumption, the uncertainty along dETL is smaller than the spacing of the experimental data 

points. Overall, this evaluation shows the power of GPR in exploiting data statistics from high-

throughput experiments to reduce uncertainty. 

Another important aspect of probabilistically derived objective functions is the fact that they 

give insight into the underlying device photophysics. Figure 4d, e, f, and g show objective 

functions predicting VOC, JSC, FF, and PCE, respectively, as function of wA and dETL, displayed 

as two-dimensional hypersurfaces with the objective function value colour coded. It can be 

observed that the maxima and minima along one dimension depend on the value of the second 

dimension for all objective functions. It follows that they cannot be factorized into one-



   
 

   
 

dimensional functions, which is called non-orthogonal in mathematical terms. With respect to 

our study, this demonstrates that the 2D parameter variation is essential since the knowledge 

from the variation of a single parameter is not sufficient to describe the influence of the 

variation of two or more parameters. Naively, one would have assumed that a bulk property 

such as wA and an interface property such as dETL are independent in their influence on the 

device parameters. This clearly highlights the importance of a complete scan of the parameter 

space, while “Edisonian experiments” (varying one parameter at a time) implicitly assume 

orthogonality and would have missed this important, physics-related property. 

Figure 4d shows that the trend for VOC as function of wA depends on dETL: if the ETL is thin 

then acceptor-rich blends are needed to get high VOC. In contrast, if the ETL is thick then the 

highest VOC values are observed for donor-rich blends, which is generally the expected 

behaviour for a variation of the D:A ratio. [23] Similar trends are observed for FF, see Figure 

4f. Interestingly, JSC does not show such a trend, maximum JSC always occurring for similar 

wA values, independent of dETL.  

In the following, we will try to identify the underlying physical reasons for the observed 

interdependence of ETL thickness and D:A ratio with respect to their effect on VOC. A possible 

scenario for the need for acceptor-rich blends in the case of thin ETL could be incomplete 

coverage of the IMI substrate by the ETL, causing direct contact between active layer and IMI. 

This will cause hole transfer into IMI and subsequent recombination with the electrons from 

the acceptor, under two conditions: the donor phase is in direct contact with the IMI and the 

hole density in the donor phase is sufficiently high to cause recombination with majority 

electrons. The first condition would explain why donor-rich blends have reduced VOC 

(reduction of QFLS due to strong surface recombination), while the second condition would 

explain why JSC is not affected (no hole accumulation under extraction conditions). Another 

possible scenario would be a different active layer morphology for different dETL values, either 

caused directly by the SnO2 or indirectly correlated, e.g., by undesired gradients in cross-web 

direction y of active layer processing parameters.  

 To assess the role of the latter scenario, we have applied a method presented by us recently, 

[23] which is based on Spano’s model of weak H-aggregates [24,25], to analyse the active layer 

morphology and its effect on VOC by spectral decomposition of the UV-Vis spectra (for details, 

see Figure S4 and ref. [23]). In order to make sure that predictors are only included into the 

final regression if they contribute significant additional explanation of variance, we embedded 



   
 

   
 

a maximum relevance/minimum redundancy feature selection scheme into GPR (mRMR-

GPR). mRMR-GPR is a method to quantify the influence of parameters on a certain result 

(PCE, VOC, FF, JSC, …) by performing GPR for different parameter combinations and 

evaluating the accuracy of the prediction. For a detailed explanation, see ESI, Figure S8, and 

explanatory text. Figure 5a shows that on the basis of the bulk heterojunction morphologies 

extracted from the UV-Vis spectra, we can predict VOC with an RMSE of 67 mV. In ESI, Figure 

S8, we show that the total absorption atot, the donor exciton energy cD and its bandwidth bD are 

the most relevant predictors for VOC. However, if we include the ETL thickness in the feature 

list, the prediction of VOC is significantly improved, see Figure 5b. In this case, the RMSE is 

only 36 and 37 mV for the training and test datasets, respectively. This means that knowledge 

of the ETL thickness improves the prediction of VOC. This result shows that the observed 

dependence of VOC on dETL cannot be explained by active layer morphology alone, pointing to 

the interface as a decisive influence on VOC.  

Before we turn to the elucidation of the role of the interface on VOC, we would like to mention 

an additional benefit of the feature selection scheme employed here, which turns out to be a 

powerful tool for identifying processing instabilities. 

The feature selection scheme finds redundancy between atot, bD and dETL which means that 

there is a correlation between these morphological features and the SnO2 thickness. This is 

corroborated in Fig. S8 (see ESI), where we show that atot and the acceptor exciton energy cA 

have indeed the highest correlation of all morphology features with the y (cross-web) position. 

Since dETL is also varied along y, and dETL influences VOC, a correlation of morphology with 

VOC must result. The variation of atot and cA along y is probably due to an undesired small 

gradient of AL process conditions along the y (cross-web) direction. A variation of atot along y 

may be due to incomplete mixing of the two components inside the reservoir and before exiting 

the slot die. Furthermore, a variation of the donor exciton energy cD and bandwidth bD is known 

to depend on annealing, so that a small temperature gradient over the annealing mat may be 

one of the reasons causing this morphology gradient. As shown in Fig. S9c, the acceptor 

exciton energies are clearly increased at the edges of the web along the whole web, which 

speaks against a direct correlation with the ETL thickness, as this would entail a monotonous, 

rather than a symmetric trend along the cross-web direction. 

Elucidating the effect of the ETL thickness on VOC requires insight into its electronic properties 

as a function of its thickness. However, experimentally assessing coverage of substrates by 

ultrathin buried layers is very difficult, for which reason indirect methods are being deployed. 



   
 

   
 

These methods detect incomplete coverage by the consequences on the energy levels exerted 

by direct contact of the active layer with the electrode, which is expected to influence the 

effective work function of the ETL. In order to extract the interfacial band structure from 

current-voltage (IV) curves, we have used automated drift-diffusion fitting with a Bayesian 

optimization method that can, in principle, be used with any numerical model. In our case, we 

have used our homemade Bayesian optimization package BOAR [26] (Bayesian Optimization 

for Automated Research) and the open-source software SIMsalabim [27] to calculate IV curves 

by solving the one-dimensional drift-diffusion model assuming virtual semiconductors. The 

details of the method are described in parts 6 and 7 of the ESI.  

The ability to fit a large number of parameters makes BOAR apt to distinguish between the 

two scenarios mentioned above, because we can vary the parameter sets describing the active 

layer and the ETL simultaneously. In particular, we have used the bulk trap density, the 

bimolecular recombination coefficient, the electron and hole mobility and the charge 

generation rate Gehp as parameters describing the properties of the active layer, and the work 

function WL of the ETL as well as the surface trap density between ETL and active layer as 

parameters describing the ETL. The work function of the ETL was varied under the assumption 

that its effective value will lie in between the corresponding values of ITO and SnO2 in the 

case that the coverage of SnO2 on the IMI substrate is incomplete. Series and parallel resistance 

were also included in the fit parameters.  The thickness of the ETL (dETL) is set to the value 

which corresponds to the position of the respective cell on the sheet.  

The full set of resulting parameters and the fitted JV curves are shown in the ESI, Table S1 and 

Figure S13-14. The only one of the parameters referring to the active layer morphology that 

shows a clear trend with the D:A ratio is the charge generation rate Gehp (Figure 5e). This is 

expected because the amount of o-IDTBR controls the amount of absorptance in the red 

spectral region and thus should enhance Gehp. Furthermore, we did not find any parameter 

referring to active layer morphology that exhibits a clear dependence on dETL. In contrast, 

looking at the parameters describing the ETL, there is a clear dependence of the ETL work 

function WL on dETL, see Figure 5f. The thinnest ETL has a significantly higher work function 

than the thicker ones, and the difference in work function increases from 0.2 to 0.4 V when 

going to donor-rich blends. This finding fully confirms the scenario of incomplete coverage 

being the reason for the VOC losses in donor-rich blends and thin ETL.  

 



   
 

   
 

 

Figure 5: a) Result plot for a GPR to predict VOC only from morphological predictors extracted 

from UV-Vis absorption spectra; b) Same as a) but including the ETL thickness in the list of 

predictors. c) Objective function 𝑽𝑶𝑪 = 𝑓(𝐝𝐄𝐓𝐋, 𝐛𝐃)comprising only non-redundant predictors 

(hypersurface with VOC value given as color bar). Symbols: experimental data points. d) 

Knowledge graph constructed from the mRMR-GPR runs, showing direct causations (full 

black lines) and non-causal pathways (correlations, gray dashed lines). Numbers give the 

variance that can be explained by a certain parameter. e) Effective charge generation rate Gehp 

obtained from fitting the drift-diffusion simulations to the measured JV curves. f) Effective 

ETL work function WL obtained by the same method as in e). 

 

Conclusions 

We have used a 2D combinatorial approach with five different ETL thicknesses and 

donor:acceptor ratios ranging from 100% acceptor to 100% donor for the fabrication of organic 

solar cells in a single slot die coating experiment on industrial roll-to-roll equipment. The 

experiment resulted in a large data set of JV curves and UV-Vis absorption spectra for 3750 

devices, corresponding to 3750 different combinations of ETL thickness and D:A ratio. The 

exceptional quality of this data is evidenced by the Gaussian Process Regression (GPR) 

prediction of the optimum efficiency that is found for an ETL thickness of 17 ± 4 nm and a 

D:A ratio of 1:1.44 with an uncertainty one order of magnitude lower than the uncertainty of a 

single measurement. Statistical analysis of the large number of high-quality data reveals non-



   
 

   
 

orthogonal dependencies of VOC on ETL thickness and D:A ratio, observing higher VOC losses 

for high D:A ratios when ETLs are thin. We employ a physics-informed approach to elucidate 

the reasons for this behavior. By using spectral fitting of UV-Vis transmittance spectra 

combined with a maximum relevance/minimum redundancy feature selection scheme 

embedded into GPR and drift-diffusion fitting of IV curves, we identify incomplete coverage 

of the IMI electrode by the thinner of the ETLs and consequently enhanced interface 

recombination of photogenerated charge carriers as the main reason for VOC loss.  

In addition, redundancies between exciton properties and ETL thickness reveal unintended and 

otherwise unrecognized spatial gradients in processing conditions, probably caused by 

insufficient mixing of donor and acceptor inks as well as gradients of annealing temperature 

across the web.  

In essence, combinatorial device preparation on R2R production equipment does not only allow 

to reduce the effort for lab-scale optimization of solar cells to a minimum. Owing to the large 

amount of high-quality data produced by this method, statistical analysis provides hidden 

parameters, which reveal not only interdependencies of processing parameters in their effects 

on device key performance indicators but also otherwise undetected fluctuations in processing 

conditions. Complementing statistical analysis with physics-informed methods allows us to 

obtain an understanding of production failures on the device level. In combination with 

affordable in-line quality control methods such as UV/Vis spectroscopy, the obtained 

knowledge can be applied to production processes to detect deviations from processing 

specifications such as dewetting or thickness inhomogeneities in real-time, allowing to increase 

production yields substantially. 

Our approach can be straightforwardly transferred to other printed PV technologies such as 

perovskites. In this case, the experiment may involve the concomitant testing of different 

combinations of HTL and ETL (bi)layers, along with the variation of the composition of the 

perovskite layer, e.g., by varying the cation ratios in multi-cation perovskites, thus accelerating 

the commercialization of emerging PV technologies in general.  

 

 

Experimental details 

Materials 



   
 

   
 

The substrates utilized in this work are based on heat-stabilized polyethylene terephthalate 

(PET) (DuPont Teijin Films, Melinex® ST504) with transparent conductive coatings of ITO–

Ag–ITO (IMI) and were purchased from OPVIUS. The active materials poly(3-

hexylthiophene) (P3HT) and (5Z,5′Z)-5,5′-((7,7′-(4,4,9,9-tetraoctyl-4, 9-dihydro-s-

indaceno[1,2-b:5,6-b′]dithiophene-2,7- diyl)bis(benzo[c][1,2,5]thiadiazole-7,4-

diyl))bis(methanylylidene bis(3-ethyl-2-thioxothiazolidin-4-one))) (O-IDTBR) were 

purchased from OPVIUS and Nano-C, respectively. The solvents used to dissolve the active 

layer materials were o-xylene (o-XY, Sigma-Aldrich) and 1-methylnaphthalene (1-MN, 

Merck). The charge transport layers, tin oxide (SnO2, N31) and poly(3,4-

ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) (HTL Solar) were purchased 

from Avantama AG and Heraeus, respectively. Finally, water-based silver nanowire (AgNW) 

ink, with NWs of 25 nm diameter, was purchased from Zhejiang Kechuang Advanced 

Materials Technology Co., Ltd. 

Roll-to-Roll machine 

The roll–to-roll (R2R) pilot coating machine (Grafisk Maskinfabrik, Denmark) comprises three 

slot-die coating stations. Two of them are equipped with 2 m long hot air ovens for drying and 

annealing of the deposited films, the third station (used for semiconductor coating) has a 

heating mat installed for this purpose, directly after the coating station. Stainless steel slot-dies 

were used for coating of all layers. The slot dies are equipped with shims to guide the ink and 

define the coating width. Syringe pumps and PTFE pipes are employed for pumping the ink 

into the slot dies. The four syringes that are supplying the ink for the absorber layer, the tubes 

and the slot-die were heated to avoid precipitation of the semiconductors in the ink feeding 

systems. In order to record UV/Vis absorption spectra inline during the coating process over 

the whole width of the coating web, a fiber spectrometer (Ocean Optics Fame-S-UV-VIS-ES) 

with a movable fiber was installed after the heating mat. 

For separating the coated layer stacks into cells, laser ablation was employed, using an LS‐

6KP4P520 R2R laser patterning machine (LS Laser Systems GmbH). This machine comprises 

the ultrafast laser source Spirit 1040‐8‐SHG (Spectra Physics) emitting an SHG-generated 

center wavelength of 520 ± 3 nm with a pulse duration of greater than or equal to 350 

femtoseconds. Maximum power of up to 4 W can be achieved at a pulse repetition rate of 500 

kHz.  The beam was scanned over the sample using a galvanometer scanner with an f‐theta 

lens of focal length of 506 mm, achieving deflecting speeds up to 4 m/s. The R2R laser machine 



   
 

   
 

is equipped with an unwinder, vacuum table and rewinder.  Two cameras are used for exact 

positioning of the laser beam, providing a precision of better than 100 µm. 

Device fabrication 

The devices of the architecture PET/IMI/SnO2/P3HT:O-IDTBR/PEDOT:PSS/AgNW were 

prepared by the combination of laser patterning and slot die coating. In a first step, the PET/IMI 

substrates are roll-to-roll patterned with a fs-laser (LS Laser Systems) with 350 fs pulse 

duration, 520 nm wavelength, and 0.40 J cm−2 fluence to electrically separate the IMI bottom 

electrode into individual cells. The pattern is organized into sheets, where one sheet is 18 cm 

long and consists of 50 cells (see a sketch of the pattern in Figure S3). The laser-patterned 

PET/IMI substrates were cleaned with an air blade, a Teknek cleaning roller and finally, with 

microfiber tissue and toluene to get rid of the debris caused by laser patterning. All layers are 

deposited in ambient air by slot-die coating. First, the SnO2 inks were slot-die coated in five 

parallel stripes of 1 cm width on the patterned substrate and subsequently annealed at 130 °C 

for 4min inside the hot air oven adjacent to the coating station. The active material solutions, 

P3HT and o-IDTBR were prepared separately (20 mg/ml for each) in o-Xylene:1-MN (19:1) 

and stirred over night at 80 °C. The two solutions were injected into a single slot die by separate 

syringe pumps. During coating, syringes, tubes, slot die, and backing roll were heated to 80 °C. 

Immediately after coating, the wet film was heated with a heating mat at 90 °C for 45 s. The 

hole transport layer, PEDOT:PSS, is coated at room temperature followed by an inline 

annealing step at 140 °C for 4 min. Subsequently, the AgNW top electrode is deposited and 

annealed for 2 min at 130 °C, which results in a sheet resistance of approx. 8 Ω sq−1. SnO2, 

active layer and HTL were coated at a web speed of 0.5 m/min, AgNWs were coated at 1 

m/min. After coating the top electrode, a final laser patterning step was conducted with 0.18 J 

cm−2 laser fluence to establish the matrix of 10 x 5 individual solar cells, each with an area of 

0.1375 cm2, on every substrate. During the laser patterning process, holes for registration were 

scribed into each sheet, so that the sheets can be accurately aligned in the measuring board 

during the subsequent characterization steps. 

Characterization 

The inline UV/Vis absorption measurements were performed using a fiber spectrometer from 

Ocean Insight (Fame-S-UV-VIS-ES) with an operating wavelength between 200 and 850 nm 

and a halogen and deuterium tungsten light source. 



   
 

   
 

The current density-voltage (JV) characteristics of the solar cells are measured by using a 

source measure unit (Keysight B2901A, Keysight Technologies) and a class AAA solar 

simulator (LOT Quantum Design) providing AM 1.5 G illumination of 1000 W cm−2. In order 

to be able to measure one hundred solar cells without changing the substrate, a custom-designed 

measuring board (Figure S3) was used, which can be flooded with nitrogen (10 coated stripes 

(y-direction) and 10 cells (x-direction). Switching between cells is achieved by a custom-

designed multiplexer unit. 
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