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e Background

* Case Study 1: Elevated RR prior to cardiac arrest

RR algorithms

* Case Study 2: Unobtrusive RR monitoring

Performance assessment Definitions:
RR — respiratory rate

* Case Study 3: Predicting adverse events ,
ECG — electrocardiogram

Implementation PPG — photoplethysmogram

Conclusion
Accompanying resources:

http://peterhcharlton.github.io/RRest/webinar.html



http://peterhcharlton.github.io/RRest/webinar.html

Importance of RR

* Diagnosis RR [bpm]
* Pneumonia
* Sepsis 24
e Pulmonary embolism 20
* Prognosis Normal
* Acute deteriorations
* Cardiac arrest 12

* In-hospital mortality

* Emergency department screening

Further details at DOI: 10.1109/RBME.2017.2763681 , Section 1.A



http://doi.org/10.1109/RBME.2017.2763681

Measuring RR

Thoracic Band Face Mask Oral-Nasal Cannula

* Thoracic impedance / inductance
* Air flow / pressure

* Accelerometry



Measuring ECG and PPG

ECG Patch Wearable Pulse Oximeter

l e NN

Further details at DOI: 10.1109/RBME.2017.2763681 , Section 1.B
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Physiological Basis

Respiration *

PPG




Physiological Basis

W N\’\I\N\N\P\W W%v «LJJ”

TR N AT AT YA
M ANAAANAANAA bbb bbb b bbb

Further details at DOI: 10.1109/RBME.2017.2763681 , Section 1.C
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Literature

RR algorithms described in
> 196 publications
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Further details at DOI: 10.1109/RBME.2017.2763681 , Section 2
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Case Study 1

ECG-derived RRs every 10 mins on hospital ward
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Implementation

Charlton P.H. et al.
Breathing rate estimation from the electrocardiogram and
photoplethysmogram: a review,
IEEE Reviews in Biomedical Engineering, In Press, 2017.
DOI: 10.1109/RBME.2017.2763681 . CC BY 3.0 Licence
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Structure of Algorithms
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Structure of Algorithms
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Structure of Algorithms
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Structure of Algorithms
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Structure of Algorithms
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Structure of Algorithms
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Structure of Algorithms
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Structure of Algorithms
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Structure of Algorithms
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Structure of Algorithms
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Structure of Algorithms
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Further details of the structure of algorithms and possible mathematical techniques:
DOI: 10.1109/RBME.2017.2763681 , Section 3
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Case Study 2

ECG-derived RRs every minute throughout 3-day stay on hospital ward
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Case Study 2

ECG-derived RRs every 15 mins throughout 3-day stay on hospital ward
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Case Study 2

ECG-derived RRs every 15 mins throughout 3-day stay on hospital ward
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Case Study 2

ECG-derived RRs every 15 mins throughout 3-day stay on hospital ward
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Algorithm Assessments

Difficult to determine which algorithm, if any, is suitable:

RR algorithms described in
> 196 publications

> 100 algorithms

Several potential applications



Previous Algorithm Assessments

Focused on developing novel algorithms:

Number of algorithms assessed

(out of 196
publications)




Previous Algorithm Assessments

Primarily used data from young adults, and healthy subjects:
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Previous Algorithm Assessments

Many used publicly available datasets:

m—m Level of lliness

CapnoBase paediatric, adult surgery, anaesthesia
MIMIC-II 23,180 paediatric, adult v v critically-ill
MGH/MF 250 paediatric, adult v critically-ill
MIMIC 72 adult v v critically-ill
VORTAL 57 adult v v healthy
Fantasia 40 adult v healthy
UCD Sleep Apnea 25 adult v healthy, apnea
CEBS 20 adult v healthy
ECG and Resp 20 adult v healthy
MIT-BIH Polysomnographic 18 adult v healthy, apnea
Apnea-ECG 8 adult v v healthy, apnea
Portland State 1 paediatric v v critically-ill



http://www.capnobase.org/database/pulse-oximeter-ieee-tbme-benchmark/
https://physionet.org/physiobank/database/mimic2wdb/
https://physionet.org/pn3/mghdb/
https://physionet.org/physiobank/database/mimicdb/
http://peterhcharlton.github.io/RRest/vortal_dataset.html
https://physionet.org/physiobank/database/fantasia/
https://www.physionet.org/pn3/ucddb/
https://www.physionet.org/pn6/cebsdb/
https://www.physionet.org/physiotools/edr/
https://physionet.org/physiobank/database/slpdb/
https://www.physionet.org/physiobank/database/apnea-ecg/
https://www.pdx.edu/biomedical-signal-processing-lab/traumatic-brain-injury-data

Previous Algorithm Assessments

Further details of previous algorithm assessments:

DOI: 10.1109/RBME.2017.2763681 , Section 4. A
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Example Assessment

Charlton P.H. and Bonnici T. et al.
An assessment of algorithms to estimate respiratory rate
from the electrocardiogram and photoplethysmogram

Physiological Measurement, 37(4), 2016.
DOI: 10.1088/0967-3334/37/4/610 . CC BY 3.0 Licence
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Example Assessment

Primary aim:

 Determine how closely algorithms agree with a gold standard reference RR
under ideal conditions

Secondary aims:
« Compare performance to impedance pneumography

e Compare performance when using ECG or PPG



Example Assessment

Implementing RR algorithms:

ECG or Extrac.tlon of RR Fusion of
Respiratory Estimation RR RR
PPG Signals Estimates

BW ,
Fourier Transform

AM . ,

Yy Autoregression Smart Fusion
Peak detection Temporal Fusion

Peak amplitudes ,
Zero-crossings

Onset amplitudes



Example Assessment

Implementing RR algorithms:

Extraction of Fu5|on of
Resplratory Estlmatlon RR
Signals Estlmates

ECG or
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Fourier Transform
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" \
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Example Assessment

Implementing RR algorithms:

ECG or EI;(tra(.:tl?cn of RR Fu5|on of
esplra ory Estimation RR
PPG Signals Estlmates
BW
= Fourier Transform
AM §\4/ .
S G —77 Autoregression Smart Fusion
VY74 :
4> Peak detection Temporal Fusion
Peak amplitudes/&ziig
Zero-crossings
Onset amplitudes

14 techniques 12 techniques 5 techniques 370 algorithms




Example Assessment

Verifying algorithm implementations:

 Simulated data

* RR=18 bpm, HR =30:5:200 bpm ’ s
* HR =80 bpm, RR = 4:2:60 bpm o NN NANRA, ek ke
I
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Example Assessment

VORTAL dataset:

39 subjects, aged 18 to 39
* Healthy

o
\ AR ﬂ k \REEAR

Rest Walk Run Recover
10 min 2 min ~ 5 min 10 min

National Clinical Trial 01472133



https://clinicaltrials.gov/ct2/show/NCT01472133

Example Assessment

VORTAL dataset:

39 subjects, aged 18 to 39
* Healthy

°
\ B ﬂ k AR

Rest Walk Run Recover
10 min 2 min ~ 5 min 10 min

National Clinical Trial 01472133



https://clinicaltrials.gov/ct2/show/NCT01472133

Example Assessment

Signals:

Oral-Nasal
Pressure
Respiratory

Impedance '
Pneumograph
Respiratory

ECG




Example Assessment

. . @ . high © low
Signal quality:
ECG ECG/LV\LN
Time [s] Time [s]
) . (d)
high low
PPG PPG \]\/\
— Time (5] Further details:

DOI: 10.1109/JBHI.2014.2338351
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Example Assessment

Statistics: Limits of agreement: bias, 2SD (95% Cls)

ox‘XQ bpm bpm bpm
+4 +2 +6

Errors:

bias = mean error

=+4 bpm (20 (19\ (22
2SD =2 X SD of errors bpm bpm bpm
S G A\

=2X2=4bpm
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Example Assessment

Statistics: Limits of agreement: (i) bias, (ii) 2SD (95% Cls)

Large 2SD - imprecise
PN o > i
Small bias = accurate

Small 2SD -> precise

¢ ® ¢ Large bias = inaccurate
Small 2SD - precise
¢ 9 * Small bias > accurate
-15 -10 -5 0 5 10 15

Error [bpm]



Example Assessment

Reference RRs:

 Oral-nasal pressure

* Positive-gradient crossings
 Threshold determined using annotated breaths

e Performance:
— Bias: 0.0 bpm
— 2SD: 1.3 bpm

i.e. 95% of errors in reference RRs would be

expected to be smaller than 0.0 £ 1.3 bpm
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Example Assessment

50
40 -

30 -
25D

0 1 1 1 1 1 1 1 | 1 | |
1 50 100 150 200 250 300 350 400 450 500 550

Overall Rank



Example Assessment

2SD
[bpm]
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Example Assessment
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Example Assessment
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Example Assessment

Modulation | Temporal
Estlmatlon Fusion? Fusion?

Clinical (IP) 5
ECG 1 4.7 Time Vv —
2 5.2 Time Vv
3 5.2 Time Vv
: — Same
4 5.3 Time Vv Algorithm
6 5.6 Time
PPG 15 6.2 Time Vv —
17 6.5 Time Vv
35 7.0 Time v v
46 7.5 Time Vv
48 7.6 Time v



Example Assessment

ECG vs PPG:

e 2SD significantly lower when using ECG

* 64% of algorithms more precise on ECG

» Different physiological mechanisms



Example Assessment

Conclusions:

314 algorithms assessed under ideal conditions

According to these results ...
* time-domain RR estimation, and

e fusion of estimates

... resulted in superior performance.

Four ECG-based algorithms comparable to clinical standard

ECG preferable to PPG
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Case Study 3
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Case Study 3
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Implementation
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Extraction of respiratory signals
from the electrocardiogram and
photoplethysmogram: technical
and physiological determinants

Peter H Charlton', Timothy Bonnici'-, Lionel T:
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Abstract

DOI: 10.1088/1361-6579/aa670e . CC BY 3.0 Licence e

The extracted respiratory signals may be influenced by several technical and

physiological factors. In this study, our aim was to determine how technical
and physiological factors influence the quality of respiratory signals

Approach: Using a variety of techniques 15 respiratory signals were
extracted from the ECG, and 11 from PPG signals collected from 57 healthy
subjects. The quality of each respiratory signal was assessed by calculating
its correlation with a reference oral-nasal pressure respiratory signal using
Pearson’s comelation cocfficient.

Main results: Relevant results informing device design and clinical
application were obtained. The results informing device design were: (i)
seven out of 11 respiratory signals were of higher quality when extracted
from finger PPG compared to car PPG: (i) laboratory equipment did not
provide higher quality of respiratory signals than a clinical monitor; (iit) the
ECG provided higher quality respiratory signals than the PPG: (iv) during

Original content from this work may be used under the terms of the Creative
Commons Attribution 3.0 licence. Any further distribution of this work must maintain
attribution to the author(s) and the title of the work, journal citation and DOL
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Implementation

* RR can be estimated from ECG and PPG in young, healthy subjects using
laboratory equipment.

* Respiratory modulations must be of sufficient quality

» Several factors may affect quality in clinical setting

l Feature
PPG || LUK VTN
1N ’ kN Filter
1(‘ \I\X | Breaths
0 20




Implementation

Aim: Determine the influences of technical and physiological
factors on respiratory modulations

PPG measurement site: finger or ear Age

Signal acquisition equipment: laboratory or clinical Gender

Input signal: ECG or PPG Respiratory rate (RR)
Sampling frequency
J\ J
Y Y
inform device design determine clinical

acceptability



Implementation

VORTAL dataset:

* 41 young subjects aged 18 to 39

16 elderly subjects aged > 70

* Healthy

A

- =N - =
Rest Walk Run Recover
10 min 2 min ~ 5 min 10 min

National Clinical Trial 01472133



https://clinicaltrials.gov/ct2/show/NCT01472133

Signals

Oral-Nasal
Pressure
Respiratory

Impedance
Pneumograph
Respiratory

ECG
Clinical

ECG
Lab

PPG-Fin
Clinical

PPG-Fin
Lab

PPG-Ear
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Sighal Processing

* 32 s windows
* Exclude low quality windows using SQls

e Extract respiratory modulations



Sighal Processing

Filter-based Feature-based

BW: Band-pass filter BW: mean amplitude of troughs and proceeding peaks

AM: Continuous Wavelet Transform AM: Difference between amplitudes of troughs and
proceeding peaks

FM: Continuous Wavelet Transform FM: time interval between consecutive peaks
BW: mean signal value between consecutive troughs
BW, AM: peak amplitude
BW, AM: trough amplitude
FM: QRS duration
AM, FM: QRS area

BW: Principal component analysis



Sighal Processing

32 s windows

Exclude low quality windows using SQls

Extract respiratory modulations

Modulation quality: correlation with oral-nasal pressure



Signal Processing

32 s windows

Exclude low quality windows using SQls

Extract respiratory modulations

Modulation quality: correlation with oral-nasal pressure

Statistical tests for differences



Results

Technical:
Finger vs Ear: Finger gave higher quality
Clinical vs Lab: Similar quality

ECG vs PPG:
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Results

Technical:

Finger vs Ear: Finger gave higher quality

Clinical vs Lab: Similar quality

ECG vs PPG: ECG

Sampling Freq: ECG > 250 Hz; PPG > 16 Hz
Physiological:

Age: FM-based PPG of lower quality in elderly

Gender: Similar quality

Respiratory Rate: Lower quality at higher RRs



Recommendations

Technical:

Finger vs Ear:

Clinical vs Lab:

ECG vs PPG:

Sampling Freq:
Physiological:

Age:

Gender:

Respiratory Rate:

Measure PPG at finger rather than ear

Clinical equipment acceptable
ECG preferable
ECG >250 Hz; PPG > 16 Hz

Avoid FM-based respiratory signals in elderly

No differences
Caution when detecting elevated RRs



Conclusion

* Assessed the impact of technical and physiological factors on respiratory
modulations extracted from ECG and PPG

* Provided recommendations

e Ready for clinical assessment



Outline

Background

* Case Study 1: Elevated RR prior to cardiac arrest

RR algorithms

* Case Study 2: Unobtrusive RR monitoring

Performance assessment

e Case Study 3: Predicting adverse events

Implementation

Conclusion



Conclusion

. Brief overview of estimating RR from ECG and PPG

. Case studies of clinical utility in unobtrusive hospital monitoring

. Assessed algorithm performance in ideal conditions

. Assessed impact of technical and physiological factors
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Charlton P.H. and Bonnici T. et al. An assessment of algorithms to estimate respiratory rate
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Resources

Matlab® Toolbox of algorithms:
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Chapter 26

Wanelorm Analyss o Extimate Charlton P.H. et al. Waveform analysis to estimate respiratory rate, in

Respiratory Rate

P . o, Mo Tt P i Secondary Analysis of Electronic Health Records, Springer, pp.377-390, 2016.
DOI: 10.1007/978-3-319-43742-2 26 . CC BY-NC 4.0 Licence
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http://peterhcharlton.github.io/RRest/
http://doi.org/10.1007/978-3-319-43742-2_26
https://creativecommons.org/licenses/by-nc/4.0/

Resources

Vortal benchmark dataset:

A

AR AR
Rest Walk Run Recover
10 min 2 min ~ 5 min 10 min
41 Young 39 Young
16 Elderly
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http://peterhcharlton.github.io/RRest/
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