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Abstract—Acrtificial Intelligence (AI) will play a critical role in
future networks, exploiting real-time data collection for optimized
utilization of network resources. However, current Al solutions
predominantly emphasize model performance enhancement, en-
gendering substantial risk when AI encounters irregularities
such as adversarial attacks or unknown misbehaves due to its
“black-box” decision process. Consequently, AI-driven network
solutions necessitate enhanced accountability to stakeholders and
robust resilience against known Al threats. This paper introduces
a high-level process, integrating Explainable AI (XAI) tech-
niques and illustrating their application across three typical use
cases: encrypted network traffic classification, malware detection,
and federated learning. Unlike existing task-specific qualitative
approaches, the proposed process incorporates a new set of
metrics, measuring model performance, explainability, security,
and privacy, thus enabling users to iteratively refine their Al
network solutions. The paper also elucidates future research
challenges we deem critical to the actualization of trustworthy,
Al-empowered networks.

Index Terms—Al, Security, Privacy, Explainability, Malware,
Traffic Classification, Federated Learning

I. INTRODUCTION

Al has emerged as one of critical enabling technologies for
the future networks, providing groundbreaking capabilities in
network automation, management, and security [1]. Due to its
inherent capacity for learning, adapting, and predicting, Al
can address the complex challenges associated with future
networks including high-frequency millimeter wave propa-
gation, dynamic spectrum management, and efficient energy
utilization. However, with the increasing ubiquity and sophis-
tication of Al, the demand for transparency and interpretability
has escalated beyond the improvement of the AI/ML model
performance only. The intrinsic “black-box” decision process
of Al models will lead to uncontrolled negative network
automation and unawareness of Al attacks. Explainable Al
(XAI) arises recently to ensure trustworthiness and reliability
in future networks [2], [3] fostering an understanding of Al
decision-making processes in network management.

However, most of the existing work using XAl for trustwor-
thy networks focus on specific task [4], [S], which is difficult
to generalise to wider network applications in a stakeholders-
involved and ever-evolving environment. This paper attempts
to extract a common high-level process from initial experi-

ments on three typical Al applications for future networks:
encrypted network traffic classification, malware detection,
and federated learning. Specifically, we make the following
contributions:

o Propose a high-level process with active engagement of
internal stakeholders and a full set of metrics for assessing
the model’s accountability and resilience feature.

o Demonstrate the initial results when applied to three
aforementioned Al use cases. Those results show that a
better Al trade-off objective can be achieved iteratively by
more transparent indicators of the system’s accountability
and resilience.

o Present research challenges for XAl deployment in fu-
ture networks. Those research challenges are summarised
from these three initial use cases and likely play a vital
role in the related research community.

II. PROPOSED PROCESS FOR ACCOUNTABLE AND
RESILIENT AI-ASSISTED NETWORK

A. Stakeholders

The proposed process actively engages the internal stake-
holders of the system (e.g., developers, testers, system oper-
ators, etc.) who have domain knowledge about the targeted
Al system. We focus on the internal stakeholders only as it
has been reported [6] that most existing successful XAl are
deployed for technical experts debugging their Al systems,
rather than enhancing the trust of the end-users. As shown in
Figure 1, use case stakeholders trigger the process by setting
up the trade-off objectives, while terminating the process when
the pre-set objectives are achieved, using the proposed set
of resilience metrics together with the existing model utility
metrics and posthoc XAI methods.

B. Four-step iterative process

As shown in Figure 1, our process firstly collects trade-off
objectives from the user case stakeholders in terms of how
they expect the importance among multiple targets: model
utility, accountability, resilience, and privacy. It is important
to note that there is no flawless Al solution that can si-
multaneously achieve optimal model performance, resource
efficiency, accountability, and resilience. For instance, if a high
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Fig. 1. Proposed Four-Step Process for Accountable and Resilient AI-Assisted
Networks

explainability is required, it often necessitates compromising
the model’s performance to some extent. Secondly, a list of
key metrics will be chosen according to the pre-set trade-
off targets and the implementation feasibility of the use case.
Thirdly, these metrics will be used to comprehensively test
how well the existing Al system performs against the trade-
off targets that do not only consider model utility as before.
Finally, possible actions (e.g., tuning AI/XAI methods, and
feature engineering) will be taken to improve the existing Al
system to achieve a better trade-off in the next iteration. We
reflect on each step of the proposed process in all three use
cases in Table IV at the end of our paper.

C. Metrics

1) Model Utility: Model utility refers to the traditionally
used machine learning metrics that assess how well the trained
model performs at the specific classification or regression task.
For example, model accuracy, precision, recall, F1 score, and
SO on.

2) Accountability: The accountability of the AI model
refers to the stakeholders’ expectation that the lifecycle of
AI’s behaviour should comply with the relevant regulations.
XAl is one of the common ways to implement accountable
Al by making its decision-making process more transparent.
We introduce currentness to describe the ratio of the time
for executing different XAI methods to the time of executing
Al models. The shorter the better. The second metric is
called feature importance which refers to how important each
training data feature contributes to AI model results. We also
propose to use stability, compacity, and consistency metrics
with the support of Shapash library to evaluate different XAI
methods. The stability metrics describe how stable a certain
XAI method can explain similar data instances. The compacity
attempts to show if most of a certain XAI / Al results can
be explained by the minimum possible features. Lastly, the
consistency measures how consistently different XAI methods
can explain the results given by the same Al model. Further
detail can be found in Shapash library.

3) Resilience: We propose the following metrics to measure
the difficulty faced by an attacker to succeed in an adversarial
ML attack. Impact quantifying the effect of the attack on
the system from an integrity, availability or confidentiality
perspective. A high impact decreases resilience. Complexity

quantifying the effort required by an attacker to achieve
a successful attack. A high complexity increases resilience.
Detectability (of the attack exploiting the vulnerability) quan-
tifying the effort required by a defender to detect and mitigate
an attack exploiting the vulnerability. A high detectability in-
creases resilience. Capability (privileges) required, quantifying
the capabilities required by an attacker to achieve the attack.
Higher required capabilities increase resilience.

We further define these metrics as follows for evasion
attacks, which are mainly studied in our initial work due to
their high popularity:

o Impact: the ratio of adversarial examples being successful
at evading the target ML model to all generated adver-
sarial examples.

o Complexity: the average number of queries required
by the ML model to generate a successful adversarial
example.

o Detectability: the modifications required to generate a
successful adversarial sample. The distance between orig-
inal X and adversarial examples X, is computed as an
Lo norm, which counts the number of non-zero elements
in each vector. For example if X = (0,0), X, = (0,5),
the Ly distance should be 1.

4) Privacy: We introduced two metrics that relate to the
privacy-preserving. The first one is the e of differential privacy
(DP) which basically defines how difficult the attacker can
derive private information. The higher the easier. The second
metric introduced is called user diversity. The higher the user
diversity, the more difficult it is for each individual from being
identified.

III. USE CASE 1: ENCRYPTED NETWORK TRAFFIC
CLASSIFICATION

A. Use Case Introduction

The growing prevalence of HTTPS and Virtual Private
Networks (VPN) has resulted in a significant rise in encrypted
Internet traffic. By 2022, approximately 95% of all Internet
traffic is encrypted, with more than 85% of attacks occurring
within encrypted traffic . While encryption is essential for
user privacy, it poses challenges for security tools responsible
for analysing and classifying traffic. This encrypted network
traffic classification will become more challenging in the future
networks with exponentially increased volume and diversity of
traffic. Al models fit perfectly to this big data challenge for
traffic classification, however, the black box Al could misbe-
have for unknown reasons, which decreases the trustworthiness
of using Al for wider areas.

The dataset is generated by capturing local network traffic
at Montimage . Specifically, we utilize Wireshark to create
pcap files with a size of 2.15 GB when a user engages in
normal activities on a single host. The main dataset com-
prises multiple network traffic traces, each associated with a
specific user activity. Here, the network traffic traces contain
essential information such as the source and destination IP
addresses, protocols, port numbers, packet timestamps, packet



size, etc, depending on the specific features we choose. After
applying filtering processes, the final dataset consists of 382
labelled traces across three traffic classes: Web, Interactive,
and Video activities, with 304, 34, and 44 traces respectively.
The processed CSV files derived from this dataset are used
for the analysis and evaluation of our Al-based classification
system. Feature extraction reveals 21 features categorized into
five main categories: duration, protocol, uplink, downlink,
and speed. We employ various machine learning classifica-
tion algorithms, including Neural Networks (NN), LightGBM
(LGBM), and XGBoost. We generated 103 adversarial samples
from the 103 test data samples we initially obtained to launch a
common white-box evasion attack: Fast Gradient Sign Method
(FGSM) [7].

B. Trade-off Objectives

The objective of this use case is to study how resilient the
existing Al solution is to a common Al attack. Moreover, we
will also explore how XAI technologies can help in making
this Al solution more robust. Most importantly, the increased
accountability by introducing XAl can not largely compromise
the model’s utility.

C. Metrics Selection

We choose accuracy as the model utility metric as the
dataset we use does not have an imbalance issue. We use all
proposed accountability metrics as it is the core of our study
in this use case. We choose impact and complexity as the
resilience metric. There are no privacy-related metrics selected
for this study as it is not included in our trade-off objectives.

D. Initial Iterative Results

We firstly run our experiments using NN before and after
the FGSM attack, then calculate the pre-selected metrics for
trade-off analysis. However, the existing Shapash library does
not support stability, compacity and consistency analysis for
NN. We then changed the NN model to the tree-based models
LightGBM and XGBoost which are also widely used in
industry yet still considered as black-box models due to their
high complexity. Except for the resilience metric, complexity
(37us, averaged over 1000 iterations), which is calculated by
iterating the generation of adversarial samples over 1000 times
and getting the average value to generate per one sample, we
summarised all other key results in Table I and showed an
accountability case in Figure 2.

As shown in Table I, NN achieves the best model utility
as expected. But it does not support advanced accountability
analysis as mentioned before. Although XGBoost can have a
relatively good accountability and model utility, it is the most
vulnerable model to the evasion attack compared with NN and
LGBM. To achieve a good trade-off between accountability,
resilience and model utility, LGBM is recommended. We also
suggest SHAP [8] with LGBM as it is not so slow compared
with LIME [9].

Additionally, as shown in Figure 2, the feature importance
ranking has changed significantly before and after the FGSM

attack. We have also observed a similar property when LGBM
and XGBoost are used. This finding highlights a great potential
to use XAI methods for detecting the possible evasion attacks
that lead to the misbehaviour of the targeted Al systems.
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Fig. 2. List of features that are sorted by the average SHAP value (feature
importance score using SHAP) for each traffic type classification (Left: before
FGSM; Right: after FGSM).

IV. USE CASE 2: MALDOC DETECTION

A. Use Case Introduction

Remote collaborative working style becomes prevalent
across various computing platforms (e.g., desktop, mobile,
cloud, etc.), especially after COVID-19. However, this in-
creases the risk of sharing files in a secure and private-
preserving manner. Therefore, we conduct our initial experi-
ment in a use case called MalDoc. It is an ML-based malicious
document detection system meant to classify Microsoft Office
files as one of two classes: “benign” or “malware”. It takes as
input a Microsoft Office document and it outputs a binary deci-
sion together with a probability score depicting the likelihood
of a certain document being malicious. The MalDoc system
uses an XGBoost model for the classification of documents.
This XGBoost classifier is trained using a training dataset
composed of 30,600 benign and 10,900 malicious Microsoft
Office files. These files are parsed and 143 features are
extracted from each of them before being used for training.
Most of the features are summing up counts of keywords
contained in macros, which depict the activity found in the
document. A testing dataset containing 7,600 benign and 2,700
malicious Microsoft Office files is used for testing, validation,
and computation of performance metrics such as accuracy,
precision and recall. An additional attack dataset composed
of 100 malicious Microsoft Office files is used for empirical
security testing and computation of resilience metrics. The
evasion attacks launched in this study are: Simple blackbox
Attack (SimBA) [10], Zeroth Order Optimization based black-
box attacks (ZOO) [11], and Natural Evolution Strategy (NES)
[12].

B. Trade-off Objectives

The MalDoc system must meet two main requirements:
high accuracy and resilience against evasion attacks. Thus, the
resilience/accuracy trade-off is paramount for this use-case.
We have also explored how XAI method SHAP can help to
achieve a better trade-off objective.



TABLE I

A SUMMARY OF INITIAL ACCOUNTABILITY AND RESILIENCE ANALYSIS FOR ENCRYPTED NETWORK TRAFFIC CLASSIFICATION.

AI Model Accuracy w/o | Accuracy with | Impact Currentness Stability Compacity Consistency
attack attack (SHAP/LIME)

Neural Network | 96% 71% 29% 25976 / 8535 unknown! unknown unknown

LightGBM 94% 72% 28% 15992 / 9738 medium?® medium medium

XGBoost 94% 54% 45% 14678 / 6726 high high high

! The existing software library that supports stability, compacity, and consistency analysis, does not work for NN-based models.
2 For simplicity and considering the page limit, we ignore the figures for the comparative accountability studies and only summarise the results. Specifically,
this means XGBoost is better than LightGBM in terms of stability, compacity, and consistency.

C. Metrics Selection

In terms of the model utility, we select the following three
metrics:

o Accuracy: the ratio of samples getting correct predictions
from the ML model over all tested samples.

o Recall: the ratio of malicious samples getting correct pre-
dictions from the ML model over all malicious samples.

o False positive rate (FPR): the ratio of benign samples
getting incorrect predictions from the ML model overall
benign samples.

We use the full set of proposed resilience metrics for
analysis. In particular, we conduct evasion attacks under the
following three attacker’s capability levels:

o High: No constraint on modifications. Feature values are
optimized and kept as floating numbers. This is unrealistic
since feature values represent keyword counts and are
supposed to be integers.

o Medium: Modified features must be integers to respect
the keyword counts they represent.

o Low: Modified features must be integers and their values
can only be increased. Any modification would corre-
spond to the insertion of a new keyword in the document.
It means that it won’t compromise its integrity or break
its functionality. This is the most realistic capability.

D. Initial Iterative Results

First, we test the utility of the MalDoc system in normal
working condition (no attack) and when subject to the evasion
attacks under three different capability levels. After carefully
examining the features most manipulated by the evasion at-
tacks and the most important features for XGBoost decision-
making using SHAP, we remove 14 features that are not
important for the ML models but highly ranked in the list
of most manipulated features by the tested evasion attack. We
then retrain the XGBoost model using 129 features and run the
same test again before and after launching the evasion attacks.
We summarise the resilience analysis results in Table II and
the corresponding model utility changes in Table III.

We can see that under high capability, all attacks have a high
impact (equal or close to 1), while depicting very different
complexity and detectability. SimBA is the least complex and
detectable attack modifying 9 features on average, while NES
is the most complex and detectable, modifying 115 features
on average. As the adversarial capability decreases (from high
to low), the impact of the attacks decreases down to 0.05

TABLE II
A SUMMARY OF RESILIENCE ANALYSIS FOR MALDOC DETECTION. (O:
ORIGINAL 143 FEATURES; R: RETRAINED RESILIENT 129 FEATURES.)

Capability(att.) Impact Complexity Detectability
O R [0) R O R
High(ZOO) 1.00 | 0.99 | 206,044 | 206,868 | 22.5 26.7
High(SimBA) 1.00 | 0.87 | 340 498 9.0 11.8
High(NES) 096 | 0.88 | 567,524 | 550,827 | 115.8 | 104.7
Med(ZOO) 0.80 | 0.84 | 206,044 | 207,501 | 13.0 21.2
Med(SimBA) 1.00 | 0.89 | 348 509 9.2 10.8
Med(NES) 098 | 0.85 | 558,743 | 576,300 | 116.1 | 104.0
Low(ZOO) 0.05 | 0.02 | 206,044 | 206,044 | 7.4 6
Low(SimBA) 0.05 | 0.02 | 202 52 3.6 2
Low(NES) 0.05 | 0.01 | 649,097 | 532,444 | 96.6 80.0

with the lowest capability (biggest constraints). Yet, a 5%
impact remains a significant vulnerability for this use case
where malicious documents need to be identified with high
recall. The complexity is not affected much by the decrease
in capability while the detectability goes down overall. This
can be explained by the decrease in impact, the most difficult
adversarial example to generate will be unsuccessful (explain-
ing the low impact), while the ones that are successful require
smaller modifications and are easy to turn into adversarial
examples to start with.

As for the final trade-off shown in Tablelll, this resilience
improvement comes with a very little cost of less than 0.7%
reduction in any of the used three model utility metrics.

TABLE III
MODEL UTILITY RESULTS BY THE ORIGINAL AND RETRAINED RESILIENT
MALDoc ML MODEL

Model Accuracy | Recall FP Rate
Original (143 features) 99.82% 99.31% | 0%
Resilient (129 features) | 99.71% 98.99% | 0.04%

V. USE CASE 3: FEDERATED LEARNING
A. Use Case Introduction

Federated Learning (FL) is a typical technology for privacy-
preserving Al-based future networks. It enables decentralized
learning from distributed data across devices while maintain-
ing data privacy. FL’s distributed nature also complements
edge computing capabilities, enhancing performance and re-
ducing latency. However, although the private user data is
always kept locally for the FL training, the model updates
every iteration can still be used to reconstruct the user’s pri-
vate data. Privacy-preserving technologies such as differential



privacy (DP) can be used for reducing the probability of
such reconstruction, but it could also lead to the convergence
problem of the FL algorithm due to the high noise added to
the model updates.

To explore the best trade-off strategy between model utility
and privacy-preserving, we conduct our initial experiments us-
ing an FL framework named Flower [13] with one aggregation
server and ten virtual clients and non-IID MNIST dataset (i.e.,
10-class classification problem by recognising hand-written
digit number from O to 9). To create non-IID data distribution,
each client was assigned 1000 data samples where 90% of
them is a class (i.e., a certain digit number) it is allocated.
The remaining 10% dataset could contain any of 10 classes. As
shown in Figure 3, the user’s private data always stays at the
client side and only send the centralised aggregator the model
updates when the one training epoch is completed locally.
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Fig. 3. This FL workflow shows how the DP noise is added for privacy-
preserving at Step 3), and how user diversity metrics are obtained at each
training iteration by averaging the cosine similarities among prediction vectors
shown in the bottom box.

B. Trade-off Objectives

The objective of this use case is to study how much noise
can be added using DP to keep a satisfactory model utility.
Additionally, we study if user diversity matters for privacy-
preserving FL training.

C. Metrics Selection

We use accuracy as a model utility metric. We also select
the DP € as one of the privacy-preserving metrics. To obtain
another privacy metric, the user diversity at each training
iteration, the prediction vectors from the local model on
each client are kept by testing it with a sample dataset with
100 records consisting of randomly distributed 10 classes.
We firstly calculate the cosine similarity of the given client
prediction vector to the one from all other 9 clients. Then,
the user diversity is the averaged cosine similarities of all 9
prediction vector pairs.

D. Initial Iterative Results

As shown in the following Figure 4, when increasing the
level of privacy protection, it can be observed that the accuracy
of the models gets reduced. This demonstrates that although it
is getting increasingly difficult to reconstruct the private data
using the local model updates with the stronger noise added,
the training process per-se has also been severely impacted
due to the faded useful information for effective learning. The
utility degradation can be severe where the accuracy levels
drop significantly for over 70% on the MNIST data.
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Fig. 4. The evolution of FL. model accuracy with the increasing level of DP
privacy protection (the increasing value of % means from “no privacy” to
increased privacy-protection level).

Another interesting observation can be found in Figure 5
which shows that the user diversity is reducing sharply (i.e.,
cosine similarly is increasing) at the very first 4 training itera-
tions while plateaus at a low level afterwards. This observation
reveals that the concerns about privacy leakage may only exist
at the beginning of the training iterations. After this “warm-up”
phase, the user diversity can be well preserved by the central
aggregator’s model integration one iteration after another.
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Fig. 5. The trend of averaged cosine similarly among prediction vectors from
all clients, over the increasing FL training epoch.

VI. DISCUSSION AND FUTURE RESEARCH CHALLENGES

As summarised in Table IV, beyond model utility, we
have done our initial trade-off analysis on three AI network
applications towards model accountability, resilience, and pri-
vacy. Specifically, we choose a subset of metrics that are
feasible and most relevant to the particular use case. Then we
trigger the existing Al pipeline to obtain the first-round results,
making our trade-off objectives quantitatively (resilience) and



TABLE IV

SUMMARY OF THREE STUDIED Al APPLICATIONS WITH THE REFLECTION TO THE PROPOSED FOUR-STEP PROCESS

Network Traffic Classification

MalDoc Detection

Federated Learning

Al Pipeline

but does not have good accountability;
XGBoost has good accountability but is
vulnerable to FGSM attack.

Dataset Montimage 5G networks traffic Proprietary dataset at WithSecure MNIST

Algorithms NN, XGBoost, LGBM; LIME, SHAP XGBoost; SHAP FedAvg

1. Trade-off | Accountability, Resilience (FGSM) Resilience (ZOO, SIMBA, NES) Privacy Preserving

Objectives

2. Metrics | Accuracy, Impact, Complexity, Current- | Accuracy, Recall, FPR, Capability, Im- | Accuracy, € of DP, User Diversity

Selection ness, Stability, Consistency, Compacity pact, Complexity, Detectability

3. Existing | NN achieves the highest model utility | There exist some features that are mostly | Model utility can drop significantly with gradu-

manipulated by the evasion attacks but
not important for model inference

ally decreased e.

4. Actions to
Improve

Better trade-off can be achieved by using
LightGBM with SHAP.

Better trade-off can be achieved by re-
moving those features to retrain the XG-

Better trade-off can be achieved by 1. Fine-
tuning € until the lowest acceptable model util-

Boost model

ity; 2. the impact of user diversity on privacy is
reduced when FL training round is increasing.

qualitatively (accountability) visible. Finally, we provide our
suggested improvement actions with initial results. Having
demonstrated promising results in using XAI for more robust
Al cybersecurity solutions, we have also listed the following
three research challenges.

o XAI for time-series scenarios. In the future networks,
there will be various devices and sensors constantly
collecting data for the downstream ML tasks in real-
time. Devising better XAl approaches for multi-variant
time-series analysis can be critical to expanding the ap-
plications of XAl to future full-stack Al networks. Recent
research on explainable natural language processing using
sequence models may also inspire this direction.

e Metrics calculation for scalability. Next generation net-
works will provide much higher bandwidth and reliability
with much lower latency. Therefore, it is essential to test
if the calculation of proposed metrics can be scalable.
Similar to TreeSHAP which accelerates the computation
time for tree-based models, some time-consuming metrics
may also need to be approximated in the distributed large-
scale user request environments.

+ Engaging external stakeholders. External stakeholders
such as end-users and legal auditors are important for
an accountable Al-assist networks. More interdisciplinary
research is required to engage external stakeholders in
the existing closed-loop process. Methodologies like the
System Usability Scale (SUS) based questionnaire might
be a good start to collect their feedback.

VII. CONCLUSION

This paper proposes an iterative process for internal network
stakeholders to help their “black-box” Al solutions achieving
a better trade-off among model performance, accountability,
and resilience. This process are validated on three Al-based
network applications: encrypted network traffic classification,
malware detection, and federated learning. This paper also
presents research challenges for deploying XAI for future
intelligent networks.
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