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Abstract- In this paper, a heating and ventilation model VVS-400 from Instrutek, Larvik, 
Norway is modeled using ARX model structure and linear black-box technique. The 
conventional PID controller and artificial Fuzzy controller are designed based on the 
approximated plant model and real plant model. The approximated plant model is estimated 
using System Identification approach while the real plant model is developed by interfacing the 
Real-time Windows Target toolbox in Matlab with real VVS-plant by using data acquisition 
(DAQ) card PCI-1711. An artificial Fuzzy controller approach is incorporated in two ways 
which are conventional Fuzzy logic controller (FLC) and a replacement of conventional fuzzy 
controller known as Single input fuzzy logic controller (SIFLC). Simulations and experiment 
validate the equivalency of both controllers. Results reveal that SIFLC found to be better than 
FLC due to its less computation time compared to conventional FLC. 
 
 
Index terms: System identification, estimation, ventilation, VVS-400, Autoregressive with exogenous input 

(ARX), PID, Fuzzy logic controller, Single input fuzzy logic controller 

 

I. INTRODUCTION 

 

The heating and ventilating system is a common process in our daily life where certain 

desired temperature is controlled. In industries such as pharmaceutical, ability to control 

temperature is crucial to ensure the quality of the product always within control. However, most 

of heating and ventilation plants are complex with higher-order systems, which leads to 

unsatisfactory performance. 

 

Therefore, in the recent years, there are many emerging control strategy approaches for 

controller’s design of heating and ventilation systems such as robust PID controller [1], fuzzy 
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immune PID controller [2], multiple model predictive control (MMPC) [3] and advanced PID 

auto-tuner [4]. For example, Kasahara [1] propose a robust PID control system which can cope 

with the changes in the plant characteristic which suitable for practical applications. Another 

example is an auto tuner for PID controller, both for SISO and MIMO processes which 

developed by Bi and Cai [4].  

 

In some cases, an artificial approach such as Fuzzy logic control (FLC) has gain interest 

in control systems design. For instance, Rafael [5] has proposed a combination of weighted 

linguistic fuzzy rules together with a rule selection process in heating and ventilation system in 

order to maintain its indoor temperature. However, it is known that conventional FLC has to deal 

with fuzzification, rule base, inference engine and defuzzification operation. Larger sets of rules 

will produce longer computational time for conventional FLC. Usually, a complicated system as 

heating and ventilation system require many rules to perform this conventional FLC. These will 

results large computational time to accomplish the control algorithm. Therefore, Single input 

fuzzy logic controller (SIFLC) has been introduced to solve the conventional FLC problem. The 

SIFLC has only one input variable which significantly produce less number of rules compared to 

conventional FLC. Tabakova [6] has presented the implementation of the SIFLC and its 

effectiveness which has less computation time in the real time application.  

 

However, in order to design very efficient controller with high quality system 

performance, the system must be modeled in a proper way. For unknown system which has 

unknown parameters, it can be called as black-box model. The mathematical modeling of this 

black-box model system can be obtained using System Identification (SI) technique. SI technique 

provides an efficient approach and proved to be very significant in practical applications. There 

are two methods to perform the system modeling, which are using theoretical and experimental 

design. The overall step of system identification procedure can be found in [7]. Only 

experimental approach is considered in this paper where the system model is referred as a black-

box model (Section III). In this approach, the persistently excitation of input signal is crucial, 

since it influences data sufficiency. Often, Pseudo-Random Binary Sequences (PRBS) input were 

chosen due to its large energy content in a large frequency range [8]. Further details in choosing 

the appropriate input can be found in [9]. Controller design is also included in this paper through 
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Matlab simulation (Section IV) and online implementation using Real-time Windows Target 

toolbox (Section V). Finally, discussion and conclusion are drawn. 

 

II. SYSTEM DESCRIPTION OF THE VVS-400  

 

In this study, VVS-400 is used as a model system. The VVS-400 plant is a pilot scale of 

heating and ventilation system developed by Instrutek A/S, Larvik, Norway [10]. The schematic 

diagram of this system is shown in Figure 1. This plant can operate in three different modes: 1) 

Temperature control, 2) Flow control and 3) Cascade control. In this paper, only temperature 

control is studied (constant air flow rate). This model consists of a fan and heating element which 

is controlled by TRIAC. The fan blows air through the flow tube over the heating element. The 

temperature sensor, RTD platinum is located at the end of the tube. This plant model is also 

equipped by two independent local PID controllers to control the temperature and flow processes. 

However, in this study, local PID controller for temperature will be set as “off mode” which 

creates an open loop system for temperature while the air flow rate is fixed to a certain number 

and controlled by flow local PID controller. 

 

 
Figure 1: Schematic diagram of the VVS-400 heating and ventilation model 
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After model calibration, the relationship between voltage and temperature is obtained and 

is plotted as shown in Figure 2. This is done by observing the output temperature with different 

input voltage as shown in Table 1. 

 

Table 1: Input voltage and output temperature 

Voltage(V) Temperature(Celcius)
2.5 50
2.8 56
3 60

3.1 62
3.3 66
3.4 68
3.5 70
3.6 72
3.8 76
4 80

4.1 82
4.2 84
4.3 86
4.4 88
4.5 90 
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Figure 2: Relationship between temperature and voltage 
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From Figure 2, it can be noted that 

 

  Temperature(°C) α K x Voltage(V)      (1) 

  K = constant = gradient = 20 

Hence, 

 

  Temperature (°C) = 20 x Voltage (V)    

  Ti = 20Vi         (2) 

where i = nth data 

 

Therefore, process output must be multiplied with constant 20, since the output from the 

approximated plant and data acquisition (DAQ) card is in voltage. Temperature process study of 

VVS-400 plant has been conducted in [11] which reveal the temperature process is continuously 

nonlinear.  

 

III. PROCESS MODEL IDENTIFICATION EXPERIMENT 

 

Initially, system model must be determined before control technique is applied. The 

system modeling part is the most challenging and vital part in designing the control system of 

VVS-400 due to its large time constant and slow process response [8]. In order to obtain a 

particular model for this system, the open loop identification experiment has been done using 

parametric approach. In this experiment, a system model is identified using data collected when 

the Pseudo Random Binary Sequence (PRBS) is perturbed into the system as can be seen in 

Figure 3. From Figure 3, there are 2297 samples of data with 2 seconds sampling interval. The 

PRBS input is generated in Matlab. The collection of data was performed by PCI-1711 interface 

card. The input-output data is then be analyzed by System Identification toolbox in Matlab [12].  
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Figure 3: The input-output data set 

 

From the set of input-output data in Figure 3, it was divided into two parts. The first part 

is the training data and the second is for testing or validation data. In this paper, the VVS-400 

system is modeled based on Autoregressive with exogenous input (ARX) model structure with 

sixth order. The best fit of output model is 82.84% as depicted in Figure 4. Its polynomial 

structure can be written as  
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Figure 4: Measured and simulated model output 

 

 Then, Loss function = 0.0000123078 and Akaike’s Final Prediction Error (FPE) = 

0.000012567. Therefore, the pilot scale heating and ventilation VVS-400 plant can be 

approximated modeled by this following equation 
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Hence, based on this approximated plant model, conventional PID and artificial Fuzzy logic 

controller will be designed to perform the closed loop system simulation. The approximated plant 

gives a higher order model where an excess model order is usually represent the noise. Since the 

ARX model incorporate with noise in the system model, the model might be influenced by this 

noise [13].  

  

Next, by observing the pole-zero plot of the model, there is one zero outside the unit 

circle of the z-domain as shown in Figure 5. This specific zero is called non-minimum phase 

model. For a non-minimum phase process the converse is true, a non-minimum phase pole will 

tend to cause a +90º phase shift, and a non-minimum phase zero will tend to cause a -90º phase 

shift. Since the system is assumed to be stable, all the poles will have negative real parts. 
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Figure 5: Pole-zero plot 

 

 

IV. CLOSED- LOOP SIMULATION AND PERFORMANCE ANALYSIS 

 

Before the real process implementation, a simulation is carried out for each controller to 

verify the propose controller design. The aim of simulation is to give emphasis to the designing 

of the conventional proportional-integral-derivative (PID) and artificial Fuzzy Logic controllers. 

To ensure stability, only closed loop controller is considered. The step input is applied to the 

system as a reference input with a set point of 60. 

 

The PID controller is often implemented for industrial practice since it has a simple 

structure, straightforward implementation and easy to tune [2]. In this paper, the PID controller is 

designed using the parameters of Kp (proportional gain), Ki (integral gain) and Kd (derivative 

gain) tuned by Ziegler-Nichols method. The discrete-time expression of PID controller has the 

following form: 
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where u(k) is the control signal, e(k) is the error between the reference input and the process 

output and Ts is the sampling time for the controller. 

 

However, finding an optimum adjustment for this system is not trivial. Fine tuning is 

required for an optimum result. 

 

Figure 6: Simulink block diagram with PID controller 

 

Figures 6 and 7 show the Simulink block diagram with PID controller and the process output, 

respectively. From Figure 7, the process output shows high overshoot with settling time is 100 

seconds corresponding to step input reference. It can be seen that the response of this proposed 

controller is satisfactory. 
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Figure 7: Temperature process response from simulation with PID controller 

 

Even though the PID controller is widely used in industrial process, the tuning of PID 

parameters is a crucial issue in particular for the system’s characteristic which has large time 

delay and high order system [14]. Commonly in industrial process, only an expert or experience 

workers are able to monitor and tune the PID parameters based on their experience. Therefore, in 

certain cases where there is deficient of experience with the processes, it is sometimes quite 

impossible to achieve a satisfactory performance. For these reason, it is desirable to introduce 

other types of controller such as an artificial conventional Fuzzy logic controller (FLC) or Single 

input fuzzy logic controller (SIFLC). 

 

The conventional FLC has two inputs which are error, e and derivative error, e  and only 

one control input,  as represented in Figure 8. The SIFLC has only error, e as an input. For the 

FLC control design structure, it involves three main stages:1) fuzzification, 2) rule base, and 3) 

defuzzification [15]. The rule base is extracted from the knowledge or experience about the 

system itself. In fuzzy control, the membership function, rules and scaling factor (gain) are tuning 

parameter. The membership function of error, e , derivative error, e  and control input,

uΔ

uΔ  are 

assigned as NL: Negative large, NM: Negative medium, NS: Negative small, Z: Zero, PS: 
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Positive small, PM: Positive medium, and PL: Positive large as can be seen in Figure 9. The 

ranges of this membership function are -10 to 10. 

 
Figure 8: Fuzzy inference block 

 

Figure 9: Membership function of error (e), derivative of error ( e ) and control input, uΔ  
 

 
 

Since we have 7 variables for each fuzzy input, it gives 49 fuzzy rules as illustrated in Table 2. 

The rules are written as; 

 

 IF error, e is PL AND derivative error,  is NL, THEN control input,  is Z e uΔ

 

Therefore, 49 fuzzy rules in Table 2 must be reads as mentioned and be performed in rule viewer 

of FIS editor in Fuzzy Matlab. 
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Table 2: Rules table of fuzzy 

          

 e

e           

PL PM PS Z NS NM   NL 

NL Z NS NM NL NL NL NL 

NM PS Z NS NM NL NL NL 

NS PM PS Z NS NM NL NL 

Z PL PM PS Z NS NM NL 

PS PL PL PM PS Z NS NM 

PM PL PL PL PM PS Z NS 

PL PL PL PL PL PM PS Z 
 
 

 

Figure 10 shows the Simulink block diagram of the system with fuzzy controller. There are two 

scaling factors at the input and one scaling factor at the output of conventional FLC. Step input is 

performed in order to obtain the output response of the system. 

 

Figure 10: Simulink block of the system and conventional FLC 
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Figure 11: Linear control surface of Conventional FLC 

  

The control surface of the conventional FLC is shown in Figure 11. This control surface 

represents the correlation between input and output in three-dimensional plot. From this figure, it 

is clear that conventional FLC behaves as linear controller. 
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Figure 12: Temperature process response from simulation with conventional FLC 
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Figure 12 shows the output response of conventional FLC with small overshoot. Although 

the output response has less overshoot, this approach takes a longer computation time (95 

seconds) to accomplish the controller algorithm.  In fuzzy control, the computation time depends 

on the number of rules used. More rules will result the longer computation time. This problem 

can be solved by replacing the conventional FLC into Single-input FLC (SIFLC), where there are 

no rules at all [16]. In this approach, the rules are computed into constant number using a specific 

equation and will be performed using Look-up Table. 

 

Figure 13: Simulink block of the system and SIFLC 

 

The design of SIFLC for this system employs Signed Distance method and the Simulink 

block diagram is shown in Figure 13. From Table 2, it is common to have same output 

membership function in a diagonal direction. Then, each diagonal line has a magnitude which 

proportional to the distance from its main diagonal line.  Instead of using two inputs (e, ) in the 

conventional FLC, this method simplifies the number of input into one single input known as 

distance, d. The distance represents the absolute distance magnitude of the parallel diagonal lines 

(in which the input set of e and lies) from the main diagonal which can be written as follows 

e

e

21 λ
λ
+

+
=

eed      (8)  

 with slope of diagonal line, λ is equal to “1”. 

592

M.F. Rahmat , N.A. Mohd Subha, Kashif M.Ishaq and N. Abdul Wahab, Modeling and Controller Design
 for the VVS-400 Pilot Scale Heating and Ventilation System



 

In order to obtain the distance, d value, the diagonal lines need to be calculated. The output of 

rule table for conventional FLC as shown in Table 2 can be represented in the constant number as 

follows 

                          0
0

=+
=+

ee
ee λ

      (9) 

Then, equation (9) will results seven diagonal lines correspond to seven input values that can be 

seen in Table 3. Therefore, d can have positive or negative values. The diagonal line that result 

“0” is called main diagonal line.  

 

Table 3: The rule table with Toeplits structure 

          

 e

e           

PL 

“10” 

PM 

“6.67” 

PS 

“3.33” 

Z 

“0” 

NS 

“-3.33” 

NM 

“-6.67” 

  NL 

“-10” 

NL 

“-10” 
0 -3.33 

-6.67 
-10 -10 -10 -10 

NM 

“-6.67” 
3.33 0 -3.33 -6.67 -10 -10 -10 

NS 

“-3.33” 
6.67 3.33 0 -3.33 -6.67 -10 -10 

Z 

“0” 

 

10 
6.67 3.33 0 -3.33 -6.67 -10 

PS 

“3.33” 
10 10 6.67 3.33 0 -3.33 -6.67 

PM 

“6.67” 
10 10 10 6.67 3.33 0 -3.33 

PL 

“10” 
10 10 10 10 6.67 3.33 0 

 
 

Saturation 
region  
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The derivation of distance, d input variable results in one dimension rule table compared to 

conventional FLC which have many rules. The rule table is depicted in Table 4 with the output of 

corresponding diagonal lines, uo .

 

Table 4: The reduce rule table of SIFLC 

21 λ

λ

+

+
=

eed  -10 -7 -4.66 -2.33 0 2.33 4.66 7 10 

uo  = ee λ+ (rule 

table) 
-9.9 -9.9 -6.6 -3.3 0 3.3 6.6 9.9 9.9 

 

All input, d and output, uo values are formed using a look-up table. Figure 16 shows the output of 

the system with SIFLC with less overshoot.  
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Figure 14: Temperature process response from simulation with SIFLC 

 

As shown in Figure 14, the SIFLC control performance (in terms of output results) is 

almost the same as the FLC controller in Figure 12. However, SIFLC provides much better 

performance in computation time, which is less than 1 second for the same computation that took 
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FLC 95 seconds. This comparable performance is achieved by reducing the number of rules from 

49 rules in FLC to 7 rules in SIFLC. 

 

V. CONTROLLER IMPLEMENTATION IN A REAL VVS-400 SYSTEM 

 

In the previous section, three types of controller have been designed via simulation. 

However, it was not enough to ensure that all the design controllers are exactly capable to control 

the VVS-400 system model until it was implemented to perform an online control. This real 

system implementation is done using Real Time Windows Target (RTWT) toolbox in Matlab 

[17]. Two blocks called Analog Output and Analog Input from RTWT connect the Simulink 

Matlab to the VVS-400 plant using data acquisition (DAQ) card PCI-1711. The controller will 

respond to the online process with 2 seconds sampling interval. The output of the controller will 

be fed into the Analog Output and the process output is generated from the Analog Input. Since 

only voltage is applicable in this RTWT toolbox, the output from the Analog Output need to be 

converted into temperature by multiply with constant, 20 as given in the previous section. The 

simulink block diagram of the system with PID, conventional FLC and SIFLC controller are 

represented in Figure 15, 17, and 19, respectively. The system output with PID, conventional 

FLC and SIFLC controllers are shown in Figure 16, 18 and 20, respectively. However, to satisfy 

the output, tuning parameter requires a little adjustment since the simulation tuning parameter is 

designed based on the approximated plant. 
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Figure 15: Simulink block diagram of real plant implementation with PID 
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Figure 16:  Temperature process response from experiment with PID 
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Figure 17: Simulink block diagram of real plant implementation with conventional FLC 
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Figure 18:  Temperature process response from experiment with conventional FLC 
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Figure 19: Simulink block diagram of real plant implementation with SIFLC 
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Figure 20:  Temperature process response from experiment with SIFLC 

 

By comparing the Figures 18 and 20, it shows that SIFLC capable to provide almost 

similar result as conventional FLC with less number of rules. The computation time for SIFLC is 

974 seconds which is less than FLC (1002 seconds). 
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Figure 21:  Temperature process response from simulation 
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Figure 22:  Temperature process response from real VVS-400 plant 

 

 

The overall system outputs are shown in Figures 21 and 22. The PID controller gives high 

overshoot in the simulation result compare to FLC and SIFLC. In contrast, in the online 
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implementation with a real VVS-400, PID controller has less overshoot compare to FLC and 

SIFLC after re-tuning. The FLC and SIFLC produced almost similar result with SIFLC has less 

computation time than FLC. 

 

VI. CONCLUSION 

 

In this paper, the pilot scale of heating and ventilation VVS-400 plant has been 

successfully modeled by ARX model structure using system identification approach. The PID, 

conventional FLC and SIFLC controllers are developed on this plant. These controllers are not 

only designed by an approximated model plant but also have been implemented to the VVS-400 

plant. From this study, it can be clearly seen that SIFLC is better than FLC with respect to the 

computation time due to the number of rules that can be significantly reduced. Though, both 

controllers produced almost similar results, the computation time is also considered as vital part 

of choosing suitable controller.  
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