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GO-VIKING g

GO-VIKING
——N
Gathering expertise On Vibration ImpaKt In Nuclear power Generation

* Follow-up of the VIKING initiative (2020)
e Understanding and prediction of Flow-Induced Vibration

* Focus on nuclear power generation

Today: focus on the numerical approach of FIV
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PRESSURIZED WATER REACTOR (PWR)

Z g M i
A

STEAM LINE

FIV for nuclear
power

FIV in pressure vessel and steam
generator

Vibration is sustained by feeding
energy from the flow into the
structure

There are tubes/rods (bundles),
with axial/cross flow



Types of Flow Induced Vibrations
— N

M.J. Pettigrew et al. / Nuclear Engineering and Design 185 (1998) 249-276

Table 1
Vibration excitation mechanisms

Flow situation Fluidelastic instability Periodic shedding Turbulence excitation Acoustic resonance
Axial flow
Internal
Gas * . * Hokk
Two-phase * — ok *
External
Gas * — * Kk sk
Two-phase * — o *
Cross flow
Single cylinders
Gas . ok * *
Two-Phase — * o —
Tube Bundle
Gas dkk * * KKk
Two-phase ok * o —

***Most important.
**Should be considered.
*Less likely.

—, Does not apply.
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* Examples of FIV / FSI

* Numerical modeling of FSI
* Fluid dynamics
* Solid dynamics
* Mesh motion
e Spatial & temporal interface coupling

* Academic examples
e Vortex Induced Vibration
 Turbulence Induced Vibration

* Challenges for validation



Examples of possibly dangerous FSI g
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Examples of modelling FSI g
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Examples of modelling FSI g
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(rbf-morph)

12 CYLINDERS
TRANSIENT FSI



FSI: (Dynamic) interaction between o
flows and deforming structures =L
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« How to model this numerically?
« Which physics do we need to model?
« Where does the interaction between flow and structure occur?

« Which conditions should be satisfied?



FSI: (Dynamic) interaction between o
flows and deforming structures =L
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 In all examples there is a dynamic, possibly dangerous, interaction between the flow around a

deforming structure
 Multi-physics are involved (solid mechanics & fluid mechanics)
« Aerodynamic loads on the structure cause a deformation of the structure
« Deformation of the aerodynamic surface results in a change in aerodynamic loads

« Coupling between flow and structure at the fluid-structure interface:
 Equality of velocity at (and location of) the interface

« Equilibrium in stress on the interface



FSI: solving a coupled system

Flow computation

CSM
forces

—> OUT: deformation of wing




Coupled fluid and structure g
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2
e  Structural system: M a_q + Dﬁ—q + Kq = Finterface
ot’ ot

d — dx . .

. Fuidsystem:  — [ W dV+$ (FW)-W=) - 7i dS=0
dt? Ve S dt

«  Moving fluid mesh

«  Boundary conditions at the interface:

flow speed = time derivative of displacement of the structure

stress in structure at interface = stress (incl. pressure) of flow at interface



Coupling diagram of flow and structure

How to solve

structure
dynamics

How to interpolate
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Coupling diagram of flow and structure
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Fluid dynamics

* Conservation laws:

 Conservation of mass
 Conservation of momentum
» Conservation of energy

* Navier-Stokes equations

* Finite volume discretisation



Lagrangian versus Eulerian approach

* Lagrangian: reference frame “attached” to the particles / control mass

* Mass is constant:
ey
Dt V(to) V(tl)
m=j pdV
1%

* Volume V varies in space and time

* Eulerian: Inertial (fixed) reference frame

* Volume is constant (in space and time)
* Mass inside volume varies in time

d
—f pdV+j€ pu-1dS =0
dt Jy, v,




The Navier-Stokes equations on a fixed mesh in
conserved variables in 2D

%jﬁ/ dQ+ [ [EOW).FOV)]- ii dS= | J dQ
c S

Q Q

V crv cv

EW)=

S
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convection=Wu
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Convection term changes for moving meshes

Amount of ¢ that is flowing out of the
control volume through dS:

]

i dS
Control volume Net: § o -ndS
Suppose the boundary du-ndS
dS moves at a velocity )
~¢5ndS




Arbitrary Lagrangian-Eulerian Formulation: Satisfaction

of the GCL/DGCL required

deV+f(EF dj-ﬁ)d&fﬁd\/

V(t) S(t)

Moving mesh introduces changes the effective convection: W

_ dx
e Eulerian: P
e |agrangian: dx _ i
b=

Velocity of the mesh generally unknown (“arbitrary”)
A geometric conservation law (GCL) exists for moving meshes

GCL / Discrete GCL should be satisfied (numerical stability
and ensures preservation of uniform flow on moving mesh)



Obtaining the GCL: assume uniform flow

TR s
deV+f(EF dt )dS deV

Suppose we have a uniform flow WO and no body forces
Closed surface S: Iconstant -ndS =0

d r.- - dx
— | W, dV+ E/,F] n W—ndSO
dt“[ " {([ ol" 2 dt )
0
V,S,n and X are not constant in time.

dtde Wf—nds 0 |= GCL: —fdv f—nds




The Discrete Geometric Conservation Law for Backward Euler

GCL continuous in space and time: f AV = f
V(t) S(t)
Spatial discretization for a control volume V; consisting of a number

of discrete faces: faces
A ray = Z(d—x i Asj
dr v = dt i

Discretization in time by Backward Euler scheme to obtain DGCL:

n+l aces n+l
s fZ(— nASj

i,j

e How to define (<x.;AS ) for each face individually?
dt



Example: swept “volume” in 2D

 Control volume moves from ¢,to ¢,,;
- Four faces with four swept volumes AV

4
. n+l n __
 Note that: V"' —p —ZAV].

j=!

Face with surface AS, normal 7 and center ¢

- n i 1 — n — n+1
(7AS).~ FAS) Swept volume: Ay = (¢ - 5n)[(”AS) +2(”AS) j
c'l o
- ) Mesh velocity condition: dx nAS " = A
v ' (E o )J, Y:

n+tl _prn faces
Verifies that: [ (df



Swept volume in 3D: example tetrahedron

A C, « Control volume moves from ¢,to ¢,.;
’ B, 1 - Four faces with four swept volumes AV
A
Ve, 1S anc>Sans »SnocScna |
D, Dy { }
A C, 4BCiD; SA2B2C2 7SA2D232 ) 53202C2 9SC2D2A2
2
Popn e oAy s s s Sy in S
AAle B: ABC * PB4 P 4,B,C, > Pt B A, 14,0,
1 B4
AV 15 VS pa S st St irn S ,S/
D, D
o AV i (P apedc DzAQ’ S}fﬂ/ Scatic,

+ AV, .S S S S
’ BZDZCZ ’ 2 ZBlDl ’ 1 1C2D2 ’ 2 ZCIBI

BDC C,D,B,

— _ No gaps or overlaps
ZAV VA232C2D2 VAIBIClDl between faces!



DGCL for 1D/2D/3D problems

e For every time integration scheme the DGCL results in a different
constraint for the moving mesh contribution:

d—» ~ n+l l.n.+1
e Backward Euler: —x-nASj Y

dt i At

> n+l n+l n

AV AV”.

e Multi-step: d—x-ﬁAsj _3ah, 14V,

dt 2 At 2 A

X (&) k) g I (m)
e Multi-stage: (@-EAS) _ 1AV Z (_ nASJ

dt L ~ .

o Constraint depends on the swept volumes for the faces AV

e DGCL satisfied when ) AV =V =V
j



Coupling diagram of flow and structure
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Structure dynamics

e Structure dynamics: Mg + Dg + Kq = F(t)
* The system can be decomposed into modes: q(x,t) = Y, @;(x)a;(t)
* ¢;(x) is the i-th mode shape, and a;(t) the amplitude of that mode

* The system can be decoupled by projecting onto @; (spatial filter):

(p’lTM(plal (pTD(plal + (pl K(plal — lTF(t) = a; + c;a; + wizai = fi(t)

Harmonic oscillator

* Properties defined by damping and natural frequency



Example of modes

mode shape 1, f

nat
1 T T T

0.8

0.6

021

=0 Hz, damping : 0
T

mode shape 2, f__ =1.6727 Hz, damping : 1.3989-0!
| ! ! !

nat
T T T

041

-0.6

Mode 1

0.7

0.8

0.9

Mode 2

Increasing natural frequency and damping

0.4

-0.5

mode shape 3,f . =

nat
T T T

10.4389 Hz, damping : 0.00054486
T T T

0.1

0.2 0.3 0.4

0.5 0.6 0.7 0.8 0.9 1

Mode 3




Harmonic oscillator with external forcing

i+ 2{wyad + wia = sin(wt)

* Vibrational response to a

harmonic forcing 4t
* Resonance when w = wy 3l

* Any forcing f (t) can be
decomposed in Fourier modes

* The structure acts as a
temporal filter 0

k

maxima
¢=0.0
(=0.1
(=0.2
¢ =0.3
¢ =0.5

wikipedia

0.0 0.5 1.0 1.5 2.0

2.5

3.0



Energy transfer to structure -

CT
!

F(t)

* Consider a single d.o.f. undamped system: mx + kx = F(t)
* If F(t) = 0 energy (and amplitude of the vibration) remain constant

* Change in energy: fttol (mi + kx)xdt = fttol F(t)xdt

by _rt1 dx (X
. = F(t) dt = [ F(x) dx

* Work done by external force is integration of force * displacement

. 1 .2, 1 2]
or: lzmx +2kx



Energy transfer from the fluid to the

structure

Energy fed into the structure is the work done over the interfaces:

Spring

F

~ F =kx

t1 dx X1
AE =j F—dt =J Fdx k
to dt Xo F /]

AE = — kx?
7 1

Note: moving back from x1
to x0 releases exact same

— X

X0 X1

amount of energy

If there is a clockwise
motion in the F-x diagram,
energy is added to the
structure

F(t)



Energy balance of the structure

* Energy in a vibration mode determines its amplitude

k
Mf(t)
* Energy balance: mil

* PhYSiCéll damping (C) External force
* Numerical damping (e.g. time discretization) l I
g ¥

» External forcing

I
. . ] | Structure =smmmm) Physical damping
* Net addition: amplitude increases | |

I
* Net removal: amplitude decreases I

Numerical errors



Coupling diagram of flow and structure
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Mesh regeneration

- o]
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Immersed/embedded boundaries

Immersed boundary treatment

+ Large deformations/displacements possible

5 + Account for topology changes

- Non-trivial solution interpolation:
* Conservation
maas * Temporal relation

i ] - Difficult to capture anisotropy in boundary layers
— adaptive mesh refinement can be necessary

=
|




Overlay meshes

+
VAVdVa \ _
S 4(3/ + Good boundary layer quality
+ Maneuvers (large displacements/rotations)
- Interpolation between meshes:
— - Conservation errors
S ) ) )
s =y » Can be expensive (time consuming)
AL S - Need to combine with other method to account
—] A . .
Z for solid shape deformation




Arbitray Langrangian-Eulerian

Mesh deformation
+ Good boundary layer quality

+ Conservative

mesh | movement - Limited deformation possible (mesh quality)

- Topology changes

- Can be time consuming




Mesh deformation

Structured meshes:

- Transfinite Interpolation: interpolating along gridlines

Unstructured meshes:

« Structure analogy: Spring analogy, solid body elasticity

« Solving a PDE: Laplace smoothing, Biharmonic operator

« Using interpolation functions (e.g. radial basis functions)

- > > -
Typical “pseudo-structure” representation: d;;, = K (X, Xp)dp,
jm - Internal node displacements Xiy, : Internal node location K : Pseudo stiffness matrix

cib : Boundary node displacements X}, : Boundary node location



Absolute vs. relative displacement

* Deformation of the mesh can be defined with respect to the previous
mesh location (relative displacement 6 = x"+1 x™) or the initial
mesh location (absolute displacement d = 1 — x0)

* Absolute: ci{}l“ = K(xm, xb)d"+1 Note: K is constant
e Relative: 8% = K (X%, x1)6n+! Note: K changes

 Relative mesh deformation can handle large displacements better

* Absolute mesh deformation preserves original mesh when returning
to initial position



Example mesh motion using relative
displacement (deform from previous mesh)

Mesh quality shows a continuous deterioration in time for this oscillating motion




Example mesh motion using absolute
displacement (deform from initial mesh)

Mesh shows a constant mesh quality variation for this oscillating motion




Coupling diagram of flow and structure
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Different solvers may use different meshes

deformation




Non-matching meshes

Problem: Grids do not have to match at the interface

Fluid

Intérfa

- Overlap

] o

Exchange of stresses:
fluid — structure

Exchange of displacements:
structure — fluid

¥

Interpolation/projection needed



Consistent and conservative interpolation

Kinematic and dynamic interface conditions

u. =u —
§ Discretization U f H sts ’

pn,=pA, ~ P =H,P,

f
Different possibilities for the set up of the transformation

matrices: Nearest Neighbor, Weighted Residual, Radial Basis
Function Interpolation.

Consistent interpolation when constant displacement and constant
pressure are exactly recovered — rowsum of H is equal to one.



Consistent and conservative interpolation

Exchange of displacements with a transformation matrix
Uf ju— HSfUS' 0.21

0.205F

Conservation of the change in work at the interface

0.21

pressure

6Wf = an with ow = FTU 0.195

0.19

This gives the following exchange of pressure forces:

0.1§%

F = H'F with F=M'P * Non-physical oscillations in
s S pressure received by structure
Then for the pressure yields: P. = [M H M ]T P with conservative approach.

H —> Rowsum generally not
s equal to one!
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Monolithic vs. partitioned coupling

iston’s motion

-
-
-
-
-
-
-

. . 0dsS
T structural velocity/displacement Tes
//// \ /\ k L
~N [
/
4 J fluid m o 0 _ _
\\ N ! + instantaneous satisfaction
\\\ ~_— ’,/ kinematic & dynamic interface
monolit\HiE\\-_ pressure force T conditions
_____________________________ - requires (new) single solver
partitioned structural velocity/displacement + reuse existing solvers
Rl N RRENY Re-use - Interface conditions not
4 Vs . .
R k *\ /- *\ existing instantaneously satisfied
\ \ . . .
[ m \ [ fluid i solvers!!! (partitioning error)
\ 1 \ 1
v ’ \ ’
‘\ // \\ //
N I Ny . ~_~
pressure force ~------ - Sm--- ~ pressure force

sub-iterate

= -
AN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NEEEN NN EEEEEEEEEEEEEEEEEE



Partitioning error

/ b
gas :

e Error in the equilibrium of forces

a) solve structure b) solve fluid

P"-Po

—

Ll L/

—

m a1 + k qn+1 =p" - Po un+l= Vn+1
0O >

< < O > XN+l = qn+1

Evaluate coupling at t"*!

e

un+l= Vn+1 , X"+l = qn+1

m an+1 + k qn+1 = pn+1 _ po




Black-box solver approach

« In partitioned coupling, flow and structure solver are considered
as black-boxes

« The structure and flow solver are given by

d=S(p)
p=F(d)

d : fluid-structure interface displacement
p : fluid-structure interface stress/pressure



Fully coupled: satisfy all interface
conditions simultaneously

« Ensure equilibrium on the fluid-structure interface

 For black-box solvers would require:
dn+1 _ S(pn+l)
pn+1 — F(dn+1)

d : fluid-structure interface displacement
p : fluid-structure interface stress/pressure

Chicken-and-Egg problem

« Cannot be solved directly: need coupling iterations!



Loosely coupled methods

n n+l
Jacobi iteration (parallel) Struc(t]ure U 2 U

o—e
a'=s(p’) i
n+l n W- o—0
p " :F n n+l
( ) flow w @ /4 ’ Time-lag in
the interface
conditions

structure [J" @ !
Gauss-Seidel (serial)

a" =S(p") ol &7
p™' = F(a) fow g @ g



Basic sub-iteration methods

Jacobi iteration (parallel) Gauss-Seidel (serial)
d4- = S(pk) d! = S(pk)
pk+1 :F(dk) pk+1 _ F(dk+l)

Can be written as a fixed-point iteration, e.g. Gauss-Seidel:

f)k =Fo S(pk) with an interface residual

h :FOS(pk)_pk :I~)k_pk

Or as minimization problem for the interface residual operator:

R(p)=FS(p)-p



Increase stability of coupling
iterations: underrelaxation

Coupling iteration: p* = FoS(pk) r‘=p“—p*

Gauss-Seidel: p"“ — f)"

Under-relaxation: pk+1 = Pk + G)(f)k — Pk)

Adaptive under-relaxation (Aitken’'s method):

e A )
<(rk —r! ), (rk —r*! )>
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Summary

* Three field problem: Flow, Structure, Mesh:
* Flow is solved on a moving/deforming mesh in ALE formulation
e Structure vibration behaviour similar to harmonic oscillator
* Mesh can be deformed with repect to its previous or initial state

e Using interpolation between meshes to transfer loads and
displacements

* Satisfying the kinematic and dynamic interface conditions using
partitioned black-box approach:

* Loosely coupled - flow and structure only solved once: partitioning
error

 Strongly coupled - sub-iterations with(out) underrelaxation



Physics of fluid-structure interaction

* Added mass, damping, stiffness effects determines the strength of the
interaction between flow and structure

« Added mass: fluid exerts a force (opposite to and) relative to the structural
acceleration

« Added damping: fluid exerts a force (opposite to and) relative to the
structural velocity

« Added stiffness: fluid exerts a force (opposite to and) relative to the
structural displacement

* Negative (aero/fluiddynamic) damping can result in a physical instability

* Added mass and stiffness change the vibration frequency of the structure
and can result in a numerical instability

 Strong interaction effects require strong coupling algorithms



Intuitive examples of coupling effects

vacuum
acuu k

A

| Kk

177777

1717777

air

[ L1111/

£



Example: Vortex Induced Vibration

Fluid
1
Usn ! .
—) HE 10D ] pout
pep—— »_ K2 ___ | _
“W
L .o — 1P
*  Airat 25°C « H=10D ps = 1.185 kg/m? Strouhal: St = =~
U, =0.03 m/s + L=60D = f; = 0.2 = 0.06Hz
Poue = 0 Pa « W=1D 5 5
e D=01m Ps = 1.07 or~ = 0.93 I
pf Ps ~ ~ 1.0
Structure fr I
m + m=0.001kg
. - - cy = K
) k =1.42e-4 N/m v, = %DZD — 7.85e-4 m3 Natural frequency: w = \/;
m ; = w = 0.377rad/s
ps = = 1.273 kg/m = f, =2 = 0.0599Hz

Zn_



Fluid shedding frequency related to
Strouhal

Rigid cylinder — Vortex shedding with frequency f

D: Cylinder diameter Uinf: Incoming flow velocity

Fluid

Strouhal:

St = (f D) / Uinf
St=0.22




Heavy structure, shedding frequency >>
natural frequency

Cylinder of mass m suspended with spring of stiffness k

D: Cylinder diameter Uinf: Incoming flow velocity

Fluid

Strouhal:

St = (f D) / Uinf
St=0.22

Structure
Mass:

w =V(k/m

k such that:




Heavy structure, shedding frequency =
natural frequency

Cylinder of mass m suspended with spring of stiffness k

D: Cylinder diameter Uinf: Incoming flow velocity

Fluid

Strouhal:

St = (f D) / Uinf
St=0.22

Structure
Mass:

w = m

k such that:




Lightweight structure, shedding frequency
=~ natural frequency

Cylinder of mass m suspended with spring of stiffness k

D: Cylinder diameter Uinf: Incoming flow velocity

Fluid

Strouhal:

St = (f D) / Uinf
St=0.22

Structure
Mass:

w = m

k such that:




Energy analysis of the FIV system

Exchange of energy over the fluid-structure interface

The fluid has an inlet b.c. that allows new energy to
enter, and an outlet b.c. that removes energy from the
system.

The fluid can also dissipate energy because of numerical
discretization errors.

The structure has no physical damper, therefore would
not remove energy from the system, apart from
numerical discretization errors

The motion/amplitude of the structure is therefore

governed by the work done by the fluid on the structure:

if the fluid adds energy to the structure, its amplitude
increases, and when the fluid extracts energy from the

structure its amplitude decreases.

Numerical errors

| |
| |
! |
| !
| —— — — [R—
!

|

!

| FSI

|

|

I & W
|

I

|

|

|1

I

|

|

Structure

__::::[_:::1_

Numerical errors



Energy analysis of the FIV system

Exchange of energy over the fluid-structure interface

The fluid has an inlet b.c. that allows new energy to
enter, and an outlet b.c. that removes energy from the
system.

The fluid can also dissipate energy because of numerical
discretization errors.

The structure has no physical damper, therefore would
not remove energy from the system, apart from
numerical discretization errors

The motion/amplitude of the structure is therefore

governed by the work done by the fluid on the structure:

if the fluid adds energy to the structure, its amplitude
increases, and when the fluid extracts energy from the
structure its amplitude decreases. Only when the net
work over one period is equal to zero, the structure
amplitude remains constant

Numerical errors

FSI
Structure

| — e — [ ——
Negl'igjlglg_$ _____

Numerical errors

[___ - e |
| I
| I
| I
| I
| I
| I



y[m]

5

Fy N]
o

0.1

0.05

-0.05

-0.1

Fy IN]

x103

20 25
| |
20 25
time [s]
| |
0 0.02

Fluid

Strouhal:

St = (f D) / Uinf
St=0.22

Structure
Mass:
w = m

k such that:




Free vibration in still flow

* Same domain, but no in/outflow condition Structure

. . : m m = 0.001 kg
e Structure is at an initial displacement ék . Kk =1.42e-4N/m
e Observe the structur vibration when released

* Medium is either vacuum, air or water

e Structure mass and stiffness varied (keeping natural frequency
constant), but changing the mass (density) ratio:

« _ Prf
B Ps

m



Instability for high m* values

 Added mass effect creates a
numerical instability:

e Structure accelerates based on
the spring force initially

* The acceleration creates a larger
opposing force from the fluid

* This results in an even larger
opposite acceleration

* Need strong coupling (sub-
iterations)

* For very high m*, we need
underrelaxation as well




Effect of added mass and damping clearly
onse frequency and decay

visible in resp

Vacuum

Air

Water

y [m]

y [m]

y [m]

0.05

-0.05
0.04

0.02

-0.02

-0.04

0.04

0.02

-0.02

A A
D

I

|

L]

-0.02

m* = 100

0.04 1

0.02 1

-0.02

m* = 1000

* Structure response is
according to harmonic
oscillator in vacuum

0

* For small mass ratios
the simulation can be
solved loosely coupled

o * For high mass ratios
the strong coupling
(with underrelaxation)
is required

50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300

time [s]

time [s]

time [s]



Example: Turbulence Induced Vibration

* When solvin% turbulence using a RANS approach, we get
good mean flow proprties, but we loose the turbulent
pressure fluctuations

* |f the structure eigenfrequency is close to some spectral
content of p’, this may feed very effectively energy into
the structure that (U)RANS fails to predict

p’ at 1 location

il \,HM IH“““ 1R L u}‘ LA ‘
\" it uw”‘ ‘ ‘lu ‘ \I Y TS VAR

pfluct [Pa]
o

-0.02 -

¥
(7 -0.06 L L L
° 170 175 180 185
X < time [s]
X
3 0100 (m)
— " —
Doz 7



Challenges for validation

e Structure model is in vacuum: fluid added mass / damping / stiffness
* Determining structure parameters: mass, damping, stiffness
* Determining inflow conditions: turbulence intensity / turb forcing



Validation issues: obtaining structure
properties

To measure structure properties (mass, stiffness, damping) often
vibration tests are performed. From the vibration response, one can
obtain the objects stiffness / structural damping

Example: DelfFly II : a micro-aerial vehicle that uses flapping wings
for lift/propulsion

=> How can you measure the structure-only response of e.g. the wings?



Coupling diagram of flow and structure
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Summary

* Three field problem: Flow, Structure, Mesh:

 Flow is solved on a moving/deforming mesh in ALE formulation
e Structure vibration behaviour similar to harmonic oscillator
« Mesh can be deformed with repect to its previous or initial state

* Using interpolation between meshes to transfer loads and displacements

* Satisfying the kinematic and dynamic interface conditions using partitioned
black-box approach:
* Loosely coupled - flow and structure only solved once: partitioning error
 Strongly coupled - sub-iterations with(out) underrelaxation

 Structure model requires “in vacuum” properties, which may be difficult to
determine in the presence of added mass/damping/stiffness effects
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