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• Follow-up of the VIKING initiative (2020)
• Understanding and prediction of Flow-Induced Vibration
• Focus on nuclear power generation

Today: focus on the numerical approach of FIV
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FIV for nuclear 
power

FIV in pressure vessel and steam 
generator

Vibration is sustained by feeding 
energy from the flow into the 
structure

There are tubes/rods (bundles), 
with axial/cross flow

Sarah Harman, US Department of Energy



Types of Flow Induced Vibrations



• Examples of FIV / FSI
• Numerical modeling of FSI

• Fluid dynamics
• Solid dynamics
• Mesh motion
• Spatial & temporal interface coupling

• Academic examples
• Vortex Induced Vibration
• Turbulence Induced Vibration

• Challenges for validation

Contents



Examples of possibly dangerous FSI

Youtube Youtube



Examples of modelling FSI

Youtube



Examples of modelling FSI

Youtube



• How to model this numerically?

• Which physics do we need to model?

• Where does the interaction between flow and structure occur?

• Which conditions should be satisfied?

FSI: (Dynamic) interaction between 
flows and deforming structures



• In all examples there is a dynamic, possibly dangerous, interaction between the flow around a 
deforming structure

• Multi-physics are involved (solid mechanics & fluid mechanics)

• Aerodynamic loads on the structure cause a deformation of the structure

• Deformation of the aerodynamic surface results in a change in aerodynamic loads

• Coupling between flow and structure at the fluid-structure interface:

• Equality of velocity at (and location of) the interface

• Equilibrium in stress on the interface

FSI: (Dynamic) interaction between 
flows and deforming structures



FSI: solving a coupled system

FSI

CFD Flow computation

IN: Shape of the wing

OUT: pressure forces/loads

CFD Flow computation

IN: Shape of the wing

OUT: pressure forces/loads

CSM

Structure computation

IN: forces on wing

OUT: deformation of wing

CSM

couplingforces deformation



Coupled fluid and structure

• Structural system:

• Fluid system:

• Moving fluid mesh

• Boundary conditions at the interface:   
• flow speed = time derivative of displacement of the structure

• stress in structure at interface = stress (incl. pressure) of flow at interface

d
dt

 W  dV
V (t )∫ + (


F(W )−W dx

dt
) ⋅  n  dS

S(t )∫ = 0

M ∂2q
∂t2

+D ∂q
∂t
+Kq = Finterface
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Fluid dynamics

• Conservation laws:
• Conservation of mass
• Conservation of momentum
• Conservation of energy

• Navier-Stokes equations 

• Finite volume discretisation



Lagrangian versus Eulerian approach
• Lagrangian: reference frame “attached” to the particles / control mass

• Mass is constant:
𝐷𝑚
𝐷𝑡 = 0

𝑚 = &
!
𝜌𝑑𝑉

• Volume V varies in space and time

• Eulerian: Inertial (fixed) reference frame

• Volume is constant (in space and time)
• Mass inside volume varies in time

𝑑
𝑑𝑡
#
!!
𝜌𝑑𝑉 + '

"!!
𝜌𝑢 ) 𝑛𝑑𝑆 = 0

V(t0) V(t1)

𝑢

dS

𝑛

V0



The Navier-Stokes equations on a fixed mesh in 
conserved variables in 2D
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=convection

d
dt

!
W  dΩ

ΩCV
∫ + [

!
E(
!
W ),
!
F(
!
W )]⋅  !n dS

SCV
∫ =

!
J  dΩ

ΩCV
∫



Convection term changes for moving meshes

Suppose the boundary 
dS moves at a velocity

u

f

n

Control volume

dS

f

Amount of f that is flowing out of the 
control volume through dS:

dS

u

n

f

Snu d  ×f

Net: ò × Snu d f

Snu d  ×f

Net: ( )ò ×- Snu t
x d d
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Arbitrary Lagrangian-Eulerian Formulation: Satisfaction 
of the GCL/DGCL required

d
dt


W  dV

V (t )
∫ + [


E,

F]⋅  n  −


W dx

dt
⋅
n

$

%
&

'

(
)dS

S(t )
∫ =


J  dV

V (t )
∫

• Moving mesh introduces changes the effective convection :

• Eulerian: 

• Lagrangian: 

• Velocity of the mesh generally unknown (“arbitrary”)
• A geometric conservation law (GCL) exists for moving meshes
• GCL / Discrete GCL should be satisfied (numerical stability 

and ensures preservation of uniform flow on moving mesh)

𝑊 𝑢 −
𝑑�⃗�
𝑑𝑡

𝑑�⃗�
𝑑𝑡

= 0

𝑑�⃗�
𝑑𝑡

= 𝑢



Obtaining the GCL: assume uniform flow

d
dt


W  dV

V
∫ + [


E,

F]⋅  n  −


W dx

dt
⋅
n
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d
dt


W0  dV

V
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(
)dS

S
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Suppose we have a uniform flow        and no body forces

xnSV   and ,, are not constant in time.

0 constant =×ò
S

dSnClosed surface S:

0


W0

d
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dV
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The Discrete Geometric Conservation Law for Backward Euler

å
=

++

÷
ø
ö

ç
è
æ D×=

D
- faces

1

1

,

1

 
j

n

ji

n
i

n
i Sn

dt
xd

t
VV 



GCL continuous in space and time: 

Discretization in time by Backward Euler scheme to obtain DGCL:

• How to define                   for each face individually?( )Sndt
xd D×


d
dt

dV
V (t )
∫ =

dx
dt
⋅
n  dS

S(t )
∫
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Spatial discretization for a control volume Vi consisting of a number 
of discrete faces:



Example: swept “volume” in 2D
• Control volume moves from tn to tn+1
• Four faces with four swept volumes DVj
• Note that: å
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Verifies that:



Swept volume in 3D: example tetrahedron
• Control volume moves from tn to tn+1

• Four faces with four swept volumes DVj
A1 B1

C1

D1

B2
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C2

D2

{ }
1111111111111111
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ΔVABC : SC1B1A1 ,SA2B2C2 ,SA1B1B2A2 ,SB1C1C2B2 ,SC1A1A2C2{ }A1 B1

C1B2
A2

C2

A1 B1

D1

B2
A2

D2

ΔVADB : SB1D1A1 ,SA2D2B2 ,SA1D1D2A2 ,SD1B1B2D2 ,SA2B2B1A1{ }
ΔVCDA : SA1D1C1 ,SC2D2A2 ,SD2C2C1D1 ,SA2D2D1A1 ,SC2A2A1C1{ }
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DGCL for 1D/2D/3D problems
• For every time integration scheme the DGCL results in a different 

constraint for the moving mesh contribution:

• Backward Euler: 

• Multi-step:

• Multi-stage:

• Constraint depends on the swept volumes for the faces

• DGCL satisfied when  
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Coupling diagram of flow and structure 
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Harmonic oscillator

Structure dynamics

• Structure dynamics: 𝑀�̈� + 𝐷�̇� + 𝐾𝑞 = 𝐹(𝑡)

• The system can be decomposed into modes: 𝑞 𝑥, 𝑡 = ∑!"#$ 𝜑! 𝑥 𝑎!(𝑡)

• 𝜑! 𝑥 is the i-th mode shape, and 𝑎!(𝑡) the amplitude of that mode

• The system can be decoupled by projecting onto 𝜑! (spatial filter):

𝜑!%𝑀𝜑!�̈�! +𝜑!%𝐷𝜑!�̇�! +𝜑!%𝐾𝜑!𝑎! = 𝜑!%𝐹(𝑡) ⟹ �̈�! + 𝑐!�̇�! +𝜔!&𝑎! = 𝑓!(𝑡)

• Properties defined by damping and natural frequency



Example of modes
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Harmonic oscillator with external forcing

�̈� + 2𝜁𝜔'�̇� + 𝜔'&𝑎 = 𝑠𝑖𝑛(𝜔𝑡)

• Vibrational response to a 
harmonic forcing
• Resonance when 𝜔 ≈ 𝜔'
• Any forcing 𝑓(𝑡) can be 

decomposed in Fourier modes
• The structure acts as a 

temporal filter

A

⁄𝜔 𝜔"

wikipedia

m F(t)
k

c



Energy transfer to structure

• Consider a single d.o.f. undamped system: 𝑚�̈� + 𝑘𝑥 = 𝐹(𝑡)
• If 𝐹 𝑡 = 0 energy (and amplitude of the vibration) remain constant

• Change in energy: ∫(.
(/ 𝑚�̈� + 𝑘𝑥 �̇�𝑑𝑡 = ∫(.

(/ 𝐹(𝑡)�̇�𝑑𝑡

or:        #&𝑚�̇�
& + #

&𝑘𝑥
&
(.

(/
= ∫(.

(/ 𝐹(𝑡) )*)( 𝑑𝑡 = ∫*.
*/ 𝐹(𝑥) 𝑑𝑥

• Work done by external force is integration of force * displacement

m F(t)
k

c



Energy transfer from the fluid to the
structure

Energy fed into the structure is the work done over the interfaces:

Δ𝐸 = &
##

#$
𝐹
𝑑𝑥
𝑑𝑡
𝑑𝑡 = &

$#

$$
𝐹𝑑𝑥

x

F

𝑥% 𝑥&

𝐹 = 𝑘𝑥

Spring

Δ𝐸 =
1
2
𝑘𝑥$%

Note: moving back from x1 
to x0 releases exact same
amount of energy

x

F

If there is a clockwise
motion in the F-x diagram, 
energy is added to the
structure

m F(t)
k

c



Energy balance of the structure

• Energy in a vibration mode determines its amplitude

• Energy balance:
• Physical damping (c)
• Numerical damping (e.g. time discretization)
• External forcing

• Net addition: amplitude increases
• Net removal: amplitude decreases

Structure

External force

Numerical errors

m f(t)
k

c

Physical damping
E
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Mesh regeneration

Regenerating the grid

- Time consuming
- Non-trivial:

• generation
• solution interpolation

+ Robust (mesh quality)

+ Account for topology changes

+ Large displacements

solid



Immersed/embedded boundaries

Immersed boundary treatment

+ Large deformations/displacements possible
+ Account for topology changes

- Non-trivial solution interpolation:
• Conservation
• Temporal relation

- Difficult to capture anisotropy in boundary layers 
– adaptive mesh refinement can be necessary



Overlay meshes

Static background mesh + moving body-conformal 
mesh

+ Good boundary layer quality

+ Maneuvers (large displacements/rotations)

- Interpolation between meshes:
• Conservation errors
• Can be expensive (time consuming)

- Need to combine with other method to account 
for solid shape deformation

solid

solid



Arbitray Langrangian-Eulerian

Mesh deformation

+ Good boundary layer quality
+ Conservative

- Limited deformation possible (mesh quality)

- Topology changes
- Can be time consuming



Mesh deformation

Structured meshes:

• Transfinite Interpolation: interpolating along gridlines

Unstructured meshes:

• Structure analogy: Spring analogy, solid body elasticity
• Solving a PDE: Laplace smoothing, Biharmonic operator

• Using interpolation functions (e.g. radial basis functions)

Typical “pseudo-structure” representation: 𝑑() = 𝐾 �⃗�(), �⃗�* 𝑑*
𝑑!" : Internal node displacements

𝑑# : Boundary node displacements

�⃗�!" : Internal node location

�⃗�# : Boundary node location

𝐾 : Pseudo stiffness matrix



Absolute vs. relative displacement

• Deformation of the mesh can be defined with respect to the previous
mesh location (relative displacement 𝛿 = �⃗�+,# − �⃗�+) or the initial
mesh location (absolute displacement 𝑑 = �⃗�+,# − �⃗�')

• Absolute: 𝑑!++,# = 𝐾 �⃗�!+' , �⃗�-' 𝑑-+,# Note: K is constant
• Relative: 𝛿!++,# = 𝐾 �⃗�!++ , �⃗�-+ 𝛿-+,# Note: K changes

• Relative mesh deformation can handle large displacements better
• Absolute mesh deformation preserves original mesh when returning 

to initial position



Example mesh motion using relative 
displacement (deform from previous mesh)
Mesh quality shows a continuous deterioration in time for this oscillating motion



Example mesh motion using absolute 
displacement (deform from initial mesh)
Mesh shows a constant mesh quality variation for this oscillating motion
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Different solvers may use different meshes

FSI

CFD

CSM

coupling

forces

deformation



Non-matching meshes

Problem: Grids do not have to match at the interface

Exchange of stresses:        
fluid                structure

Exchange of displacements: 
structure          fluidÞ

Þ

Interpolation/projection needed
¯



Consistent and conservative interpolation
Kinematic and dynamic interface conditions

Different possibilities for the set up of the transformation 
matrices: Nearest Neighbor, Weighted Residual, Radial Basis 
Function Interpolation. 

Consistent interpolation when constant displacement and constant 
pressure are exactly recovered       rowsum of      is equal to one.

ffss

ssff

H
H
PP
UU

=

= .
ffss

sf

pp nn
uu

=

=

®

Discretization
®

H



Consistent and conservative interpolation

Exchange of displacements with a transformation matrix

Conservation of the change in work at the interface

This gives the following exchange of pressure forces:

Then for the pressure yields:

.H ssff UU =

sf WW ¶=¶ .UFTW =¶

[ ] .1
f

fs

T

ssffs

H

MHM PP


-=

with

f
T
sfs H FF =

® Rowsum generally not
equal to one!

F =MTPwith • Non-physical oscillations in 
pressure received by structure 
with conservative approach.
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Monolithic vs. partitioned coupling

fluid m
k

pressure force

structural velocity/displacement

pressure force

m
k

structural velocity/displacement

fluid

pressure force
sub-iterate

monolithic

partitioned
Re-use 
existing 
solvers!!!

+ instantaneous satisfaction 
kinematic & dynamic interface 
conditions
- requires (new) single solver

+ reuse existing solvers
- Interface conditions not
instantaneously satisfied
(partitioning error)



Partitioning error

• Error in the equilibrium of forces

pn-p0

m an+1 + k qn+1 = pn - p0

a) solve structure b) solve fluid

un+1 = vn+1

xn+1 = qn+1

Evaluate coupling at tn+1

un+1 = vn+1 , xn+1 = qn+1

m an+1 + k qn+1 ¹pn+1 - p0



Black-box solver approach

• In partitioned coupling, flow and structure solver are considered 
as black-boxes

• The structure and flow solver are given by

d : fluid-structure interface displacement
p : fluid-structure interface stress/pressure

( )
( )dp
pd

F
S

=
=



Fully coupled: satisfy all interface 
conditions simultaneously
• Ensure equilibrium on the fluid-structure interface

• For black-box solvers would require:

d : fluid-structure interface displacement
p : fluid-structure interface stress/pressure

• Cannot be solved directly: need coupling iterations!

dn+1 = S pn+1( )
pn+1 = F dn+1( )

Chicken-and-Egg problem



Loosely coupled methods

Jacobi iteration (parallel)

Gauss-Seidel (serial) U

W
1

4

2
nU 1+nU

nW 1+nWflow

structure

3

( )
( )nn

nn

F
S
dp
pd

=

=
+

+

1

1
U

W
1

2

2

nU 1+nU

nW 1+nWflow

structure

npnd

( )
( )11

1

++

+

=

=
nn

nn

F
S
dp
pd 1+nd

np

Time-lag in 
the interface 
conditions



Basic sub-iteration methods
Jacobi iteration (parallel) Gauss-Seidel (serial)

Can be written as a fixed-point iteration, e.g. Gauss-Seidel:

with an interface residual 

Or as minimization problem for the interface residual operator:

( )
( )kk

kk

F
S
dp
pd

=

=
+

+

1

1 ( )
( )11

1

++

+

=

=
kk

kk

F
S
dp
pd

!pk = F " S pk( )
rk = F ! S pk( )− pk = !pk − pk

( ) ( ) ppp -= SFR 



Increase stability of coupling
iterations: underrelaxation

Coupling iteration:

Gauss-Seidel:

Under-relaxation:

Adaptive under-relaxation (Aitkenʼs method):

!pk = F " S pk( )

( ) ( )
( ) ( )11

11
1

,

,
--

--
-

--

-
-=

kkkk

kkk
kk

rrrr

rrr
ww

rk = !pk − pk

pk+1 = !pk

pk+1 = pk +ω !pk − pk( )
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Summary

• Three field problem: Flow, Structure, Mesh:
• Flow is solved on a moving/deforming mesh in ALE formulation
• Structure vibration behaviour similar to harmonic oscillator
• Mesh can be deformed with repect to its previous or initial state

• Using interpolation between meshes to transfer loads and 
displacements
• Satisfying the kinematic and dynamic interface conditions using 

partitioned black-box approach:
• Loosely coupled – flow and structure only solved once: partitioning 

error
• Strongly coupled – sub-iterations with(out) underrelaxation



Physics of fluid-structure interaction

• Added mass, damping, stiffness effects determines the strength of the 
interaction between flow and structure
• Added mass: fluid exerts a force (opposite to and) relative to the structural 

acceleration
• Added damping: fluid exerts a force (opposite to and) relative to the 

structural velocity
• Added stiffness: fluid exerts a force (opposite to and) relative to the 

structural displacement
• Negative (aero/fluiddynamic) damping can result in a physical instability
• Added mass and stiffness change the vibration frequency of the structure 

and can result in a numerical instability
• Strong interaction effects require strong coupling algorithms



Intuitive examples of coupling effects

m
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m
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Example: Vortex Induced Vibration

m

k

Fluid

Structure

• Air at 25oC 
• Uin = 0.03 m/s
• Pout = 0 Pa

• H = 10D
• L = 60D
• W = 1D
• D = 0.1m

• m = 0.001 kg
• k  = 1.42e-4 N/m

𝜌$ = 1.185 kg/m3

𝑉% =
&
'
𝐷(𝐷 = 7.85e-4 m3

𝜌% =
)
*
= 1.273 kg/m3

+!
+"
= 1.07 or 

+"
+!
= 0.93

Strouhal: 𝑆𝑡 = $,
-

⟹ 𝑓$ = 0.2 -
,
= 0.06Hz

Natural frequency: 𝜔 = .
)

⟹ 𝜔 = 0.377rad/s
⟹ 𝑓% =

/
(&
= 0.0599Hz

$!
$"
≈

$"
$!
≈ 1.0



Fluid shedding frequency related to 
Strouhal

Rigid cylinder – Vortex shedding with frequency f

Fluid
Strouhal:
St = (f D) / Uinf
St ≈ 0.22

D: Cylinder diameter Uinf: Incoming flow velocity



Heavy structure, shedding frequency >> 
natural frequency

Cylinder of mass m suspended with spring of stiffness k

Fluid
Strouhal:
St = (f D) / Uinf
St ≈ 0.22

D: Cylinder diameter Uinf: Incoming flow velocity

Structure
Mass:
m >> 𝜌f 𝜋/4 D2

𝜔 = √(k/m)

k such that:
𝜔 << 2 𝜋 f



Heavy structure, shedding frequency ≈ 
natural frequency

Cylinder of mass m suspended with spring of stiffness k

Fluid
Strouhal:
St = (f D) / Uinf
St ≈ 0.22

D: Cylinder diameter Uinf: Incoming flow velocity

Structure
Mass:
m >> 𝜌f 𝜋/4 D2

𝜔 = √(k/m)

k such that:
𝜔 ≈ 2 𝜋 f



Lightweight structure, shedding frequency 
≈ natural frequency

Cylinder of mass m suspended with spring of stiffness k

Fluid
Strouhal:
St = (f D) / Uinf
St ≈ 0.22

D: Cylinder diameter Uinf: Incoming flow velocity

Structure
Mass:
m ≈ 𝜌f 𝜋/4 D2

𝜔 = √(k/m)

k such that:
𝜔 ≈ 2 𝜋 f



Energy analysis of the FIV system
• Exchange of energy over the fluid-structure interface

• The fluid has an inlet b.c. that allows new energy to
enter, and an outlet b.c. that removes energy from the
system. 

• The fluid can also dissipate energy because of numerical
discretization errors.

• The structure has no physical damper, therefore would
not remove energy from the system, apart from
numerical discretization errors

• The motion/amplitude of the structure is therefore
governed by the work done by the fluid on the structure: 
if the fluid adds energy to the structure, its amplitude 
increases, and when the fluid extracts energy from the
structure its amplitude decreases. 

Fluid

Inlet Outlet

Structure

Numerical errors

FSI

Numerical errors



Energy analysis of the FIV system
• Exchange of energy over the fluid-structure interface

• The fluid has an inlet b.c. that allows new energy to
enter, and an outlet b.c. that removes energy from the
system. 

• The fluid can also dissipate energy because of numerical
discretization errors.

• The structure has no physical damper, therefore would
not remove energy from the system, apart from
numerical discretization errors

• The motion/amplitude of the structure is therefore
governed by the work done by the fluid on the structure: 
if the fluid adds energy to the structure, its amplitude 
increases, and when the fluid extracts energy from the
structure its amplitude decreases. Only when the net 
work over one period is equal to zero, the structure
amplitude remains constant

Fluid

Inlet Outlet

Structure

Numerical errors

FSI

Numerical errors

Negligible



Fluid
Strouhal:
St = (f D) / Uinf
St ≈ 0.22

Structure
Mass:
m ≈ 𝜌f 𝜋/4 D2

𝜔 = √(k/m)

k such that:
𝜔 ≈ 2 𝜋 f



Free vibration in still flow

• Same domain, but no in/outflow condition
• Structure is at an initial displacement
• Observe the structur vibration when released
• Medium is either vacuum, air or water
• Structure mass and stiffness varied (keeping natural frequency 

constant), but changing the mass (density) ratio:

𝑚∗ = /3
/4

m

k

Structure

• m = 0.001 kg
• k  = 1.42e-4 N/m



Instability for high m* values

• Added mass effect creates a 
numerical instability:
• Structure accelerates based on 

the spring force initially
• The acceleration creates a larger

opposing force from the fluid
• This results in an even larger

opposite acceleration
• Need strong coupling (sub-

iterations)
• For very high m*, we need

underrelaxation as well

m* ≈ 100



Effect of added mass and damping clearly 
visible in response frequency and decay
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Vacuum 

Air

Water

m* = 0 m* = 0 m* = 0

m* ≈ 0.01 m* ≈ 0.1 m* ≈ 1

m* ≈ 10 m* ≈ 100 m* ≈ 1000

• Structure response is 
according to harmonic
oscillator in vacuum
• For small mass ratios

the simulation can be
solved loosely coupled
• For high mass ratios

the strong coupling
(with underrelaxation) 
is required



Example: Turbulence Induced Vibration
• When solving turbulence using a RANS approach, we get 

good mean flow proprties, but we loose the turbulent 
pressure fluctuations

• If the structure eigenfrequency is close to some spectral 
content of p’, this may feed very effectively energy into 
the structure that (U)RANS fails to predict
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Challenges for validation

• Structure model is in vacuum: fluid added mass / damping / stiffness
• Determining structure parameters: mass, damping, stiffness
• Determining inflow conditions: turbulence intensity / turb forcing



Validation issues: obtaining structure 
properties

=> How can you measure the structure-only response of e.g. the wings?

To measure structure properties (mass, stiffness, damping) often 
vibration tests are performed. From the vibration response, one can 
obtain the objects stiffness / structural damping

Example: DelfFly II : a micro-aerial vehicle that uses flapping wings 
for lift/propulsion



Coupling diagram of flow and structure 

Structure Flow mesh Flow

Interface
displacement

Moving 
domain

Interface forces

How to solve 
fluid flow 
equations

How to interpolate 
between meshes

How to interpolate 
between meshes

How to deform fluid 
mesh

… on a 
deforming mesh

How to couple in 
time

How to solve 
structure 
dynamics



Summary
• Three field problem: Flow, Structure, Mesh:

• Flow is solved on a moving/deforming mesh in ALE formulation
• Structure vibration behaviour similar to harmonic oscillator
• Mesh can be deformed with repect to its previous or initial state

• Using interpolation between meshes to transfer loads and displacements
• Satisfying the kinematic and dynamic interface conditions using partitioned 

black-box approach:
• Loosely coupled – flow and structure only solved once: partitioning error
• Strongly coupled – sub-iterations with(out) underrelaxation

• Structure model requires “in vacuum” properties, which may be difficult to 
determine in the presence of added mass/damping/stiffness effects



Thank you!
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