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Abstract—Recently, smart system integration was identified as
a key competence for optimizing machines and robots. How-
ever, when one wants to ’tune’ the entire production process
a step further is necessary. We should evaluate performance
indicators (e.g. energy and material consumption) over the
whole machine life cycle in order to align the production with
circular economy principles. To reach that target MBSE (model-
based system engineering) should be covered by advanced digital
twin approaches which allow continuous monitoring of machine
performance, predict the failures and maintenance. Moreover,
artificial intelligence and machine learning must be used to
process big data sets gathered from the production lines. This
paper identifies a common set of technologies and building blocks
suitable to solve above mentioned problems for a large variety
of industrial domains (semiconductor production, health-care
robotics, CNC1 machining, high-speed packaging and others). It
presents the first results of the large-scale IMOCO4.E2 project
and shows the pathways for application of the technology on
specific machines (so-called pilots). The authors believe the ideas
presented could be inspiring also in other domains.

Index Terms—smart system integration, mechatronics, motion
control, digital twin, electronics systems, wireless communication,
smart sensors, robotics, embedded systems, machine learning,
artificial intelligence, cyber-physical systems

I. INTRODUCTION

In recent decades, engineering sector must deal with limited
material, energy and human resources. This implies com-
pletely new requirements also for the industrial production
and related machines. Consequently, digital twins and AI3 are
being employed also in mechatronics and smart motion control
applications [1]. Clearly, such applications need to follow the
latest advancements is sensing ( [2]–[4]), actuation, control
system design ( [5], [6], [11]) or novel computing platforms
( [13], [14]). Hence such complex approach is relevant for
many engineering domains such as semiconductor industry,
health care systems, CNC production, packaging, etc [15].

More specifically, the main challenges identified are:

• in order to save material, energy and shop floor space,
the machines/robots size and weight are decreasing while
safe interaction with humans is needed, hence their me-

1Computer numeric control
2Intelligent Motion Control under Industry4.E - https://www.imoco4e.eu
3Artificial intelligence

chanical structures are becoming more flexible [16] and
problem of residual vibration appears ( [12], [17]),

• raising customer demands are forcing machines/robots
speeds to be close to the physical barriers,

• the machines/robots are composed of more complex
kinematic architectures, often redundant and collaborative
with numerous axes to be simultaneously controlled [7],
[22],

• ensuring energy efficiency of machine and robot opera-
tion is highly challenging as the machines/robots must
quickly self-adapt to new tasks and repeat them ( [18],
[21]) quickly and precisely in non-deterministic environ-
ments, producing smaller sets of customized products,

• increasing demands on product quality do force ma-
chines/robots to work in complex multi-stage production
lines with integrated zero-defects and predictive mainte-
nance at the system level,

• inclusive and resilient manufacturing is a future challenge
fostering a lot of technologies. It should allow customers
to be a part of the development cycle.

To handle those challenges, this paper brings up a reference
framework compatible with MBSE principles and tangible
building blocks with AI supervision of controller interaction
with physics [12]. The control and measurement framework
shall facilitate modelling and simulation of multi-physical
mechanisms that cannot be grasped without such approach.
The envisioned set of R&D4 activities can be structured as
follows:

• to develop advanced model-based and knowledge-based
methods for building digital twins for design, optimiza-
tion, customization, virtual commissioning and predictive
maintenance of machines and robots, using existing and
novel data sets [26], [30], [33],

• to develop a Smart Instrumentation Layer – Layer 1
gathering and processing visual and/or sensor informa-
tion from supplementary instrumentation installed on
the moving parts of the controlled system (i.e. at the
edge) to enhance the achievable performance and energy
efficiency during the whole system lifecycle ( [24], [27],
[28], [32], [39], [42]),
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• to develop modular unified, hardware and software mo-
tion control building blocks (BBs) implementing a new
condensed edge intelligence, i.e. Smart Control Layer –
Layer 2 ( [8], [10], [23], [25], [29], [31], [38], [40], [41]),

• ensure secure interoperability with State-of-the-Art cloud
platform, i.e System Behaviour Layer – Layer 3 and
develop specific condition monitoring building blocks
providing relevant data for machine digital twins and
system behaviour layer, further used either for machine
predictive maintenance or re-design, virtual design and
optimization; contribute to open datasets ( [34], [35],
[37]).

Finally, it is shown how the methods and building blocks are
applied in various industrial domains with different require-
ments. The framework reflects also key challenges in motion
control education [36].

The rest of the paper is organized as follows: Section II
describes the common high-level system structure and the
overall framework. Section III brings system decomposition
to most important sub-components. System IV highlights the
main applications where the framework is being tested. Finally,
Section V concludes the work and gives pathways towards
future developments.

II. CONCEPT AND SYSTEM ARCHITECTURE

Digital twins (DT) can be used for the entire design →
execute → change → decommission lifecycle of any physical
asset. In the past, the role of computing the theoretical
behaviour was exclusively fulfilled by simulations. While
simulations are still an important and integral part of the
digital twins, the purpose of the digital twins stretches well
beyond the existing simulation approach. In our work, both
the simulations and the digital twins are model based. Such
a model describes the theoretical behaviour of the system
(including the embedded control algorithms) and its surround-
ing environment (potentially including human interactions).
During the lifecycle of the asset, the amount of knowledge
is perpetually increasing. This is because the real-time data
acquisition is continuously monitoring, storing and analysing
the sensor data of the system. In the project, it is assumed
that with this knowledge, the system undergoes a continual
improvement process, in one or more of the following ways,
i.e. based on the analysed sensor data:

• the system engineer is able to improve and refine the
model of the system and its environment,

• the system engineer is able to estimate with higher preci-
sion the operational states, parameters and outputs of each
individual instance of the system; tracking simulators will
be employed for this purpose,

• the system engineer is able to predict, optimise and tune
the system control algorithms, and hence improve the
performance of the system.

In a second stage, given the best-known model and param-
eters of the system, the digital twin can be used to exploit,
simulate and evaluate hundreds of ’what-if’ scenarios. These

simulation results will support operational decision making at
any desirable layer in the system framework (see Fig. 1).

III. IMOCO4.E BUILDING BLOCKS AND METHODOLOGY

We have carefully identified the set of building blocks
(BB) which create a common umbrella for the majority of
applications that were considered (Section IV). Compared
to the authors previous works [19], [20], here the BBs are
distributed across automation pyramid layers (Fig. 2). This
allows to increase the cost-effectiveness of the implementation
of smart control algorithms.

A. BB1 – SoC/FPGA platforms for smart control and signal
processing

This building block aims to move the high-performance
computing close to the deep edge of the system, directly
interfacing with the physical signals [42]. Thus, for high-
performance applications, BB1 will result in an optimization
of the control profile since it will contain application-specific
code running in both the FPGA and CPU5, allowing the offload
of some functionalities from the CPU to the FPGA. In such
a case, moving digital twins to the edge will enable lower
latency, optimized system operations and will better guide the
local control. The environment of the digital twins should
mirror all these features including a precise and common
notion of time that will provide more comparable results to
the real system

B. BB2 – High speed Vision in the Loop

BB2 will optimize high speed vision architectures and
AI/DT algorithms for the deployment on embedded ’edge’
devices (Embedded GPUs, SoC/FPGAs, MPUs, ASICs),6 with
applications in perception, localization, planning, maintenance
( [47]). This building block will be deployable as a smart
sensor for higher control layers. The key concept is the
implementation of low latency and high rate image acquisi-
tion, combined with integrated image processing and machine
learning towards industrial applications. BB2 is employing
some of the AI-based components developed in BB8 and the
provided methodologies for training and inference. BB2 could
be deployed on BB1.

C. BB3 – Novel sensors (a new type of sensors, wireless
communications, self-powered, low-powered)

A key advantage to the rollout of edge processing em-
ploying AI will be the inherent potential improvement in
achievable system latency [43]. BB3 will make near real-
time sensor information available for upper layer AI tasks
including machine and deep learning. Whether communication
is wired or wireless, signal coding is inevitable, including
data (bandwidth) reduction and noise cancelling. This building
block deals with the development of control and monitoring
tools able to deal with the heterogeneous transmission data

5Central Processing Unit
6General Purpose Unit, System-on-Chip / Field Programmable Gate Array,

Multi-core Processing Unit, Application Specific Integrated Circuit



Fig. 1. Proposed concept of digital twin in the control engineer perspective (with DT and AI emphasized)

Fig. 2. Building blocks vertically distributed across automation pyramid
layers, i.e. showing edge-to-cloud intelligence

interconnection with deterministic capabilities. BB3 could be
tightly coupled to BB1.

D. BB4 – Real-Time Smart Control Platform

BB4 is an edge component that enables fast and real-time
execution of compute-intensive AI workloads [45]. Data can
be obtained directly from on board sensors, e.g. cameras,
or received through low-latency and high-throughput network
sensors through real-time fieldbuses (e.g. TSN7, EtherCAT8).
Data processing will be performed: on FPGA, by ad-hoc
implementation or soft-core accelerator, e.g. Xilinx9 Deep
Learning Processing Units, or on hardware accelerators.

7Time-Senstive Networking
8https://ethercat.org/
9https://www.xilinx.com/

E. BB5 – Smart control algorithms library

BB5 leads to smart control algorithms. These algorithms
can be both model-based and data-driven, and build upon
reliable knowledge of the dynamics of the system, obtained
via physical modeling, data-driven learning (system identifi-
cation), or both. This same knowledge of the dynamics is
the foundation for developing digital twins, simulating the
essential behaviour of a system including sensors; in addition,
the control algorithms derived in BB5 are absorbed in the
digital twin to obtain full closed-loop emulations ([7, 10, 8,
46, 48]).

BB5 algorithms are implemented in efficient (de)centralized
processors. Development and validation of algorithms at the
simulation level will be implemented through code generation.
Algorithm code will be, hence, available for a different set
of platforms (BB4 or other industrial controllers). The smart
algorithms incorporate in-line learning and other specific AI
techniques, including machine learning methods relying on
Gaussian processes, to automatically synthesize controllers
that push for the highest possible performance of a system.

F. BB6 – Algorithms for condition monitoring, predictive
maintenance and self-commissioning of industrial motion con-
trol systems

BB6 components will span on all project layers leading
from edge to cloud. Data for predictive maintenance sooner
or later leads to big data records. They must be significantly
reduced to be either stored and successively processed on
edge devices or they must be sent to the cloud [Chang et al.,
2019], [50]. Computation of condition monitoring tasks like
data preprocessing (cleaning), condition indicators evaluation
and/or fault detection significantly reduce the burden on ver-



tical communication networks and also on the data storage.
AI tasks like machine learning, deep learning, utilization of
trained neural networks can ease these tasks while still keeping
the effective information in reduced data. AI methods will
be used for the automatic commissioning of electric drives
and mechatronic systems. AI-based controller parameters op-
timization and energy efficiency maximization will be targeted.

G. BB7 – High performance servo-drives

This BB will deliver a high performance, highly config-
urable current amplifier for servo control application. This
provides a flexible low-level actuator control in Layer 1 which
can be used in high fidelity motion control platforms with
stringent performance requirements. BB7 will also provide a
virtual counterpart to be ready for co-simulation during all
XIL10 stages of motion control system development, mainly
with upper control loops and virtual sensors as well. It is
a most-at-the-edge gathering data from physical systems and
delivering them to the digital twins synchronization layer. BB7
is not primarily intended for AI implementation (as BB1/BB4),
however it will cooperate with related complex algorithms of
drive diagnostic. BB7 will be connectable to BB1 and BB4
and will execute parts of smart control algorithms contained
in BB5.

H. BB8 – AI-based components

BB8 addresses the manufacturing stage of the product life-
cycle management by utilizing AI-based algorithms in devel-
oping digital twins for control model development, faults prog-
nosis, diagnostics, deflection modelling of machine structures,
anomaly detection and usage-based maintenance [44]. Digital
twin creation and development require extensive knowledge of
different technologies.

The developed AI-algorithms target multi-modal data (e.g.
vision, audio, pressure, feedback signal) to increase produc-
tivity by applying modern reinforcement learning techniques
for the development of control models which bare potential
for fast reconfiguration of the production line.

I. BB9 – Cyber-security tools and trustworthy data manage-
ment

BB9 will ensure to deploy all the necessary cyber security
mechanisms (i) with respect to real-time synchronization and
communication with digital twins and (ii) in the operation
of the complex digital twins’ systems. BB9 will provide
cyber-security technologies facilitated by AI-based anomaly
detection mechanisms; it will also exploit federated learning
approaches (AI edge-to-cloud deployments) to ensure multi-
level cyber-security assurance.

It will provide secure and trustworthy data management ag-
gregated from perception sensors (BB2), novel sensors (BB3)
and exploited by FPGAs (BB1), by the real time smart control
platform (BB4), and the high-performance servo-drives (BB7).
Moreover, it will facilitate fast and secure accessibility to data
for the AI components (BB8) and algorithms (BB5, BB6).

10X-in-the-Loop

J. BB10 – Motion / path planning, collision avoidance and
navigation algorithms

BB10 will ensure mode- and learning-based path and mo-
tion planning of mobile as well as manipulator robots. This
building block will also enable the algorithms to be tested,
evaluated and improved in a digital twin of the environment
where the robot is operating. In complex digital twins, BB10
has strong interoperability with BB5 and BB6.

BB10 will use machine learning approaches to ensure fast
data stream processing from multi-sensory sources to capture
changing environments in real-time as the basis for spatial
mapping, obstacle detection and machine decision-making.
Advances in deep reinforcement learning for robot motion
planning [Long et al. 2017] are analyzed and implemented.
Interoperability with BB3 and BB8 is given.

IV. SELECTED PILOT APPLICATIONS FOR VERIFICATION

In this section it is shown that the framework developed
has a potential applications in diverse technological domains
(Fig. 5).

A. Pilot 1 – 3D printing

Pilot 1 is an ‘affordable’ industrial-grade 3D plastic filament
printer with automated material handling, tool exchange and
thermal conditioning. Reliability and predictability of per-
formance (mainly accuracy) are of particular importance for
the industrial application of the printer. The printing process
occurs at relatively high temperatures, which is challenging for
print accuracy. The thermal load acts as a large disturbance
on the positioning systems and causes warpage of printed
objects. Furthermore, the accuracy of the deposition process
and filament flow inside the printer nozzle is a complex
physical process depending on both temperatures, pressure
and motion profiles and therefore challenging to control and
optimize.

B. Pilot 2 – Semiconductor production

This machine is a platform for high speed and high volume
semicon manufacturing. The machine is a part of the whole
production line, hence predictive maintenance is of high im-
portance. The main problems which must be solved are: to
improve motion accuracy; to ensure predictable performance
across multiple machines and to optimize the whole process.

C. Pilot 3 – High speed packaging

The high-speed packaging machine represents a full pro-
duction process. It is composed of a lot of components, like
feeding station, strip buffer, sterilizer, liquid filling, cutting
chains, etc. The aim is to improve the current machine
monitoring and to improve the actual quality of the control
process.



Fig. 3. Digital twin view point with BB interactions; vertical distribution across automation system layers.

D. Pilot 4 – Healthcare robotics

The healthcare pilot is intended to provide treatment like
image-guided therapy. The long-term goal is to increase imag-
ing flexibility via a more complex kinematic structure and
smart control. The key problem is also to extend system
monitoring and enable fast improvements and testing. Finally,
system maintenance and service should be improved using
state-of-the art data model technology.

E. Pilot 5 – Mining / tunneling robotic boom manipulator

Robotic boom manipulators are the enabling technology
for autonomous underground processes. Project technologies
are piloted in at least digital twin of a mining / tunneling
robotic boom manipulator on a carrier where feasible. The
main technological requirements are machine vision/sensor
algorithms to enable semi-autonomous and autonomous oper-
ations; collision avoidance methods for autonomous and semi-
autonomous boom control and path planning; the added value
of data and technologies in business (AI, digital twins, task
planning).

We would like to point out that besides the main pilots, the
IMOCO4.E project verifies the framework also on demonstra-
tor applications in shaver blades production, plastic molding,
warehouse logistics and cosmetic production ( [49]).

V. CONCLUSIONS AND FUTURE TRENDS

It was shown that machine performance optimization and
their smart maintenance need an integral framework of various
technologies (HW, SW, sensory, communication, data storage
and analysis, etc.). When dealing with the whole machine
lifecycle advanced digital twin principles and data analysis
methods must be employed. Finally, diverse pilot application

Fig. 4. Pilot and demonstrator applications distribution across individual
automation system layers.

were analysed in different application domains (semicon, CNC
machining, packaging, 3D printing, medical manipulators and
others). We have analysed the full vertical chain of the automa-
tion pyramid with special focus on digital twin implementation
and employment of AI methods wherever it brings benefits.

Apparently, there is an extraordinary motivation to continue
in cooperation also under the future Horizon Europe frame-
work programme, e.g. to make the whole process service-
based and allow also other partners to become part of it easily.



Fig. 5. Pilot applications: 1) 3D printing; 2) Semiconductor production; 3) High speed packaging; 4) Healthcare robotics; 5) Mining / tunneling robotic boom
manipulator

TABLE I
IMPLEMENTATION OF BBS ON DIFFERENT PILOTS – TECHNOLOGICAL
MATRIX; Y = BB WILL BE IMPLEMENTED, – = BB IS NOT RELEVANT

BBs pilots 1) 2) 3) 4) 5)
BB1 Y Y – – –
BB2 Y Y Y – Y
BB3 – Y – Y –
BB4 Y – Y – Y
BB5 Y Y – Y Y
BB6 Y Y Y Y –
BB7 – Y – – –
BB8 Y Y Y Y Y
BB9 Y – Y – Y
BB10 – – – Y Y
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[19] Čech, M., Beltman, A-J., Ozols, K. (2019). I-MECH – Smart System
Integration for Mechatronic Applications. In Proceedings of IEEE ETFA
2019, Zaragoza, Spain, pp. 843-850.
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[31] Čech, M., Schlegel, M. Interval PID Tuning Rules for a Fractional-Order
Model Set, IFAC Proceedings Volumes, Volume 44, Issue 1, 2011, Pages
5359-5364, ISSN 1474-6670.

[32] Cantanzo, D., O’Flynn, B., Walsh, M. On the use of Wireless Sensor
Networks in Preventative Maintenance for Industry 4.0, 12th Interna-
tional Conference On Sensing Technology, 3rd- 6th December 2018,
Limerick, Ireland

[33] Weiss, B., Sharp, M., and Klinger, A. (2018). Developing a hierarchical
decomposition methodology to increase manufacturing process and
equipment health awareness. Journal of Manufacturing Systems, 48, 96-
107.

[34] Henao, H., Capolino, G-A., Fernandez-Cabanas, M., Filippetti, F.,
Bruzzese, C., Strangas, E. et al. Trends in Fault Diagnosis for Electrical
Machines: A Review of Diagnostic Techniques. IEEE Ind Electron Mag.
2014;8: 31–42.

[35] Kavitha, V., Thangadurai, R. Advance Detection of Faults in Drives
Using MEMS. International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering. 2014;3.
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