

www.eo4eu.eu

1

D4.7 - Release of the integrated framework [Dev &
Production level] (a)

Work Package WP4, EO4EU Data Marketplace Ecosystem

Lead Author (Org) ENG

Contributing Author(s)
(Org)

NKUA, EBOS, NVCR, CINECA, ECMWF

Due Date 30.11.2023

Date 16.11.2023

Version V1.0

Dissemination Level

X PU: Public

 PP: Restricted to other programme participants (including the Commission)

 RE: Restricted to a group specified by the consortium (including the Commission)

 CO: Confidential, only for members of the consortium (including the Commission)

Disclaimer

This document contains information which is proprietary to the EO4EU Consortium. Neither this
document nor the information contained herein shall be used, duplicated or communicated by any
means to a third party, in whole or parts, except with the prior consent of the EO4EU Consortium.

Ref. Ares(2023)8183508 - 30/11/2023

www.eo4eu.eu

2

Versioning and contribution history
Version Date Author Notes

0.1 10.10.2023 Piero Scrima (ENG) - Giovanni Barone (ENG) TOC and v0.1

0.2 24.10.2023 Piero Scrima CI/CD Process v0.2

0.3 01.11.2023 Giovanni Barone - Lakis Christodoulou (EBOS) GUI Description v0.3

0.4 06.11.2023 Charalampos Andreou (NKUA) Integration and
Validation Tests
chapter

0.5 10.11.2023 Dimitris Tsakalidis (NVCR) - George Domalis
(NVCR)

Refinement of
Knowledge Graph
description

0.6 13.11.2023 Beatrice Chiavarini (CINECA) Added XR/VR chapter

1.0 14.11.2023 Piero Scrima – Giovanni Barone Content updates

1.1 15.11.2023 Tolga Kaprol (ECMWF) - Claudio Pisa
(ECMWF)

Comments and
reviews

1.2 16.11.2023 Piero Scrima – Giovanni Barone Comments and review
addressed

1.3 27.11.2023 Salvatore Marchese (IES) Internal review

1.4 27.11.2023 Costas Rizogiannis (KEMEA) Internal review

1.5 28.11.2023 Piero Scrima (ENG), Giovanni Barone (ENG) Final Version

Terminology

Terminology/Acronym Description

KG Knowledge Graph

CI Continuous integration

CD Continuous deployment

CFS Customer Facing Services

ML Machine Learning

SSO Single-Sign On

GUI Graphical User Interface

WFE Workflow Editor

XR Extended Reality

www.eo4eu.eu

3

Terminology/Acronym Description

API Application programming Interface

DSL Domain Specific Language

EO Earth Observation

www.eo4eu.eu

4

Table of Contents

Versioning and contribution history ... 2

Terminology .. 2

Table of Contents .. 4

Executive Summary ... 6

1 Introduction ... 7

2 Code Repository and CI/CD Process .. 8

3 Continuous Integration (CI), Delivery of Development Operations (DevOps), and Machine
Learning Operations (MLOps) ... 9

3.1 Continuous Integration (CI)... 9
3.2 Machine Learning Operations (MLOps) .. 9
3.3 Gitlab repository ... 10
3.4 EO4EU Gitlab projects ... 11
3.5 GitLab CI/CD .. 13
3.6 EO4EU CI/CD Pipeline ... 14
3.7 GitFlow .. 16
3.8 EO4EU Container Registry ... 18

4 Integration and Validation Tests ... 20
4.1 Environments .. 20
4.1.1 Test Environment .. 21
4.1.2 Staging Environment ... 21
4.1.3 Production Environment ... 21
4.2 Validation Process ... 21
4.2.1 Unit Tests... 22
4.2.2 Quality Assurance .. 23
4.3 Deployment Process (Release to Production) .. 24

5 User guide and Graphical User Interface ... 24
5.1 Authentication .. 24
5.2 Dashboard Navigation... 26
5.3 Dataset Download... 27
5.4 Workflow creation and running .. 30
5.5 Data Visualization ... 33
5.6 S3 Bucket ... 34
5.7 XR/VR .. 35

6 Conclusions .. 35

www.eo4eu.eu

5

List of Figures

Figure 1. CI/CD schema ... 8
Figure 2. EO4EU issue board ... 11
Figure 3. EO4EU GitLab groups ... 12
Figure 4. EO4EU Gitlab openfaas subgroups .. 12
Figure 5. Gitlab project readme .. 13
Figure 6. .gitlab-ci.yml file ... 14
Figure 7. A simple CI/CD script .. 15
Figure 8. Openfaas .gitlab-ci.yml .. 15
Figure 9. Pipeline menu .. 16
Figure 10. Pipeline history .. 16
Figure 11 - GitFlow example ... 17
Figure 12. Container Registry section ... 19
Figure 13. Knowledge Graph component container registry.. 19
Figure 14. Openfaas container registry... 20
Figure 15. Jest emulates an API Call and the describe tool emulates the behaviour of click event 23
Figure 16. Basic deployment configuration file for Kubernetes Platform .. 24
Figure 17. Login ... 25
Figure 18. EO4EU OTP form .. 26
Figure 19. EO4EU Platform Front-end Web Interface .. 27
Figure 20. Dashboard – Software Instances-Applications-Services .. 27
Figure 21. Dashboard- KG Data Query Search .. 28
Figure 22. Data Sets Access based on Sorting Relevance Algorithm .. 28
Figure 23. Dashboard - Data Set Break Down based on pre-filtering mechanism 29
Figure 24. Dashboard-KG MetaInfo and Python Script generation .. 29
Figure 25. Workflow Editor ... 31
Figure 26. Create New Workflow .. 31
Figure 27 - Workflow Editor (WFE) ... 32
Figure 28 - Block connection ... 32
Figure 29 - ML options .. 33
Figure 30. Data Visualization .. 33
Figure 31 - S3 Bucket ... 34
Figure 32 - VR/XR .. 35

www.eo4eu.eu

6

Executive Summary
The document "D4.7 Release of the Integrated Framework" gives a targeted and focused overview of
the functionality of the initial version of the EO4EU platform. It also includes the methodology and the
tools used for the collaborative development of the project. This document also gives an overall
picture of high-level integration and validation testing methodologies. The document serves as quick
reference and guide to the platform's capabilities, offering insights into development tools,
continuous integration/deployment (CI/CD) practices, user interface design, and workflow
management.

www.eo4eu.eu

7

1 Introduction
This report documents the first release of the EO4EU integrated framework. The objectives of this
document are two: firstly, to facilitate an in-depth understanding and utilization of the newly
developed framework and the internal systems of the project, and secondly, to provide a detailed
account of the processes and methodologies that have culminated in this release.
The document is a reference for navigating the platform, exploring the code developed and the
processes produced so far, while furthermore it gives insight on the testing and validation activities
that led to the release of the current system.

In chapter 2 a generic introduction of code repositories and CI/CD methodology is provided.

In chapter 3 the main tools used in the development and collaboration process are presented and
described. Finally, the work produced for the EO4EU project through these tools is shown.

In chapter 4, the testing procedure of high-level components and validation methods that are
following deployment in test, staging and production environments will be described.

In chapter 5, an end-user perspective of the results ensuring that users can easily navigate and
leverage the tools and functionalities offered by the platform is provided.

www.eo4eu.eu

8

2 Code Repository and CI/CD Process
In the current landscape of software development, efficient and streamlined integration processes
and the related integration tools are essential components of any successful project. Centralized and
distributed source control, artifacts repositories, Continuous Integration (CI) and Continuous
Deployment (CD) practices are fundamental in software integration, when dealing with highly scalable
modular architectures (Figure 1). Another important development methodology is the so-called
DevOps, a combination of development (Dev) and operations (Ops), it emphasizes the importance of
communication, collaboration and integration between software developers and IT operations.
DevOps approach aims to shorten the systems development lifecycle, ensuring high software quality
and aligning with CI and CD practices. Finally, lately with the spread of Machine Learning, another
development methodology linked to Machine Learning Operations (MLOps) algorithms has emerged.
MLOps is a set of practices that aims to deploy and maintain machine learning models in production,
reliably and efficiently. In these scenarios, it is required to quickly move from code to running
components, from development to deployment. These practices and tools have emerged as
indispensable pillars in an era defined by agility, collaboration, and relentless innovation.
For these reasons, EO4EU employs the use of these methodologies for its development, also using
software that supports their use such as GitLab as the main code repository, GitLab CI/CD for the
automated build and deployment pipeline, and Docker registry as the artifact repository seamlessly
integrated into the GitLab Repository.

This document presents (chapter 3) the integration and collaboration tools used within the scope of
EO4EU, providing an overview of their function and showing the specific instance of EO4EU.
Moreover, it describes the current project, available in the GitLab repository, and the general process
adopted in CI/CD pipeline, showing an example taken from a project which leverages a CI/CD script.
The integration tools and CI/CD practices described here are crucial in ensuring that the EO4EU user
interface, detailed in Chapter 5, is always up-to-date and functioning optimally. Furthermore, they lay
the foundation for the comprehensive integration and validation tests covered in Chapter 4.

Figure 1. CI/CD schema

www.eo4eu.eu

9

3 Continuous Integration (CI), Delivery of Development
Operations (DevOps), and Machine Learning Operations
(MLOps)

This chapter presents some of the tools used in EO4EU software development, such as GitLab.

Moreover, it describes how these tools were used in this first part of the project. MLOps will be

better integrated in the next phase of the project and therefore its implementation will be

addressed in the next version of this document.

3.1 Continuous Integration (CI)

The EO4EU project relies on the Continuous Integration, which is a software development practice
that involves regularly merging code changes from multiple contributors into a shared repository. The
primary goal is to detect integration issues early and ensure that the software remains in a functional
state throughout its development. CI includes automating the build, test, and deployment processes
to maintain code quality and streamline collaboration.
The most important continuous integration aspects are:

• Automated Testing: Code changes are subjected to automated tests, including unit tests,
integration tests, and regression tests.

• Frequent Integration: Developers integrate their code frequently, often multiple times a day,
to catch integration issues early.

• Shared Repository: All developers work on a common codebase, allowing for easy
collaboration and conflict resolution.

• Automated Build and Deployment: The CI system automates the process of building the
application and deploying it to a testing environment.

Delivery of Development Operations
Furthermore, the EO4EU project follows a DevOps which consists of a set of practices that aim to unify
software development (Dev) and IT operations (Ops) by emphasizing collaboration, automation, and
communication between teams. It seeks to streamline the software delivery pipeline and improve the
efficiency and reliability of the deployment process.

Most important DevOps aspects are:

• Collaboration: DevOps encourages close collaboration between development, operations,
and other stakeholders throughout the software lifecycle.

• Automation: Automation tools are used to automate deployment, provisioning, monitoring,
and other repetitive tasks.

• Continuous Delivery: Building on CI, DevOps promotes continuous delivery by automating the
deployment process, allowing for frequent and reliable software releases.

• Feedback Loops: Continuous monitoring and feedback mechanisms are established to identify
and address issues promptly.

3.2 Machine Learning Operations

In addition, MLOps is an extension of DevOps principles to machine learning workflows like in the
proposed WFE and ML models deployment. It focuses on efficiently deploying, monitoring, and
maintaining machine learning models in production environments.

www.eo4eu.eu

10

Most important MLOps aspects are:

• Version Control for Models: Like code, machine learning models and their associated artifacts
(datasets, pre-processing scripts) are versioned.

• Automated Model Deployment: Automation is applied to deploy machine learning models
into production environments.

• Model Monitoring: Continuous monitoring of model performance and drift is crucial to ensure
ongoing accuracy and reliability.

• Feedback Loop: Data collected from production is used to improve and retrain models over
time.

• Reproducibility: MLOps emphasizes the reproducibility of model training, ensuring that
models can be rebuilt and retrained as needed.

Continuous Integration, DevOps, and MLOps play crucial roles in the design, development,
deployment, and integration of various software components within the EO4EU platform system
while their use imply different benefits, such as:

 Continuous Integration: Ensures that individual components are integrated and tested frequently,
identifying and resolving integration issues early.

1. DevOps: Facilitates seamless collaboration between development, operations, and other
teams, automating deployment and monitoring processes.

2. MLOps: Allows for the efficient deployment and management of AI/ML models, ensuring their
reliability and performance in production.

In the next subsection, tools and practices applied in the current development of the EO4EU platform
are described.

3.3 Gitlab repository

GitLab, launched as an open-source platform in 2011, has rapidly become a staple in the realm of
distributed version control, largely due to its comprehensive suite of features that cater to
collaborative software development. Its robustness lies in its ability to handle source code
management while facilitating collaborative workflows among geographically dispersed development
teams, such as those found in the EO4EU project.
Gitlab not only offers Git repository management but seamlessly integrates various tools and services,
improving the development flow and software lifecycle. This includes integration with project
management tools, continuous integration systems and third-party services, which helps streamline
development processes within EO4EU.

Gitlab provides an issue tracking system that allows developers to create, assign, comment and track
project issues. It is useful for bug management, feature requests, and collaboration between team
members.
In EO4EU, Gitlab has been adopted also to support task management and planning, precisely because
it allows to integrate project management activities with development activities and to keep track of
them, as can be seen in Figure 2.
Issue tracking allows the creation of activity issues and the assignment of activities to specific users.
The activities can also be labelled with comments, and it is possible to follow their status. The GitLab
instance for tracking activities is reachable via the address:

www.eo4eu.eu

11

https://gitpcomp.di.uoa.gr/

Figure 2. EO4EU issue board

One of the most important features of Gitlab, essential for the EO4EU project, is the possibility of
using a fully integrated CI/CD platform, which will be described later in this document.

3.4 EO4EU Gitlab projects

During the initial activities of EO4EU project, a Gitlab environment has been set which centralizes the
storage of the code developed during the project. Having the appropriate credentials issued by the
EO4EU system administrators, it is possible to access the repository via the following link:

https://git.apps.eo4eu.eu/

The portal is organized by dividing the projects in groups, which for this project is just EO4EU, and
nested subgroups. In the first level of subgroups, it is possible to distinguish the following subgroups:

• EO4EU
o EO4EU cloud infrastructure
o How To Guides
o EO4EU umm
o Custom Facing Services
o EO4EU Elasticsearch
o EO4EU Observability
o EO4EU-XR-VR
o EO4EU-openfass-operations

https://gitpcomp.di.uoa.gr/
https://git.apps.eo4eu.eu/

www.eo4eu.eu

12

o EO4EU-adam-platform
o EO4EU-knowledge-graph
o EO4EU-inference-server

In Figure 3, the list of subgroups can be seen in the GitLab EO4EU website.

Figure 3. EO4EU GitLab groups

A subgroup can have in turn other subgroups as shown in Figure 4 for the eo4eu-openfaas-operations
group.

Figure 4. EO4EU Gitlab openfaas subgroups

Each of these subgroups contains one or more projects which are described on the first page of the
repository as can be seen in Figure 5.

www.eo4eu.eu

13

Figure 5. Gitlab project readme

3.5 GitLab CI/CD

GitLab stands out for its integrated CI/CD solution, an integral part of GitLab's suite of web application
capabilities. EO4EU leverages this robust platform to improve project integration and optimize
workflow efficiency. In this section, we will look at how GitLab CI/CD works. The following section will
be dedicated to the specific projects hosted within the EO4EU GitLab repository.

GitLab's CI/CD architecture is based on the interaction of several fundamental elements: runners, jobs,
and pipelines, which together coordinate the automation of the software life cycle, from development
to deployment. Each project on GitLab can have a custom CI/CD configuration, expressed via a file
called '.gitlab-ci.yml'. This file contains directives that orchestrate the operations of the CI/CD pipeline,
including tasks ranging from compiling code, to running tests, to deploying the application.

Inside the '.gitlab-ci.yml' file, jobs are organized into phases, forming a structured sequence that
determines their execution order. This structured approach ensures that each job only begins upon
the successful completion of its predecessor, thus maintaining the integrity of the construction
process. User can also declare environment variables within this file to designate specific conditions
under which jobs will run.

The activation of a CI/CD pipeline occurs in response to any code push or merge request, thanks to
the configurations present in the '.gitlab-ci.yml' file. Jobs within the pipeline run in isolated
environments known as Runners-dedicated agents responsible for running the jobs. GitLab features
two types of runners: shared runners and specific runners that users can configure on their own
infrastructure. This capability gives users the versatility to tailor the execution environment to the
precise needs of their projects.

Additionally, GitLab CI/CD provides reports detailing the results of jobs and pipelines. These reports
are critical for tracking pipeline performance and quickly identifying any issues, ensuring continuous
integration and deployment processes are as efficient and error-free as possible.

www.eo4eu.eu

14

3.6 EO4EU CI/CD pipeline

As mentioned above, EO4EU bases its integration strategy on CI/CD mechanisms. To implement the
CI/CD pipelines, the tool described in the previous chapter was applied. In this section we will see
some concrete examples of how CI/CD is used specifically in EO4EU Gitlab projects.
The GitLab CI/CD pipeline, detailed in this section, not only facilitates rapid development and
deployment but also enables automated testing protocols. These protocols are essential for the
validation processes described in Chapter 4, ensuring that every release meets our stringent quality
standards.
As described previously, the starting point of a CI/CD process is the pipeline descriptor. In GitLab CI/CD
this descriptor is specified in a YAML file called .gitlab-ci.yml, as shown in Figure 6, where a screenshot
of the list of files belonging to one of the EO4EU Gitlab projects is presented.

Figure 6. .gitlab-ci.yml file

Different Gitlab CI/CD pipelines are employed by EO4EU, however the vast majority have the main
objective of creating docker images. In subsequent developments the created Docker images will be
deployed in the execution environment automatically. In Figure 7 one of the simplest CI/CD scripts
which has been implemented is shown.

www.eo4eu.eu

15

Figure 7. A simple CI/CD script

The script uses the pipeline to create a Docker image. To build the Docker image in a Kubernetes
environment, where GitLab itself is hosted, Kaniko is required. Kaniko is a tool to build container
images from a Dockerfile, inside a Kubernetes cluster. Unlike traditional Docker builds, Kaniko does
not depend on a Docker daemon, but executes the build in a container environment itself. This
approach is particularly useful in GitLab Runners, it avoids the need for privileged containers and
mitigates security risks associated with granting Docker daemon access.
Scripts have also been developed for more complex pipelines, as in the case of Openfaas, as shown in
Figure 8.

Figure 8. Openfaas .gitlab-ci.yml

www.eo4eu.eu

16

In this case, the pipeline creates the Docker image, but before this step it configures the build
environment and executes a tool, faas-cli, to create an instance of function as a service. It is possible
to follow the different steps of the pipeline, together with the history, navigating the Gitlab web UI
through the sections available from the side menu, as seen in Figure 9.

Figure 9. Pipeline menu

The pipeline section lists the pipeline executions with their status, as shown in Figure 10.

Figure 10. Pipeline history

As seen in this section, various pipelines have been designed in EO4EU, which allow the creation of
images to be deployed on a Kubernetes environment. The next section describes how the produced
images are stored.

3.7 GitFlow

GitFlow is a workflow model designed to improve the management of software projects that use the
Git version control system. Created by Vincent Driessen in 2010, GitFlow provides a robust and
organized structure that facilitates collaboration between developers and the effective management
of different phases of software development.

At the heart of GitFlow there are two main branches: the master branch and the develop branch. The
master branch contains the code that is currently in production, while develop branch serves as the
basis for the current development of the project. This separation helps to maintain a clear distinction
between stable code and code in development.

To manage new features, bug fixes, and release preparations, GitFlow uses a set of supporting
branches. The developer that starts working on a new feature has to create a feature branch from the
develop branch. This practice isolates new feature development, allowing developers to work on
multiple features in parallel without interfering with each other.

www.eo4eu.eu

17

Once a feature is complete and tested, the feature branch is merged back into the develop branch.
This process ensures that all new features are integrated and tested together before a release
preparation.

When the team is ready to release a new version of the software, a release branch is created from
develop. This branch is used for final checks and small bug fixes, ensuring that the code is ready to be
launched into production. After these phases are completed, the release branch is merged into both
master and develop, and the code in master is tagged with a version number, indicating a new official
release.

In situations where critical bugs are discovered in production code, GitFlow provides an effective
approach to address them via hotfix branches. These branches are created directly from the master
branch and are intended to provide quick and straightforward fixes. After the bug is fixed, the hotfix
branch is merged into both master and develop, ensuring that the bug is fixed in both the production
release and current development.

Figure 11 - GitFlow example

The Figure 11 displays the Git diagram of a generic EO4EU GitFlow process.The description of the steps
followed is presented below:

1. Project Initialization (EO4EU-Init): The GitFlow workflow begins with the initialization of the
EO4EU project. This initial commit sets up the project's repository.

2. Master Branch: The master branch is created following the initial commit. This branch
represents the production environment and will contain the production-ready code.

3. Release in Production (EO4EU-Prod-v1.0): A commit tagged v1.0-EO4EU is made on the
master branch, representing the first official production release of the EO4EU project.

www.eo4eu.eu

18

4. Development Branch: A develop branch is branched out from the master branch. This branch
is used for ongoing development and integration of new features.

5. Starting Development (EO4EU-Dev-Start): Development begins on the develop branch with
the first commit, marking the start of new feature development.

6. Feature Branch (feature/EO4EU-NewDataModel): For the development of a new data model,
a feature branch is created from the develop branch. This allows for isolated development of
the new feature.

7. Completing Feature Development (EO4EU-Feature1-Complete): Once the new data model
feature is developed and tested, it's committed to the feature branch.

8. Merging Feature into Develop: The completed feature branch is then merged back into the
develop branch, integrating the new data model into the main development line.

9. Preparing for Next Release (release/EO4EU-v1.1): A release branch is created from develop
to prepare for the next version (v1.1) of the EO4EU project. This branch is for final adjustments
and bug fixes before the production release.

10. Release Preparations (EO4EU-Release1-Prep): The release branch is updated with final
preparations and bug fixes for the upcoming version.

11. Merging Release into Master and Develop: After finalization, the release branch is merged
into both master and develop, ensuring that the new version is deployed to production and
that the development branch is updated.

12. Hotfix Branch (hotfix/EO4EU-ProdFix): If critical issues are found in the production version, a
hotfix branch is created from the master branch to provide quick fixes.

13. Completing and Merging Hotfix (EO4EU-Hotfix1-Complete): Once the hotfix is complete, it's
committed to the hotfix branch and then merged back into both master and develop to ensure
the issue is resolved in both production and ongoing development.

This workflow represents a structured approach to managing development, features, releases, and
hotfixes, ensuring stability and continuous integration in the EO4EU project.

By incorporating GitFlow into EO4EU, we achieve an improvement in managing software lifecycles,
from planning to production. This workflow model promotes orderly management of dependencies
between various software components and effectively supports the management of multiple
environments such as development, test, and production. Furthermore, it fosters smooth and
organized collaboration between teams, which is vital in an interdisciplinary project like EO4EU.

In conclusion, the integration of GitFlow in EO4EU represents a natural evolution of the software
development process, aligning perfectly with the use of GitLab and GitLab CI/CD already in place in
the project. This approach not only improves the quality and efficiency of software development but
also helps creating a solid foundation for the future development and expansion of the EO4EU project.

3.8 EO4EU Container Registry

The CI/CD pipelines seen in the previous sections are used to automate the application building and
deployment process. The images built by these pipelines need to be stored in an archive, namely a
container registry.
This approach allows the EO4EU teams to efficiently manage Docker images, ensuring that they are
always available and updated for use in the various components of the project. Also, the container
registry makes it easy to share Docker images among team members and provides granular control
over permissions and access to images.
Using a Docker Registry helps to simplify the image sharing with other team members or the
community. Images can be accessed from any location via a URL. It helps also to keep track of different
versions of the Docker images, making it easy to roll back or restore a specific version in case of
problems. Moreover, the container registry can be configured with access policies and permissions,

www.eo4eu.eu

19

ensuring precise control over image access. Finally sharing images can be used by multiple projects,
reducing duplication of resources.
GitLab integrates a container registry functionality in the "Container Repository" section (Figure 12).
This feature allows to store and manage Docker images directly within GitLab. In this way, being
already within the GitLab ecosystem, it is not necessary to use external services to archive Docker
images. Docker images stored in the Artifact section of GitLab are easily accessible from associated
GitLab projects, simplifying resource management. Additionally, GitLab offers version control tools to
track changes to Docker images.

Figure 12. Container Registry section

EO4EU integrates the "Container Registry" section into all its GitLab projects. Gitlab “Container
Registry” also provides versioning feature as can be seen in the image list of the knowledge graph
shown in Figure 13, where the “latest” image tag is present.

Figure 13. Knowledge Graph component container registry

In other cases, the use of tagging activity is more intensive such as for “open-faas” components, where
tags were used to provide a unique reference to the generated Docker images (Figure 14).

www.eo4eu.eu

20

Figure 14. Openfaas container registry

After the storage of the Docker image to the GitLab container registry, deployment operations can
start. In the upcoming project phase, newly developed CI/CD pipelines will automate deployment
processes, enabling containers to run on the Kubernetes environment upon committing changes to
the GitLab repository.

4 Integration and Validation Tests
In this chapter, the employed environments such as Test, Staging and Production are described. Each

environment plays a crucial role in the software development and release process, enabling thorough

testing and efficient implementation of new features and improvements.

Details of the integration tests and validation processes are also exposed, highlighting how these tests

are fundamental to maintaining the high quality and reliability of the system. The approach taken to

conducting unit testing and quality control is accurately illustrated, providing a clear view of the

strategies adopted to ensure that each component of the EO4EU system functions interacts effectively

with the other elements of the project.

The integration and validation tests are essential for the continuous improvement of the EO4EU

platform. They ensure that the tools and practices implemented in our CI/CD processes (Chapter 2)

and the user interface functionalities (Chapter 5) meet the highest standards of quality and reliability.

4.1 Environments

The entire infrastructure includes the full implementation both at the infrastructure level and at the
organization level of three environments (Test, Staging and Production).
Each environment plays a specific and fundamental role in the software development lifecycle,
facilitating a smooth and controlled transition from development to final product release. This
structure allows to efficiently manage the various stages of development, testing, and release,
ensuring that each release is solid, secure, and ready for use by end users. The clear distinction and
effective management of these environments are essential to maintain the integrity and quality of the
software produced within the EO4EU project.

www.eo4eu.eu

21

4.1.1 Test Environment

It is a controlled test environment. The primary purpose is design-level testing and evaluation to assess
the functionality, performance, and reliability of platform in base component level. At this level, unit
tests for each component ensure expected operation regardless of the correct operation of the parts
of the platform.

4.1.2 Staging Environment

It acts as a simulation of the production platform where end-to-end scenarios are validated before
deployment in production to identify and remediate potential problems. The staging environment
mimics the production environment to ensure realistic conditions. Testing in this environment helps
verifying the compatibility, security, and overall robustness of the platform. This environment is also
used for testing and integration of large-scale components of the platform.

4.1.3 Production Environment

The production environment is the live and operational environment where the platform is released
for end users. Unlike development or staging environments, the production environment is optimized
for performance, scalability, and security. Deployment in the production environment is a critical
phase that takes place when the tests in the staging environment are completed. The use of
Kubernetes clusters in the entire platform enables the hot-swap deployment method, to minimize
downtime.

4.2 Validation Process

In the EO4EU platform all components are categorized based on various characteristics. Initially, a first
separation can be made at the level of interaction with the user. Based on this categorization, the
components are divided into backend services (Kafka, Rest APIs etc) and Front-end Services. Another
level of separation is the technologies that have been used. Multiple technologies can be integrated
into one component. The validation process is divided into two stages. The first stage includes the unit
tests which must be integrated and executed during the deployment process in the test environment
and the second stage is the Quality Assurance in the staging environment. The unit tests concern the
base components of the platform, while the second control level concerns the high-level components.

No Component Frontend Backend Service

1 Authentication Identity Platform
(Keycloak)

X X

2 Dashboard X

2.1 Knowledge Graph Query Component X

2.2 Workflow Editor X

2.3 Visualization X

2.4 S3 Bucket Explorer X

2.5 AR/XR X

3 Dashboards API X

4 CLI X X

5 DSL Service X

5.1 DSL Facade X

5.2 DSL Engine X

www.eo4eu.eu

22

6 Fusion X

7 FaaS X X

8 ML X

Table 1: Component layer matrix

No Component Python
Java/
Kotlin

Typescript
/Javascript

Docker Unity C#(.NET)

1
Authentication Identity
Platform (Keycloak) X X

2 Dashboard X X

2.1
Knowledge Graph
Query Component

X X X

2.2 Workflow Editor X X

2.3 Visualization X X

2.4 S3 Bucket Explorer X

2.5 AR/XR X X

3 Dashboards API X X

4 CLI X X

5 DSL Service X X X

5.1 DSL Facade X X X

5.2 DSL Engine X X

6 Fusion X X

7 FaaS X X X X

8 ML X X

Table 2: Technologies matrix

4.2.1 Unit Tests

Testing procedures should be implemented based on the development technology. Processes are
automatically executed within CI/CD pipelines. For the need to ensure the quality of controls, the tools
that can be used at the component level were selected based on best practices.

Technology Test Frameworks Testing Tools

Java / Kotlin JUnit, TestNG Mockito, PowerMock

Python PyTest, unittest MagicMock, coverage.py

JavaScript / Typescript Jest, Mocha Sinon

C# (.Net) NUnit, xUnit Moq, dotCover

PHP PHPUnit Prophecy, Codeception

Go testing

www.eo4eu.eu

23

Docker Goss, Bats Container - Structure Test, Dive

Table 3: Unit Test Matrix for Different Technologies

As an example, the test of a functional feature implemented with Typescript technology and the React
framework through an automated process can be presented (Figure 15).

Figure 15. Jest emulates an API Call and the describe tool emulates the behaviour of click event.

4.2.2 Quality Assurance

www.eo4eu.eu

24

Quality Assurance (QA) for the EO4EU platform involves procedures to ensure the reliability,
performance, and security of the whole platform. The testing process typically begins with the design
of end-to-end scenarios that includes all functional and non-functional parts.

4.3 Deployment Process (Release to Production)

After the completion of the tests in the staging environment, all the components can be transferred
to the production environment. A "hot swap" deployment in Kubernetes typically involves updating
an application or service with minimal downtime by rolling out the new version while the previous
one is still running. To achieve the goal, each component must include a Kubernetes Deployment
YAML file with the production settings (Figure 16). A central pipeline with access to all platform
repositories can be deployed with the help of Gitlab Agent to all structural components.

Figure 16. Basic deployment configuration file for Kubernetes Platform

5 User guide and Graphical User Interface
This section describes the user functionality currently available in the EO4EU platform. The section
and the functionalities whose content has not yet been completed will therefore be described in more
detail in the final version of the deliverable (D4.8) at M33.

In the EO4EU platform the user dashboard is the central point of the user interface, designed to offer
intuitive and secure access to data analyses and graphical visualizations. It is made up of several
software components that work in synergy to optimize the user experience.

24Specific instructions on how to use each of these components and functions will be provided in
subsequent sections of the user manual.

5.1 Authentication

www.eo4eu.eu

25

The robust authentication system adopted by EO4EU ensures that only authorized users can access
the platform.

To authenticate and therefore access the EO4EU platform, a user must first have the appropriate
access credentials (username and password). These credentials must be requested from the EO4EU
system administrator.

Once the credentials have been obtained, to access the platform it is necessary to activate the
authentication process using an OTP (One-Time Password) code. The OTP code is a disposable
password, valid only for a single access session or transaction, which guarantees high security
standards and solves the problems associated with the use of the traditional password.

Authentication instructions:

1. After the user tries to access the dashboard at the following link:
https://dashboard.dev.wekeo.apps.eo4eu.eu/home

2. The system redirects the navigation to:
https://auth.apps.eo4eu.eu/auth/realms/EO4EU/protocol/openid-connect/auth

3. The user fills in the login form with username and password (Figure 17).

Figure 17. Login

4. The system will ask to use an OTP as shown in Figure 18 (such as Google Authenticator).

https://dashboard.dev.wekeo.apps.eo4eu.eu/home

www.eo4eu.eu

26

Figure 18. EO4EU OTP form

After completing the authentication process the system redirects the navigation to the EO4EU
dashboard, user can start using the platform.

5.2 Dashboard Navigation

As stated above, the dashboard is the central access point to the EO4EU user functionalities. After the
log in, the user lands in the home page of the dashboard.
The Home screen shows a menu on the left side. Each menu item represents a feature. The related
features will open in the right part of the window. The EO4EU Front-end web-interface provides the
following applications to the end-user:

• Home

• Dashboard

• Data Visualization

• Console

• Preferences

• History

• Account

• Sign-Out

These application are available through the main menu as shown in Figure 19.

www.eo4eu.eu

27

Figure 19. EO4EU Platform Front-end Web Interface

The Dashboard software component is designed and developed as a bundle of software instances and
will activate all the related possible applications-services as shown below in Figure 20, in the right part
of the window, such as: Knowledge Graph (KG), Workflow Editor, Elastic Search, S3 Bucket General,
AI/ML Marketplace, Web XR/VR, and Global Store Records. Each software instance has its own unique
operations and characteristic functionalities.

Figure 20. Dashboard – Software Instances-Applications-Service

Dataset Download

The EO4EU knowledge graph enables users to access and explore a plethora of Earth Observation (EO)
data and derive valuable insights. The KG integrates disparate datasets so that users can explore
interconnected data points. Through its semantic search capabilities, the knowledge graph enables
users to locate specific information effortlessly using natural language queries, enhancing the overall
search experience by grasping the context and relationships within the data (Figure 21).

www.eo4eu.eu

28

Figure 21. Dashboard- KG Data Query Search

Users can explore the capabilities of the knowledge graph by entering specific keywords, like “climate
change,” into the “Query Search” section. Once entered, the system will generate results, as shown in
Figure 22, in this example the research gets 69 relevant datasets. The results are displayed with titles
and concise descriptions. By clicking on a dataset title, users can access detailed information, including
a comprehensive description, variables, file format, data type, and a JSON representation of the
dataset (Figure 23). This interactive functionality empowers users to explore the details of each
dataset, improving their capacity to efficiently discover and comprehend relevant earth observation
data.

Figure 22. Data Sets Access based on Sorting Relevance Algorithm

www.eo4eu.eu

29

Figure 23. Dashboard – Data Set Break Down based on pre-filtering mechanism

Selecting the dataset, the dashboard performs different APIs call to the Knowledge graph which
executes smart pre-filtering mechanism and a sorting algorithm for the ten most relevant ID datasets,
as result of this interaction in the subsection “Create Workflow” products and features become
accessible for selection by the end-user. It is possible to choose the products available (one or more)
for the specific dataset and the download file format and click on “Generate Script”, which produces
final MetaInfo and MetaData, including the essential Python script required for the Workflow Editor’s
pipeline processing. Multiple API calls are then made by the dashboard through the KG to obtain the
Metainfo of the chosen ID dataset and its corresponding Python script in the Dashboard.
These details are subsequently sent to the Workflow Editor via the openEO API and also through a
Kafka communication topic based on the user’s selection. It’s important to note that this automated
mechanism is presently in development, serving communication and integration testing purposes.
This automated mechanism is still under development as it serves communication and integration
testing purposes for the current time, but it will be automated in a single API Call with a dynamic
response to the Workflow Editor in Phase B Technical Development.
In the current version, user can select end copy the script and metainfo JSON file to use them in the
creation of the workflow described in the next section (Figure 24).

Figure 24. Dashboard-KG MetaInfo and Python Script generation

www.eo4eu.eu

30

5.3 Workflow creation and running

In the EO4EU project, a workflow is essentially a sequence of tasks organized systematically to process
and analyse EO data.

The workflow is fundamental in the analysis of EO4EU data, the platform in fact allows to carry out
predefined analyses and manage the data in the system, but also offers the possibility of carrying out
customized analyses.

All this can be organized by the user through an interactive canvas, where each element is represented
by a connectable block. By creating a pipeline, the user can easily configure the necessary settings,
algorithms and scripts to perform the desired analysis.

The concept of workflow is pivotal as it defines how different components and tools interact to
efficiently process EO data.

The process begins with the creation and design of the workflow. Users or system designers use the
Workflow Editor (WFE) to specify and arrange tasks in a logical order. This workflow then undergoes
a validation and compilation process through the Domain Specific Language (DSL) Engine, ensuring it
adheres to the project's technical specifications. If the workflow is validated, it is compiled into a YAML
format, making it ready for deployment.

Upon deployment, the workflow is executed within the EO4EU platform. This execution involves
initiating the series of tasks or processes as defined. These steps include the ingestion, processing,
analysis, and transformation of EO data, possibly using machine learning algorithms, data fusion
techniques, or other methods. The aim is to streamline the transformation of raw EO data into
actionable insights or useful information.

The flexibility and customization of these workflows allows users to meet specific data processing
needs or objectives. There is a strong emphasis on automation to enhance efficiency and reduce
manual intervention. Moreover, the integration of various technologies like AI, ML, cloud computing,
and advanced data analytics is key to optimizing the processing and analysis of EO data.

An example of a typical workflow in EO4EU might start with retrieving satellite data from an EO
database, followed by preprocessing tasks like cleaning and normalization. This data could then be
passed through a Fusion Engine for correlation with other datasets and analysed using machine
learning models from the AI/ML Marketplace. The workflow concludes with the generation of results
such as predictive analytics, trend analysis, or visual maps, which are then used for decision-making.

Overall, workflows in EO4EU are crucial in transforming vast and complex EO data into practical,
accessible, and actionable formats, unlocking the full potential of Earth observation for a variety of
applications.

To start working with workflow, from the main menu select WorkFlow editor: The Workflow screen
will open. Here the user can find all the previously created workflows. To open the workflow editor
for an already existing workflow, the user can click on the menu icon and select “edit”(Figure 25).

www.eo4eu.eu

31

Figure 25. Workflow Editor

If a user wants to create a new workflow, “Generation scripts” are required. The primary purpose of
these scripts is to fetch the actual EO data from the source selected.

To obtain a “Generation scripts”, the user needs to follow the steps described in the previous section.
Once the script is available, clicking on the "Create new Workflow" item will open the form for creating

the new workflow and inserting the scripts, as shown in Figure 26.

Figure 26. Create New Workflow

Once the form is filled in with the script and the user clicks the “Save” button, the new workflow will appear

in the list on the main screen (Figure 26).

www.eo4eu.eu

32

Figure 27 - Workflow Editor (WFE)

As shown in Figure 27, the system presents to the user a canvas with all the available tasks represented
as blocks in the left column. The user can drag and drop the block on the central canvas and connect
the block using the links (Figure 28).

Figure 28 - Block connection

Blocks can also be configured by opening the configuration form available by clicking on the menu on
the top right of the block (Figure 29).

www.eo4eu.eu

33

Figure 29 - ML options

5.4 Data Visualization

The data visualization functionalities in EO4EU are designed to convert raw data into meaningful visual
insights, through dynamic charts and visual representations.
Data visualization takes place downstream of the dataset retrieval and workflow processing. The
workflow process and knowledge graph need to generate the metadata necessary for data
visualization. The data retrieved and processed in the EO4EU platform are then saved in the S3
storage.
The integration of the different components of EO4EU, and in particular of the data storage system,
implies that the data retrieved and produced by the workflows are also visible from the data
visualization component.
As described in deliverable D3.5, in the section related to the dashboard, aside from the data resulting
from the processing, the workflow also produces the dataTypeConfig.json file, which defines the data
type and structure-format of the metadata to be accessed and read. Another file produced by the
workflow is dataVisConfig.json, which contains visualization settings, type of selected charts-plots,
and data style to be plotted. These files provide the needed information for the data visualization to
be automatically generated.
Currently, to elaborate and generate data visualizations, these files need to be selected manually.
Also, at the time of writing the workflow does not directly generate these data, but there are some
examples and demo data which allow the visualization of the graphs as shown in Figure 30.

Figure 30. Data Visualization

www.eo4eu.eu

34

Another development that will be available in the next releases is the integration with Elasticsearch.
Currently, the Data Visualization can provide 4 basic types of charts for simulating and visualizing the
EO Data and EO Metadata generated by the KG and the WF Editor.

5.5 S3 Bucket

The S3 Bucket, used in the EO4EU project, is an object storage system, a modern and advanced storage
technology. Unlike traditional file or block-based storage methods, object storage manages data as
distinct objects. Each object includes the data itself, a unique identifier, and metadata. While
traditional storage systems organize files into folder hierarchies, object storage stores them in a flat
namespace, making them easily accessible and scalable.

The advantages of this type of storage are notable: greater scalability, ease of access and integration
with modern cloud-based applications. Additionally, object storage provides advanced metadata
management capabilities, improving classification and retrieval. Thanks to the use of a flat namespace,
objects can be easily accessible from different applications and services, facilitating interoperability.

In the context of EO4EU, the S3 Bucket plays a crucial role in the integration of the different
components of the system. The data collected and processed by the various tools and services within
the EO4EU ecosystem are stored in a S3 Bucket. This centralized approach to data management
greatly facilitates interoperability between components.

For example, during the research phase, the collected data is stored in the S3 Bucket. This centralized
storage then allows the workflow component to easily retrieve this data for processing and analysis.
Once the workflow has processed the data, the results are saved back to the S3 Bucket. These results
can then be easily accessible by other components, such as data visualization tools, which read the
data to present it in an understandable and interactive visual format.

Currently through the EO4EU dashboard, in the S3 Bucket section, it is possible to access the data
processed (actually, retrieved and processed) during the operations carried out by the user. As can be
seen in Figure 31, the interface shows the files which EO4EU processed to evaluate the request of the
user. The metadata of the files can be explored, and the files can be downloaded as well.

Figure 31 - S3 Bucket

www.eo4eu.eu

35

5.6 XR/VR

The XR/VR component of the EO4EU project is a key aspect of the Customer Facing Services (CFS) and
is designed to provide a more immersive and interactive experience for users engaging with EO data.
The XR component is a web-based application that enables the possibility of visualizing and exploring
the Workflow Editor (WFE) output data in an immersive environment, taking advantage both of Virtual
Reality (VR) and Augmented Reality (AR) visualization capabilities.

The XR application is integrated in the Dashboard and it currently provides the visualization of WFE

TIFF format output data with Virtual Reality capabilities (Figure 32), while the enabling of the
Augmented Reality capabilities is foreseen for the phase B of the technical development.
Opening the XR/VR tab in the Dashboard, the EO data are displayed on the 3D model of the portion
of terrain related to their context. The user can move, zoom in and out the 3D model and, in case the
device he/she is using can support Virtual Reality experiences, a button for enabling the Virtual Reality
visualization is shown on the screen. Clicking the button, the user is redirected to a newly opened web
page where the 3D model is displayed in VR mode.
More advanced possibilities of user interactions will be developed in the phase B of the technical
development.

Figure 32 - VR/XR

6 Conclusions
This document reflects the initial phase of the EO4EU project, capturing the essential steps taken
towards developing the EO4EU platform. It is clear how each component of the EO4EU platform, from
the GitLab repository and CI/CD processes (Chapter 2) to our comprehensive testing methods (Chapter
4) and the user interface (Chapter 5), work cohesively to create a robust and user-friendly system for
EO data analysis and management. While this first release is an important step forward, it represents
the beginning of a journey towards achieving a robust and user-friendly platform for EO data analysis
and management. The document acknowledges that while the current release lays the groundwork,
there is an ongoing focus on enhancing the system's robustness and user-friendliness. These are key
objectives for the final system, and current efforts are dedicated to iteratively improving the platform.
This phase serves as a crucial foundation, informing future enhancements and setting the stage for
the continuous evolution of the EO4EU ecosystem to meet the sophisticated needs of EO data
utilization.

