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Abstract—This paper describes the design of a robust PI
controller by considering several design criteria simultaneously
(multi-objective optimization). Firstly, all controllers satisfying
multiple frequency domain criteria (e.g. sensitivity function
limits) are found in PI parameter plane using robustness regions
method. Then, all suitable controllers are evaluated by the
selected time-domain criterion, for example: Integral Error (IE),
Integral of Time-weighted Absolute Error (ITAE) etc. Further,
application of H2 and H∞ norms is shown in that context.
The whole design toolchain is supported by advanced Matlab
GUI which was used in the illustrative example. The described
approach can be extended for PID controllers as well, for de-
velopment of advanced autotuners and for teaching and training
purposes.

Index Terms—frequency domain, multi-objective optimization,
Nyquist plot shaping, PI controller, PID controller, process
control, robustness regions, time domain, H∞ approach

I. INTRODUCTION

It is well reported that feedback control can bring huge
energy and material savings as well as other economic benefits.
Consequently, many methods and theories on how to set feed-
back controller parameters have emerged. Their number varies
depending on the type of the used controller. With increasing
controller complexity (in terms of parameters and structure), it
is highly difficult to tune and implement it properly. Therefore,
proportional-integral (PI) and proportional-integral-derivative
(PID) controllers are still the most widely used not only
in process control but also in energetic, robotics and other
fields. Literature states that almost 90% of all cases are PID
controllers [1]. Majority of them (97%) do not use derivative
term, i.e. are just PI type. Surprisingly, still many of these PI
controllers (70%) are tuned improperly [2] or work just with
default parameters hence do not bring expected savings and
product quality (see e.g. [3]).

The Ziegler-Nichols method is one of the oldest experimen-
tal methods [1]. However, during the evolution of industrial
technology, these methods were proven to give often unstable
feedback loop. Hence it was necessary to find more exact
analytical approaches. General overview of PID control system
analysis, design, and technology is given e.g. in [4]. Some of
the classical design methods in time and frequency domain,
both analytical or numerical are described in [5]. Some of the
approaches are quite specific, e.q. fuzzy PID controller [6].
The time-domain optimality of feedback loops can be analyzed
by different criteria. One of the most popular is ITAE, see

for example [7]. Over the time, also model uncertainties were
included in the design process, mainly to reflect unmodelled
dynamics of the real system. This led to the development
of methods for robust control [8]. For example, robust PI
controller is often designed using a normalized process model
and the constant stability margins and crossover frequency
in the parameter space [2]. Another approaches are based
on Hurwitz-Stability and Gamma-Stability [9]. A robust con-
troller can be also designed using H∞ norm [8, 10, 11]. Robust
controller design brings a lot of principal trade-offs which
are discussed in [12]. It is always usefull to have some a
priori information about physical nature of the real system.
The robust design based on robustness regions has a wide
range of applications: a continuous stirred tank reactor [13],
battery-supercapacitor energy storage system [14] or large
wind turbine with communication delays [15].

This paper brings a method which combines robustness
regions method with time domain optimization. It allows
Nyquist curve or sensitivity function shaping for multiple
shaping points [8]. Firstly, the design of the controller is
carried out in frequency domain. Here all controllers satisfying
given shaping conditions are found. They represent a robust-
ness region in controller parameter plane [16, 17, 18]. All
controllers from the region are evaluated using selected time-
domain criterion, for example: Integral Error (IE), Integral
of Time-weighted Absolute Error (ITAE) etc. In this paper,
six time-domain criteria will be considered. Additionally, the
analysis of the obtained robust region will be performed using
H2 and H∞ norms. Due to the considerable complexity of the
calculations, a GUI toolbox was created. It was implemented
in Matlab and it contains all the calculations, making it an
easy-to-use for any user. Such GUI allows also to include
more complex user-defined functions.

Paper is organized as follows: Section II will introduce the
basic concepts of process control and robust controller design.
The following Section III will describe how to obtain a robust-
ness region. Subsequently, it will be described here how the
intersection of the regions is computed for several considered
shaping points simultaneously. The considered various criteria
will be described here. Section IV is devoted to a simulation
example on which the whole process will be documented.
Section V describes potential improvements. Section VI brings
conclusions.



II. PROBLEM FORMULATION

A. Process and controller model

Figure 1 shows the classical structure of a closed control
loop [1]. The process is considered as linear, and it is described
by a transfer function P (s). The C(s) block represents the
linear controller.

The signal r(t) represents the reference value. e(t) repre-
sents the control error. The output is represented by a y(t)
signal. The signals d1(t) and d2(t) are the input and output
noise/disturbances that affect the system. Typically, this may
be due to inaccuracies in the sensors and actuators.

C(s) P(s)ur e
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Fig. 1. The classic structure of the closed-loop control system

The controller C(s) may have many variant forms. How-
ever, this article is limited only to the PI controller, which has
the following transfer function [5]:

C(s) = Kp +
Ki

s
,

where Kp represents the gain of the proportional term and Ki

is the gain of the integral term. The open loop of the system
shown in Figure 1 can be written as:

L(s) ≜ C(s)P (s).

The closed-loop has the following transfer function T (s). It
can be referred to as a complementary sensitivity function:

T (s) ≜
L(s)

1 + L(s)
=

C(s)P (s)

1 + C(s)P (s)
.

The sensitivity function S(s) then has the form:

S(s) ≜
1

1 + L(s)
=

1

1 + C(s)P (s)
.

B. Design specifications

Before the controller is designed, it is always necessary to
specify the goal which has to be achieved. In the vast majority
of cases, the most important is the closed-loop stability of a
given system [19]. Additionally, it can be, for example, per-
formance of a load disturbances response, set point response
and robustness against uncertainties in the considered model
[11]. These requirements can be characterized by a formula:

||H(s)||∞ < γ. (1)

Suppose that H(s) in this case represents a stable closed-
loop transfer function of a given system. The γ is a parameter
which has a relation to robustness-performance trade-off. H(s)
infinity norm can be written in following form where ω
indicates frequency.

||H(s)||∞ ≜ sup
ω

|H(jω)| (2)

In this article, the following controller design conditions will
be considered [8]:

||WS(s)S(s)||∞ < γS , (3)
||WT (s)T (s)||∞ < γT , (4)

where WS(s) and WT (s) are considered as stable rational
functions with no poles on the imaginary axis. They are often
referred to as ”weighting functions”. In the specific case where
WS(s) = WT (s) = 1, γS = MS and γT = MT . Then the (4)
and (3) can be rewritten into a form:

||S(s)||∞ < MS ,

||T (s)||∞ < MT .

1) Conditions for H∞ controller: If the controller C(s) is
designed using H∞ approach then it must meet the following
conditions [8]:

• the closed-loop system is stable,
• the transfer function H(s) is stable,
• the inequality constraint (1) must be satisfied for a given

design parameter γ > 0.

Another way how to ensure robustness is to define several
shaping points in the Nyquist plot plane. Then the region
boundary in Kp - Ki is calculated using the following for-
mulas [11, 20]:

Kp(ω) =
a(ω)u+ b(ω)v

a2(ω) + b2(ω)
, (5)

Ki(ω) =

[
b(ω)u− a(ω)v

]
ω

a2(ω) + b2(ω)
, (6)

where a(ω) = ReP (jω), b(ω) = ImP (jω). P (jω) represents
system process, u and v represent shaping point in complex
plain for L(jω) = u+ jv. Parameter ω indicates frequency.

2) Additional evaluation criteria in the time domain: The
obtained region contains an infinite number of controllers. It
is therefore appropriate to supplement this procedure with the
additional evaluation criteria [1, 11, 21]. The following six
criteria will be considered in this article.

• IE – Integral of Error

IE =

∫ +∞

0

e(t)dt,

• ITE – Integral of Time Error

ITE =

∫ +∞

0

t · e(t)dt,

• ISE – Integral of Square Error

ISE =

∫ +∞

0

e2(t)dt,

• IAE – Integral of Absolute Error

IAE =

∫ +∞

0

|e(t)|dt,



• ITAE – Integral of Time Absolute Error

ITAE =

∫ +∞

0

t · |e(t)|dt,

• IGSE - Integral of Generalized Square Error - α rep-
resents a subjectively selected weighted parameter. This
criterion provides better results than ISE [21].

IGSE =

∫ +∞

0

[e2(t) + α · ė2(t)]dt.

The obtained robustness region is sampled, and all controllers
are numerically evaluated via above described criteria. This
process will be described in detail in the following chapters
and also in a simulation example IV.

3) System norms for evaluation of the closed loop: Another
way to evaluate the resulting region is to implement the
calculation of the norms for the system. The closed-loop
system will be denoted as H(s). Only the two system norms
will be described in more detail. They will be the H2 norm
(||H||2) and the H∞ norm (||H||∞).

• H2 norm - The H2 signal norm represents the energy it
contains. The H2 system norm can thus serve as a design
criterion for optimizing the resulting price function.

||H||2
∆
=

( 1

2π

∫ +∞

−∞
|H(jω)|2dω

) 1
2

. (7)

• H∞ norm - H∞ norm represent the maximum singular
value of the function over that space. For H∞ norm of the
signals this means maximum gain. This can be interpreted
as a maximum gain in any direction and at any frequency.
If the system is a stable single input and single output
(SISO) system then the H∞ norm is the peak gain, the
largest value of the frequency response magnitude. The
H∞ norm prescription is given in the equation (2).

III. DESIGN CRITERION FOR PI CONTROLLER

The process of obtaining the robust regions will be intro-
duced in this chapter. As it was described earlier, the border
of the robust region for PI controller is a parametric curve
calculated in [Ki,Kp] plane from equations (5), (6). Inputs
of these equations are real a(ω) and imaginary b(ω) parts of
given process. And then there are the shaping points defined
as u + jv. Where u is real part and v is imaginary part of
shaping point in the complex plane.

One of the primary advantages of this method is that several
design criteria can be expressed as a shaping point represented
by the u, v coordinates. Few of these main frequency domain
design criteria can be seen in following Table I [20]. These
criteria are often considered and used in control theory.

TABLE I
DESIGN CRITERIA

Design criteria Label

Gain margin GM

Phase margin PM

Sensitivity function (SF) limit MS

Complementary sensitivity function (CSF) limit MT

Low-frequency disturbance rejection εS
Bandwidth of the control loop εT

Fig. 2. Nyquist plot shaping based on design criteria [11]

Design criteria noted in Table I pictured as a shaping points
can be observed in the Figure 2 (the geometric interpretation).
The green circle represents the unit circle.
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Fig. 3. Illustration of robust stability region representing GM criterion

Particular robustness region is obtained for each shaping
point (i.e. design criteria). The region contains parameters of
stabilising controllers which satisfy defined criteria. One of
the robust stability regions is shown in Figure 3.

However, multiple criteria can be selected, and thus multiple
regions can be obtained. This fact is illustrated in Figure 4. In
this case, three shaping points were chosen as will be shown
in Table II in Simulation examples IV. These points will be
considered throughout the rest of the paper. Intersection of
these regions represents parameters of stabilising controllers
satisfying all required design criteria.



0 2 4 6 8 10 12 14 16 18

0

1

2

3

4

5

6

7

Fig. 4. Illustration of robust stability region representing three design criteria

A. Intersection of several regions

Each shaping point provides its own robust regions. Subse-
quently, their intersection and its evaluation will be performed.
Figure 5 shows the regions for the three shaping points
considered. Their mutual intersections are color-coded. The
red-brown area (in the lower left quarter) of the graph indicates
the controllers that meet the requirements for all three shaping
points.

Fig. 5. Polyshape regions for multiple shaping points

Thus, only the part for which all design requirements are
met is considered for further processing of the simulation.
The final form of the final region, which was created by the
intersection of three, is presented in Figure 6. For further
processing of the region, it is necessary to sample it - that
is, to sample the parameters Ki and Kp. Sampling fineness
represents an optional parameter. The finer it is selected, the
more controllers will be contained in the resulting region,
but the computational complexity of the whole operation will
increase significantly.

Furthermore, the resulting region will be firstly evaluated
using six time domain criteria. Additionally, the region will
be evaluated using the system norms for each PI controller

Fig. 6. The resulting intersection of three regions

that occurs in the region. The region was sampled as a mesh
grid matrix with its limits set as the maximal values of Ki,
Kp coordinates of the region. However, this sampling did not
respect irregular shape of the region creating a rectangular
grid. Cubic approximation of the sampled region had to be
performed on the obtained rectangular grid. As a result, it is
then possible to represent any irregular shape of the region for
its further processing. The sampled area is shown in Figure
7. Current sampling has been set to three hundred samples
of region coordinates [Ki,Kp]. This sampling option will be
equally used in the case of the simulation example.
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Fig. 7. Sampled area of the intersection region

All mentioned time criteria in II-B2 and II-B3 were nu-
merically computed for each sampled point of the obtained
approximated plane resulting in 3-dimensional graph. The
simulation was performed using model created in Matlab and
Simulink. The aim was to find minimal values of all time
criterion which were easily observable in the 3-dimensional
graph. For better understanding, these graphs will be shown
only in a simulation example.



IV. SIMULATION EXAMPLE

The following system will be considered to evaluate the
proposed approach. It is a system with two poles, one zero
and a time delay.

P (s) =
(s+ 1)

(s+ 2)(s+ 3)
e−0.2s

The step response of the system is shown in Figure 8. It
is evident from the graph that this is a stable system with
time delay, but it has a significant overshoot. Overshoot can
be easily compensated by the controller.

Fig. 8. Step response plot of the example system

Bode plot of the system is shown in Figure 9.
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Fig. 9. Bode plot of the example system

The following step is to perform an analysis of the consid-
ered system P (s) by calculating its H2 and H∞ norms. The
calculations were carried out according to the formulas (7) and
(2). The frequency at which the system reaches its maximum
value (H∞) is 1.9953.

||P (s)||2 = 0.3416 ||P (s)||∞ = 0.2193

All calculations and simulations were performed on a com-
puter with CPU I7 - 8700k 3.70GHz, 16GB RAM, 2TB HDD
and Windows 10 64bit.

The design requirements for the gain margin will be con-
sidered as GM = 2. The phase margin will be set to PM = 60
degrees. The maximum value of the sensitivity function will
be required as MS = 1.6. Considered design criteria are listed
in Table I. Each of these requirements can be represented by a
shaping point. In that manner, a robust region that satisfies it
will be obtained for each shaping point. The individual shaping
points are listed in Table II. In total, there are three points
considered at once but any number of shaping points can be
considered here. It depends on the specific requirements of the
designer and the considered shape of the system.

TABLE II
SHAPING POINTS

Index of point Coordinates Design criteria

1. point 0− 0.5j GM = 2
2. point −0.5− 0.866j PM = 60°
3. point −0.5− 0.375j MS = 1.6

A robust region is therefore obtained for each point. All
three regions are shown in the Figure 4. It contains controllers
that meet the requirement. The resulting region is obtained by
the intersection of three robust regions. Their intersection is
then color-coded in Figure 5. The resulting region for this
example is depicted in Figure 6. This resulting region was
sampled in the same manner as described in Section III-A.
Its shape is displayed in Figure 7. If multiple shaping points
were selected, the whole process would not change. This fact
would be reflected solely in the part for obtaining the resulting
region. It would be created by the mutual intersection of the
considered number of shaping points (regions). As a result,
the intersection region can have a much more complex shape,
which is given by the intersection of all regions. In the case
of more complex shapes, it might be necessary to improve the
approximation method of the shape of this irregular region.

Subsequently, a simulation was created in Matlab Simulink,
where all the obtained controllers were evaluated according to
the chosen time criteria. Six criteria were considered, which
were described in Chapter II-B2. The resulting graphs are
shown in Figure 10. On the top left 10 is the graph for the
IE criterion. To the right of it is a graph for the ITE criterion.
The second row from the left in 10 shows the graph for ISE.
To the right is the graph for IAE. The last row in 10 from the
left shows the graph for ITAE. To the right is the graph for
IGSE. The α parameter was selected with a value of 0.5. It
is evident from the graphs that the calculation of the criterion
took place only on the defined sampled resulting region.

The graphs depicted on the Figure 10 show that all chosen
criteria provide similar information. The more fundamental
difference between them is only in the steepness as the
criterion grows. This is primarily due to the contemplated
shape of the system that was used as an example. In the case
of a more complex system, it would be possible to obtain
graphs with a various shapes. The criteria for ITE and ITAE
achieve the highest values for example system. Furthermore,
for example, the ISE criterion provides the steepest course.
Also worth mentioning here is the design parameter α in the



Fig. 10. 3D visualisation of integral criteria for the final robust region. On the top are the IE and ITE criteria. ISE and IAE are in the middle row. At the
bottom are ITAE and IGSE.

case of IGSE. If it had been chosen differently, the graph
would have looked different. These graphs thus provide an
interesting insight into the evaluation of the resulting region.
In the same way, it depends on the specific application, where
designers may be interested only in some of the criteria listed.
Their results can be further used for other operations. For
example, it may be another analysis that can be used in another
optimization process.

The subsequent step in evaluating the resulting region will
be the usage of the H2 and H∞ norms for a closed-loop
system. The calculations were performed according to the for-
mulas (7) and (2) again. Even in this case, the resulting region
was composed of three hundred controllers as in the previous
case. The values obtained for both norms are displayed in
Figure 11. In the Figure 11 on the left, the resulting region is
evaluated using the H2 norm. On the right, the resulting region
is evaluated by the H∞ norm. The results for the H2 norm
show that as the value for Ki and Kp increases then the total

energy of the system also increases. In the case of the results
for the H∞ norm, it is clear that almost all controllers are
evaluated at 1. This means the specified controller stabilizes
the system and reaches the required value. In this manner, it
converges to the value of the set point. Only the values for
Ki = 0 do not achieve the value of 1. These controllers do
not attain the required value when it is caused by the absence
of the integration component in the controller. Consequently,
only the proportional component is present there, which is not
enough to reach the set point. In this case, the considered PI
controllers changed only to P. This fact stems mainly from the
shape of the resulting region.

From the resulting graphs, it is straightforward that only
the graph for H2 norms provides interesting results. The
controllers can be divided according to the total energy. Based
on the analysis, a regulator can be selected that meets the
specified requirement for total energy, the definition of which
depends on the specific application. In contrast, the graph for



Fig. 11. 3D visualisation of ||H||2 and ||H||∞ of the closed-loop obtained from the parameters of the final robust region and defined nominal process. On
the left there is 2-norm of the closed-loop. On the right there is ∞-norm of the closed-loop.

H∞ only provides information on convergence to the desired
value, but nothing more. The question arises of whether it
makes sense to plot such graphs. On the other hand, it is clearly
displayed at first glance whether the regulators contained in
the resulting region are actually converging to the required
value.

Fig. 12. Step response of selected closed-loop systems computed from the
final robust region.

To verify the results, a simulation was performed for thirty
closed-loops. They were selected from a total of three hundred
in such a way that it started from the first, then continued with
a step of ten to three hundred. The simulation was performed
in Matlab, and it was a step response simulation for each
system. The results are presented in Figure 12.

From the results, it can be found that some controllers take
up to 200s before they achieve the required value. This fact
is illustrated by the blue line in the Figure 12 which is close
to 0 throughout the 60s shown and grows only very slowly.
Other selected controllers are faster. This fact is related to the
graph on the left of the Figure 11 for the H2 norm.

V. FUTURE WORKS

First of all, the authors plan to test the GUI on more com-
plex models and also on some real systems. When switching to
more complex systems also more interesting graphs would be
obtained than those presented in the chapter IV. Also system
benchmarks from Åström and Hägglund can be used to test
the proposed approach [22]. Other interesting system models
usable for the validation of the GUI are given in [23].

A user defined time domain criteria will be also tested on
real systems. The application of other considered time domain
criteria is also offered here.

Another improvement is an extension for PID controllers.
Clearly, a robust region will no longer come out in 2D plane
but in 3D space. Its coordinates would be defined using the
parameters Kp, Ki and Kd. This would increase the com-
plexity of the whole task and make the graphs less readable.
Therefore, the evaluation of the region obtained in this way
using additional criteria or norms would be relatively more
complicated. However, if all the calculations are performed
inside the application and the user only controls it by using
the GUI, then it is not an obstacle for him. Next, the ratio
between integral and derivative term can be fixed and move
back to 2D plane.

VI. CONCLUSION

In this paper, the PI controller design procedure was intro-
duced utilizing a combination of frequency-domain methods
with time-domain criteria. Specifically, Nyquist plot shap-
ing conditions are considered. The result is a robust region
containing all controller parameters fulfilling given set of
requirements. The obtained region was numerically processed
in Matlab and Simulink and each controller was numerically
evaluated by a given time-domain criterion or system norms.
The resulting 3D graphs subsequently provide a visualization
that can be easily used and interpreted. A GUI program was



created in Matlab. It contains all the calculation procedures,
and the user does not have to deal with them again. The
authors believe that such approaches will help to increase the
percentage of well-tuned controllers, thus may lead to huge
energy savings.
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